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ABSTRACT

Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure. This
identification process involves updating the model for identifying the next potential failure members. Herein we
intend to update the finite element model automatically in the identification process of failure modes and further
perform the system reliability analysis efficiently. This study presents a framework that is implemented through
the joint simulation of MATLAB and APDL and consists of three parts: reliability index of a single member,
identification of dominant failure modes, and system-level reliability analysis for system reliability analysis of truss
structures. Firstly, RSM (response surface method) combines with a constrained optimization model to calculate
the reliability indices of members. Then the β-unzipping method is adopted to identify the dominant failure modes,
and the system function in MATLAB, as well as the EKILL command in APDL, is used to facilitate the automatic
update of the finite element model and realize load-redistribution. Besides, the differential equivalence recursion
algorithm is performed to approximate the reliability indices of failure modes efficiently and accurately. Eventually,
the PNET (probabilistic network evaluation technique) is used to calculate the joint failure probability as well as the
system reliability index. Two illustrative examples demonstrate the accuracy and efficiency of the proposed system
reliability analysis framework through comparison with corresponding references.
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1 Introduction

For a complex structure, multiple failure modes can result in its failure. It is essential to analyze
the system-level reliability of a structure to achieve an accurate reliability estimation. Consequently,
many research efforts to estimate the failure probability at the system level had been put forward for
the past few decades. The identification of dominant failure modes and the joint failure probability of
dominant failure modes are the major challenges of the system reliability analysis for a structure.

Innumerable failure modes can lead to the failure of a redundant structural system, and esti-
mating the system reliability by means of dominant failure modes is sufficiently accurate, which was
demonstrated in the past research. Many methods have been proposed to identify dominant failure
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modes such as the incremental loading method [1,2], branch and bound method [3,4], and β-unzipping
method [5,6]. For instance, a new branch and bound method named the B3 method was illustrated,
which overcame the challenge that the traditional branch and bound method only can obtain the
lower bound of failure probability of the system and decreased the time-consuming computation [4].
Moreover, Lu et al. [6] used the β-unzipping method to search for its dominant failure modes efficiently
and accurately to analyze the system-level reliability of a complicated cable-stayed bridge. Meanwhile,
the simulation methods based on selecting sample points according to the statistical parameters of
random variables, which include the genetic algorithm (GA) [7–9], and representative samples [10],
etc., are also efficient and accurate to search for dominant failure modes. For example, Jiang et al. [10]
reported a method based on representative samples which are limit-state sample points to identify the
dominant failure modes efficiently.

Through the dominant failure modes obtained, the joint failure probability or system-level
reliability index can be computed, which is another challenge. A number of methods have been
proposed to overcome this difficulty, such as the wide bound method [11], the narrow-bound method
[12], and PNET [13–15]. MCS (Monte Carlo Simulation) [16,17] is an extremely accurate method to
calculate the failure probability, which usually adopts important sampling and LHS (Latin Hypercube
Sampling). Nonetheless, a large number of simulations are required for MCS, and to overcome this
defect, Cornell and Ditlevsen came up with a wide bound method [11] and a narrow-bound method [12]
separately to rapidly estimate the interval in which the failure probability lies. The PNET (probabilistic
network evaluation technique) introduced by Ma can obtain the system failure probability efficiently,
which had become a feasible method for reliability analysis of ductile structures [13].

Besides, the performance function of the structure is usually implicit in practical engineering,
which facilitated the rapid development of surrogate models such as RSM (response surface method),
Kriging model, and neural network etc. [18–21] in recent years. For example, the iterative improved
response surface method (reported by Goswami et al. [19]) combined the moving least-squares method
and simplified DOE to analyze the reliability of structures, which reduced the number of iterations and
improved the accuracy of reliability.

Herein, we propose a reliability evaluation framework that can calculate the system reliability
index and system failure probability to analyze the system reliability for a truss structure with the
implicit performance function. This framework is realized through the joint simulation of MATLAB
and APDL. Its program is written in MATLAB, which can drive APDL to build a model, output
responses, etc. for further calculating the system reliability index of the truss automatically. The
performance function of each member is firstly constructed by RSM to avoid the implicit performance
function problem, and the reliability index of each member is computed by a constrained optimization
model that is built according to the geometric meaning of the reliability index. Then the dominant
failure modes are identified by the β-unzipping method, and further PNET is conducted to calculate
the system reliability index. Eventually, the accuracy and efficiency of the proposed framework are
demonstrated through two examples in Section 3.

