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ABSTRACT

Computer vision provides image-based solutions to inspect and investigate the quality of the surface to be
measured. For any components to execute their intended functions and operations, surface quality is considered
equally significant to dimensional quality. Surface Roughness (Ra) is a widely recognized measure to evaluate and
investigate the surface quality of machined parts. Various conventional methods and approaches to measure the
surface roughness are not feasible and appropriate in industries claiming 100% inspection and examination because
of the time and efforts involved in performing the measurement. However, Machine vision has emerged as the
innovative approach to executing the surface roughness measurement. It can provide economic, automated, quick,
and reliable solutions. This paper discusses the characterization of the surface texture of surfaces of traditional or
non-traditional manufactured parts through a computer/machine vision approach and assessment of the surface
characteristics, i.e., surface roughness, waviness, flatness, surface texture, etc., machine vision parameters. This
paper will also discuss multiple machine vision techniques for different manufacturing processes to perform the
surface characterization measurement.
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1 Introduction

The technology of machine vision makes use of image data to investigate and inspect the
component’s quality. The surface quality of the industrial elements is considered the crucial quality
characteristic of ergonomic, functional, and aesthetic aspects. Machine vision techniques are used for
the surface roughness characterization by making use of the concept that the image is embodied as the
2-D (two-dimensional) function of the image intensity, which is characterized by the two parameters:
(1) the amount of light that hit of the surface and (2) amount of the light that reflects from the surface.
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The amount of light that hits on the surface mainly relies on the illuminations. However, the light
that reflects from the object or the surface is considered to be the function of surface texture or surface
irregularities [1]. The machine learning process in this context can be carried out to create a relationship
among the ‘Vision-based texture parameters’ as well as the ‘surface roughness (Ra) value’ [2].

Several methods and techniques have been developed to measure the surface roughness of the
machined components, ranging from ‘simple stylus probe instrument’ to that ‘sophisticated optical
techniques. Therefore, Artificial intelligence (AI) based surface roughness measurement for the
metal matrix composites (MMCs) is considered to be the most effective technique among several
other conventional measurement techniques [3]. Here, the ‘surface roughness measurements’ have
also been categorized into two segments: Contact-based and non-contact methods. ‘Stylus probe
instrument’ is considered the direct contact method that scratches the surface uncontrollably of the
component; however, the low accuracy of the parts would not fulfill the requirements concerning the
several domains [4–6]. Various optical methods have been developed to resolve surface roughness
issues like ‘focus variation instruments’, ‘coherence scanning interferometer’, ‘chromatic confocal
microscopy, and ‘phase-shifting interferometer’ [7]. However, non-contact techniques are narrow in
scope due to inconvenient working operations, high investments, high precision, and environmental
implications [8,9]. The surface characteristics can considerably improve the appearance and general
quality of components. It is crucial in a lot of the parts’ function-related performances. Friction, wear,
fatigue, corrosion, electrical conductivity, and thermal conductivity of materials are all influenced
by the geometric and material features of the surfaces. Furthermore, keeping the surface within
the controllable limits is necessary because the machined components have tight tolerances. As a
result, inspecting the part’s surface finish is critical for product quality assurance [10]. Over the
last few decades, surface finish inspection has been the subject of extensive investigation and study
[11]. The necessity to comprehend this domain was recognized as early as the 1930s, with attempts
to analyze the surfaces produced by diverse production processes. Surface roughness measurement
has come a long way in the last few decades. Numerous methods have been created, ranging from
the simple touch comparator to advanced optical approaches. Newer methodologies and procedures
for surface evaluation and quantification have resulted from recent instrumentation and evaluation
systems advancements [12]. The vast commercial roughness instruments are contact-type instruments
that are highly accurate and commonly accepted for examination. The current demand for 100%
inspection of parts for quality control and the introduction of automation in the industrial field has
mandated quick and automatic surface roughness measurement. Though the stylus instruments are
accurate in their measurements, their inability to assess faster and incompatibility with automation
has led to the development of alternative methods for high-speed, online measurement. In this sense,
there has been a greater focus on creating faster methods for measuring surface roughness.

Many studies have been conducted to examine the surface roughness of a workpiece using machine
vision as a substitute for roughness instruments. Machine vision is used to measure surface roughness
by examining the distribution of scattered light from a rough surface. A camera captures the light
scattering pattern, and the image is processed to characterize the surface. Fig. 1 depicts a machine
vision setup as well as an acquired greyscale image of a surface. The outcome is a picture in which
the grey levels correspond to the surface relief. This indicates that the darker the valley, the darker the
corresponding pixel, and the brighter the corresponding area in the image, the higher the peak. The
analysis of these images in order to characterize them is still a work in progress, as no single technique
can completely characterize the surface [13].
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Figure 1: Surface roughness measurement using ‘Machine Vision’ based technique

The availability of high-resolution Charge Coupled Device (CCD) cameras, personal computer
computational capacity, and digital data processing boosted the picture analysis possibilities. In com-
bination with data processing using CCD cameras, many optical techniques produce a 3-dimensional
(3-D) picture of the surface and roughness parameters related to 2-dimensional (2-D) profiles. The
use of machine vision to create viable surface roughness devices is still in its early stages. The primary
challenge is determining how to process the surface image in order to acquire the actual surface of the
workpiece’s roughness [14].