2 A Framework for System Reliability Analysis of Truss Structures

A practical truss structure consisting of numerous members is usually redundant, and it is usually
a complex system incorporating multiple failure modes. Therefore, the reliability analysis of truss
structures should be considered at the system level to perform an accurate reliability evaluation.



CMES, 2023, vol.134, no.3 2059

2.1 Reliability Analysis for the Member of Truss Structures
In structural reliability analysis, one challenge is building the performance function due to the

nonlinearity of the structure that may result in the implicit performance function. It is assumed that
the performance function is Z = G(x1, x2, . . . , xn), where x1, x2, . . . , xn represent random variables, so
the failure probability Pf can be given as:

Pf =
∫

Z<0

. . .

∫
fx(x1, x2, . . . , xn)dx1dx2 . . . dxn (1)

where fx(x1, x2, . . . , xn) denotes the joint probability density function of random variables x1, x2, . . . , xn.
Furthermore, the geometric meaning of the structural reliability index β can be defined as the shortest
distance from the original to the limit state surface [22] in the standard normal space as shown in
Fig. 1.

Limit state surface

Figure 1: Illustration of the reliability index in the standard normal space

The RSM [18,19] is adopted to overcome the difficulty of the implicit performance function and
realize the automated process. The quadratic polynomial without cross term employed to fit response
surface function is written as:

g(x) = a +
n∑

i=1

bixi +
n∑

i=1

cix2
i (2)

where the coefficients a ,bi,ci can be obtained by 2n+1 random sample points. The procedure of RSM
is as follows:

(1) Determine the initial iteration point x = (x1, x2, . . . , xn), generally the mean value of each
variable.

(2) Calculate the performance function values of g(x1, x2, . . . , xn) and g(x1, . . . , xi + f × σi, . . . , xn)

by numerical methods, such as the finite element method. σi is the standard deviation of xi and
f equals 3 in the first step, then f equals 1 in the subsequent iterations.

(3) Solve the equation set of response surface functions. The equation set is given as:

a +
n∑

i=1

bixik +
n∑

i=1

cix2
ik = Sk(k = 1, 2, . . . , 2n + 1) (3)

where the subscripts i and k of xik indicate the number of the random variables and the number of
sample points, respectively. In addition, it also can be expressed as Eq. (4):
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where the vector S = [s1s2 · · · s2n+1]T includes 2n + 1 structural response values that can be obtained
through the finite element model.

The X is supposed as:
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(5)

The unknown coefficient matrix α is given as:

α = [a b1 · · · bn c1 · · · cn]T (6)

thus the α can be expressed as:

α = X−1S (7)

(4) Perform the calculation of the reliability index β and get the checkpoint x∗k.

(5) If accuracy meets the requirement, output the reliability index β, otherwise obtain a new point
xk

M by linear interpolation that is given as Eq. (8), and return (2) until convergence.

xk
M = xk + (x∗k − xk)

g(xk)

g(xk) − g(x∗k)
(8)

During this process of RSM, the reliability index plays an important role in performing response
surface fitting on account of its relation to the final convergence. According to the geometric meaning
of the reliability index, a constrained optimization model [23–25] is built shown in Eq. (9), where Z
represents the performance function in order to compute the reliability index accurately and efficiently.
Note that X ′

i is a standard normal variable that can be transformed from the original variable space.⎧⎨
⎩min β2 =

n∑
i=1

X ′
i
2

s.t. Z = 0
(9)

Accordingly, the reliability index can be obtained by solving the constrained optimization model.
It is essential to search for the optimal solution in the variable space to find the accurate reliability
index efficiently. Many algorithms were proposed to solve this problem such as differential evolution
algorithm, genetic algorithm, particle swarm optimization, etc. The proposed framework is based
on MATLAB programming, hence, considering the convenience of programming and computational
efficiency, the fmincon function of MATLAB is applied to perform a search for the reliability index.
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The fmincon function is a nonlinear programming solver that can find the minimum of a constrained
nonlinear multivariable function. When we use this function, an initial point is required so that the
search for the optimal solution starts at the initial point. Moreover, the MCS and RSM combined
with the fmincon function are adopted respectively to calculate the reliability indices of case 1 and
case 2 to verify the accuracy of RSM combined with the fmincon function. For the two cases, the
Latin Hypercube Sampling (LHS) method is used for generating 106 samples uniformly according to
the distribution of variables to obtain accurate reliability indices. The results of RSM combined with
the fmincon function for case 1 and case 2 converged after 5 and 4 iterations respectively shown in
Fig. 2a. Besides, the errors of the MCS method and RSM combined with the fmincon function are
only 0.526% and 0.691% respectively for case 1 and case 2 shown in Fig. 2b, which illustrates the high
accuracy of RSM combined with the fmincon function to calculate the reliability index.
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Figure 2: Calculation details of case 1 and case 2

Case 1. Z = 0.1(X1 − X2)
2 − (X1 + X2)/

√
2 + 2.5, X1 ∼N(25, 2.5), X2 ∼N(3.8, 0.38) .

Case 2. Z = exp(0.4 ∗ X1 + 7) − exp(0.3 ∗ X2 + 5) − 210, X1, X2 ∼ N(0, 1) .

2.2 Identification of Dominant Failure Modes and Updating Model Automatically
For a redundant truss structure, the failure of one component does not destroy it immediately,

instead, the failure of a series of components results in structural failure. The β-unzipping method
was selected to search for the dominant failure modes [6]. It is assumed that a system consists
of n components and (k-1) components are failure components that are denoted as r1, r2, · · · rk−1

successively. The potential failure components in the kth stage of a failure path, whose reliability
indices belong to the interval

[
βmin, βmin + �βk

]
, will be determined as the failure components in the

kth stage. Then remove the failure components and change the structure to search for the next failure
components until obtaining a complete failure path.

As Section 2.1 described, the finite element model provides the response value of each member to
build its performance function. Moreover, the search process of the β-unzipping method ends until
the truss shows a system-level failure or the load-redistributions cause no more local failures [8]. These
mentioned operations are involved in updating the finite element model. The MATLAB and ANSYS
are utilized together to implement the model updated according to the failure components of each level
in real-time and automatically without operating in the interface of ANSYS, which can greatly improve
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convenience and efficiency. In general, MATLAB uses the system function to enable APDL to enter
Batch mode and drive APDL to run [26,27], then the finite element model will be updated through
the command flow of APDL which includes the EKILL command that can delete the corresponding
failure members delivered by MATLAB as well as other commands to apply corresponding forces at
the nodes of deleted members. The details of system function in MATLAB and EKILL command in
APDL are presented in Appendix A.

Through the mentioned operation above, the updates of the finite element model and load
distribution can be realized automatically. Fig. 3 shows the identification process of one failure mode
(6 → 2) of a six-bar truss to illustrate the automatic operation process for members with elastic-plastic
behavior. The programming will delete the No. 6 member firstly and apply the corresponding forces
at the two nodes of this deleted member, then search for the next failure member No. 2 and judge the
failure of the structure thereby achieving the automatic identification of failure modes.
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Figure 3: Identification process of one failure mode (6 → 2)

2.3 System Reliability Analysis for Truss Structures
There may be a great number of dominant failure modes identified by the β-unzipping method,

and the PNET is applied to compute the system reliability index based on the dominant failure modes.
Meanwhile, the differential equivalence recursion algorithm [28,29] is adopted to acquire the reliability
indices of the failure modes. However, adapting the quadratic polynomial to fit the response surface
makes the performance function of each member nonlinear. And it needs to be transformed into a
linear function by Taylor expansion at the design point of the member to obtain the performance
function of a single failure mode. Herein, the reliability index computation process of the dominant
failure mode is introduced briefly.

The response surface function of each member:

Z = f (x) = x1 ± (a +
n∑

i=2

bixi +
n∑

i=2

cixi) (10)

When the stress of the member of the truss is positive, the minus ‘’–” should be used, rather use
the plus “+” if the stress is negative.

Perform Taylor expansion:

Z = f (x0) +
n∑

k=1

f ′
xk

(x0)(xk − x0)

= f (x0) + (x1 − x0) ±
n∑

k=2

(bi + 2cix0)(xk − x0)

= f (x0) +
n+1∑
k=1

akxk + c (11)
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In the n-dimension standard normal space, the Eq. (11) can be expressed as:

Z = ā∗x̄T + βka (12)

The linear performance function of the next failure member is defined as:

Z = b̄∗x̄T + βkb (13)

The vector ā and b̄ satisfy ‖ā‖ = 1 and
∥∥∥b̄

∥∥∥ = 1, respectively. And the relative coefficient between

the two components is ρ = ā ∗ b̄T .

The equivalent performance function can be denoted as:

Z = c̄∗x̄T + βkc (14)

where c̄ = ζ1ā + ζ2b̄, βkc = −�−1(�2(−βka, −βkb; ρ)), ζ1 = k1
γ

, ζ2 = k2
γ

, γ =
∥∥∥k1ā + k2b̄

∥∥∥, k1 =
�

(−βb + ρβa√
1 − ρ2

)
exp

(−β2
a + β2

b

4

)
, k2 = �

(−βa + ρβb√
1 − ρ2

)
exp

(−β2
b + β2

a

4

)
.

According to the differential equivalence recursion algorithm introduced above, the performance
function and the reliability index of each failure mode can be obtained. Then utilize the PNET to
divide all dominant failure modes into several groups in accordance with their coefficients and choose
the failure mode with the greatest failure probability to be the representative failure mode to compute
the system reliability index of a truss structure. The steps of PNET are as follows:

(1) Calculate the failure probability of each failure mode and put the failure probability in order
from the largest to the smallest.

(2) Determine the relative coefficient ρ0 of each failure mode.

(3) Calculate the relative coefficients ρ1i between the first failure mode and the rest failure modes.
If ρ1i ≥ ρ0, the failure mode is replaced by the first failure mode. In contrast, for these failure
modes whose relative coefficients ρ1i < ρ0, repeat the Steps (1), (2), and (3) until finding all
representative failure modes. The coefficient between two failure modes is defined as Eq. (15):

ρZi ,Zj = cov(Zi, Zj) =

n∑
k=1

(
∂Zi

∂X ′
k

)
x
′∗
i

(
∂Zj

∂X ′
k

)
x
′∗
j√

n∑
k=1

(
∂Zi

∂X ′
k

)2

x
′∗
i

√√√√ n∑
k=1

(
∂Zj

∂X ′
k

)2

x
′∗
j

(15)

(4) Calculate the system failure probability or system reliability probability according to m
representative failure modes and their failure probability Pfi.

Thus, the system reliability probability is expressed as:

Pr =
m⋂

i=1

(1 − Pfi) =
m⋂

i=1

Pri (16)

and system failure probability can be given as:

Pf = 1 − Pr = 1 −
m⋂

i=1

(1 − Pfi) = 1 −
m⋂

i=1

Pri (17)
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Based on these theories about the system reliability introduced above, a system reliability analysis
framework that aims to assess the system-level reliability of a truss structure is proposed as shown
in Fig. 4. This framework is comprised of three modules: reliability index of a single member,
identification of dominant failure modes, and system-level reliability analysis. The first module intends
to obtain the reliability index of each member and it overcomes the difficulty of implicit performance
function by applying RSM. In addition, the reliability index can be obtained efficiently and accurately
through a constrained optimization model and the fmincon function of MATLAB. Identification of
dominant failure modes is another significant part of the system reliability analysis. The β-unzipping
method and joint simulation of MATLAB and ANSYS are performed efficiently and automatically
search for failure members to identify dominant failure modes. At last, perform the computation of
the failure probability of each dominant failure mode through the differential equivalence recursion
algorithm and compute the reliability index and the failure probability of the system by PNET that
considers the correlation of failure modes.
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Figure 4: The proposed framework of system reliability analysis
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3 Numerical Examples
3.1 Truss Bridge Structure

The 2-dimensional truss bridge example is considered in Fig. 5 to investigate the accuracy of
the proposed method. This truss bridge consists of 25 members, and the cross-sectional area of each
member is listed in Table 1. The concentrated loads P1 and P2 are applied at nodes 9 and 10, respectively.
The loads and the yield strength of each member σyi, i = 1, 2, . . . , 25 are random variables and are
assumed to be statistically independent of each other. The distribution types and statistical parameters
of the random variables are listed in Table 2.
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Figure 5: A truss bridge structure with 25 members

Table 1: Cross section areas of members

Members Cross section areas (m2)

1–6 15 × 10−4

7–12 14 × 10−4

13–17 12 × 10−4

18–25 13 × 10−4

Table 2: Distribution types and statistical parameters of random variables

Random variables Distribution Mean c.o.v

P1/(kN) Lognormal 160 0.1
P2/(kN) Lognormal 160 0.1
σyi, i = 1, 2, . . . , 25 (MPa) Normal 276 0.05

The loads P1 and P2 are considered as the random variables to fit the response surface of each
member, and 5 groups of sample points are required to obtain the response surface function of each
member. Thus the performance function of each member can be built as Zi = σyi − |gi(x)| where
the subscript i represents the member number. Next, solve the constraint optimization model of each
member, and the reliability index of each member can be obtained. When performing the β-unzipping
method to determine the next potential failure members, for the sake of considering the elastic-plastic
behavior of this structure, the members showing yield failures in a failure mode should be removed and
equivalent forces also should be applied at the corresponding nodes of the failure members. Through
the framework we proposed, this process can be realized efficiently and automatically. Thereby, the
updates of the finite element model will result in load re-distributions for the next search of failure
members.
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By the proposed framework, forty-one failure modes were identified, and the failure of this truss
structure can be considered as a series system of forty-one failure modes which are shown in Fig. 6
simply. The search process is briefly illustrated by the No. 3 member, as shown in Fig. 7. Kim et al.
[8] listed 10 failure modes that also are identified by the proposed framework. In addition, the results
of the failure mode analysis are listed in Table 3 to verify the accuracy and validity of the proposed
framework. Though some failure modes have big errors compared with reference [8], the error of the
system reliability index is only 1.42% which proves the proposed method has high accuracy for system
reliability analysis of truss structure.
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9|-4|-3
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Figure 6: The series system of the failure modes for the 25-bar truss
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Figure 7: Search process of the failure No. 3 member

Table 3: System reliability analysis of the proposed method and reference [8]

Dominant failure modes Reliability index

Proposed method Reference [8] Relative error (%)

−3 → 9 2.7104 2.592 4.57
9 →−3 2.9320 2.9542 0.75
−3 → −2 → 9 3.0069 3.2330 6.99
−2 → −3 → 9 3.0488 3.3170 8.06
−2 → 9 → −3 3.0442 3.5581 14.44
9 → −2→ −3 2.9999 3.5609 15.75
−1 3.6657 3.6334 0.88
−3 → −4 → 9 3.5798 3.6715 2.50
−3 → −1 3.6657 3.7461 2.15
−4 → −3 → 9 3.6518 3.7965 3.81
System 2.5839 2.5478 1.42



CMES, 2023, vol.134, no.3 2067

3.2 Space Truss
A space truss with 25 bars [10,30] is considered to verify the broader applicability of the proposed

framework, as shown in Fig. 8. The stress-strain relationship is assumed as ideal elastic-plastic and
its elastic modulus is 2.06 × 1012 Pa. Table 4 lists the section areas of 25 members. The horizontal
load F1 and vertical load F2 as well as the yield stress of each member are random variables, and the
distribution types and statistical parameters of the random variables are listed in Table 5.
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Figure 8: A space truss with 25 members

Table 4: Cross section areas of members

Type 1 2 3 4 5 6 7 8 9 10 11 12 13

No. of 1 2 3 6 7 10 12 14 15 18 19 22 23
members 5 4 9 8 11 13 17 16 21 20 25 24
Area/cm2 4.36 4.56 7.47 2.39 7.52 1.51 1.77 4.88 1.89 1.78 2.63 4.89 7.66

Table 5: Distribution types and statistical parameters of random variables

Random variables Distribution Mean c.o.v

F1/(kN) Normal 88.9 0.2
F2/(kN) Normal 22.6 0.2
σyi, i = 1, 2, . . . , 25 (MPa) Normal 276 0.05

As described in Section 2, the performance functions of members are constructed by RSM, then
through the fmincon function of MATLAB to solve the constrained optimization model for the
reliability indices of members. Next, the β-unzipping method is used to identify the dominant failure
modes. For this example, due to the elastic-plastic behavior of each member, when a failure member is
determined, the corresponding forces also should be applied to its two nodes after deleting the member,
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and this process will be realized by the proposed framework. Eventually, the identification process ends
until finding all failure modes which consist of 3 failure members at most, and 10 dominant failure
modes are identified automatically. The same as described in Section 3.1, the failure of the space truss
can be illustrated by a series system of dominant failure modes, shown in Fig. 9. Meanwhile, the search
process for No. 3 and No. 4 members is shown in Fig. 10.

3
-8

-6|3 -9|4
-3|-6|-8

4

-6|-8

10

9|4|10

4|10

Figure 9: The series system of the failure modes for the space truss

6.2401

1st stage 2nd stage

3 6

94 5.6645
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Figure 10: Search process of the failure No. 3 member and no.4 member

The failure probabilities of identified dominant failure modes are calculated by the differential
equivalence recursion algorithm, and the system reliability index of the space truss is obtained by
PNET. The failure probability of the example is 1.43 × 10−6 which can be transformed into the
reliability index, and after calculating, the system reliability index of this structure in reference [10]
is 4.6806. Table 6 lists the reliability indices of the structural system. The relative error of the proposed
framework and reference [10] is only 3.48% and these results demonstrate the accuracy of the proposed
framework. Besides, through the approach which is included in the framework to update the finite
element model, the operation and computation can be more efficient.

Table 6: System reliability analysis of proposed method and reference [10]

System Reliability index

Proposed method Reference [10] Relative error (%)

4.8437 4.6806 3.48

4 Conclusion

A computational framework that can update the finite element model automatically for identi-
fying the dominant failure modes and performing system reliability analysis of the truss structure is
proposed in this study. The proposed framework can be divided into three parts: (1) reliability index
of a single member, which includes constructing the performance function of each member by RSM
to solve the problem that the performance function is implicit and utilizing the fmincon function of
MATLAB to solve the constrained optimization model for the reliability index; (2) identification of
dominant failure modes, which consists of the β-unzipping method; (3) system-level reliability analysis,
which applies the differential equivalence recursion algorithm for considering the correlation of each
component to obtain the failure probability of each failure mode, and takes advantage of PNET for
computing the system reliability index efficiently and accurately.
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The advantages of the proposed framework are drawn as follows: (1) The RSM can get the
explicit performance function and make the framework possible to analyze the large and complex
truss structures whose performance functions are usually implicit. (2) The failure of members in the
finite element model can be updated automatically with the utilization of system function in MATLAB
and EKILL command in APDL. This helps improve computing efficiency. (3) The application of
the differential equivalence recursion algorithm that considers the correlation of each failure member
can obtain the performance function of each failure mode efficiently and accurately. And the PNET
considering the correlation of each failure mode gives high accuracy of system reliability analysis.

Eventually, a 25-bar plane truss and a space truss with 25 members are presented to demonstrate
the effectiveness of the proposed framework. The relative errors between two numerical examples and
corresponding references are 1.42% and 3.48%, respectively, which verify the accuracy in the system
reliability analysis of the truss. As a result, these examples indicate that the proposed framework gives
high precision and efficiency in the system reliability analysis of truss structures.
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Appendix A. General description for the joint simulation of MATLAB and APDL

The joint simulation of MATLAB and APDL is extremely important in the proposed framework
that involves updating the finite element model automatically. Herein, the system function in MAT-
LAB and EKILL command in APDL which are the key to achieving this automation process are
introduced briefly.

A snippet of code, shown below, is provided to use the system function in MATLAB for reference.

system (‘SET KMP_STACKSIZE = 2048k & “D:\ANSYS Inc\v192\ansys\bin\winx64\
ANSYS192.exe”-b-ane3fl-i “C:\Users\Desktop\file.txt”-o “C:\Users\Desktop\file.out”’).

In the command above, “D:\ANSYS Inc\v192\ansys\bin\winx64\ANSYS192.exe” represents
the installation path of ANSYS software, “b” indicates specifying to run ANSYS in batch mode, “I”
is specifying the input file (APDL command flow file) and “o” specifies the output file.

Meanwhile, another important command EKILL in APDL can be written as:

∗do,i1,1,len_node(1) $ time,i1 $ nlgeom,on $ nropt,full $ ekill,kill_node(i1, 1)

estif,0 $ esel,s,live $ eplot $ ∗enddo

which is realized by a loop structure to remove all failure members. In this command, “len_node(1)”
defined by yourself represents the number of failure members, and “kill_node(i1, 1)” which also can be
defined by yourself represents the member to be killed. Similarly, the forces calculated by MATLAB
are applied to the corresponding nodes of failure members also through a loop structure in APDL.
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