Many roughness measurement estimation methods are expected to be used to measure the
workpiece’s surface finish. Surface roughness measurement techniques are categorized as contact or
noncontact depending on whether the measuring probe contacts the workpiece’s surface. The stylus or
surface profile meter can be used in industry to measure the roughness of a workpiece. Even though this
can be used as a conventional methodology for evaluating the roughness of a surface, a non-contact
method is a more accurate alternative. Computer vision technology is one of the most promising non-
contact methods for evaluating surface roughness in terms of accuracy and speed.

1.1 Overview of Surface Characteristics and Measurement Techniques
The topography and microstructure of any surface can be used to describe by measuring the

surface characteristics. The depth and type of the altered material zone below the surface define
the topography’s micro-geometrical qualities or texture and the microstructure [15]. A machined
component’s surface characterization is shown in Fig. 2. Any surface imperfections are created by
machine tools guiding errors, process mechanics, and process dynamics. Form error lay, waviness,
roughness, and other texture properties are used to identify the texture. The many aspects of surface
texture are depicted in Fig. 3.

1.1.1 Types of Surface Characteristics

Machine tool guiding errors, process mechanics, and process dynamics are the most common
causes of surface imperfections. Form error, lay, waviness, roughness, and other texture qualities are
used to identify texture features. The many aspects of surface texture are depicted in Fig. 3.

• Form Error: A form error is any variation of the surface from the defining feature or form of
a component. Form error is defined as very long wavelength imperfections on a part that are
examined over the full feature. Machine tool faults and settings cause them.
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• Lay: The lay is the prevailing direction of the surface imperfections. It is provided in relation to
a workpiece reference edge.

• Waviness: Waviness is a group of medium wavelengths that are substantially shorter than the
form flaws on the surface. Due to cutting loads and temperature, errors in cutter geometry,
faulty workpiece fixturing, machine tool/cutting tool vibration, and tool and workpiece deflec-
tions all contribute to waviness.

• Roughness: It consists of irregularities of short wavelength that are relatively closely spaced or
finely surfaced, primarily in the form of feed marks left on the machined surface by the cutting
tool. The surface generation mechanism related to manufacturing is thought to be the source
of roughness. Due to the narrow wavelengths, finer and smaller abnormalities could be seen in
practice, depending on the instrumentation employed. A particular manufacturing technique
frequently leaves a distinctive texture on the surface. Roughness is the crucial component of this
texture.

Figure 2: A machined component’s surface characterization

Form errors, waviness, and roughness are all examples of surface errors. An integrated error profile
is derived from the surface profile. Form errors are linked to the part’s overall geometry, and form
variations can be measured with the right trace length and tools. Although the distinction between
waviness and roughness is not well defined, standards include allowances to distinguish them in terms
of wavelength. They are chosen based on the roughness value and manufacturing method. These
wavelengths are referred to as cut-off wavelengths, and they highlight the difference between roughness
and waviness. 0.025, 0.08, 0.25, 0.8, 2.5, and 8 mm are the standard values.
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Figure 3: Aspects of surface texture

1.2 Surface Roughness Measurement
Many surface finish measurement techniques have been developed, ranging from a basic visual

comparison that is subjective to a more sophisticated atomic force microscope that detects roughness in
nanometers. The several classes of surface roughness measurement are shown in Fig. 4. The following
section briefly discusses a few of the ways.

1.2.1 Comparison-Based Methods

The surface roughness is assessed using either visual observation or mechanical sensation in this
technique. The specimen’s surface imperfections are compared to the surface of a known surface
finish. The roughness measurement is subjective and depends on personal opinion. Surface roughness
specimens made with the same process, material, and machining parameters are used in this technique.
The comparison is made using a variety of methods.

Direct Measurement Methods

This approach involves making direct contact with the surface using the inspection probe in order
to assign a numerical value to the surface roughness. The stylus probe is moved over the surface by
a skid that follows the profile of the surface. Following surface imperfections, the stylus probe moves
vertically. Transducers take up and magnify the vertical movement of the stylus. The mechanical or
electronic system keeps track of the stylus movement. The vertical movement of the stylus in terms of
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surface roughness is connected from the profile trace. Some of the most common stylus instruments
are the profilometer, Tomlinson surface metre, Taylor-Hobson Talysurf, and Perthometer.

• Profilometer: This dynamic instrument works like a gramophone pickup. The pickup moves
a sharply pointed stylus across the surface. The signal is amplified and shown. Roughness,
waviness, and faults in surface imperfections are all measured with this equipment.

• Tomlinson Surface Meter: This instrument uses mechanical means to magnify the stylus
movement [16]. As shown in Fig. 5, the spring roller configuration prevents the diamond-tipped
stylus roller from making just vertical movement. The diamond scribing tracer receives the
vertical movement of the stylus and magnifies it. The tracer records vertical movement on a
smoked-glass panel, which is evaluated and quantified manually.

• Taylor-Hobson Talysurf: The stylus movement is magnified, and the profile is analyzed using
electronics. In this instrument, an armature is pivoting in the stylus arm, as shown in Fig. 6.
The air gap changes as the stylus moves, and the current flowing through the armature coils
changes as well. This is then put into the amplifier and recorded for further study. Roughness
can be directly measured with a suitable electrical circuit. This instrument is widely used in
industry because of its simplicity, ease of use, and direct detection of surface roughness [17].

Figure 4: Types of surface roughness measurement
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Figure 5: Tomlinson surface meter

Figure 6: Taylor-Hobson Talysurf device for surface roughness measurement [17]

In 1933, Abbott and Firestone developed the first profilometer technology [18]. According to
the chevalier, modern software can calculate about 300 roughness profile parameters and hundreds
of topographical parameters. Any surface’s roughness can be measured up to 200 mm in length and
100 mm in width, with a guide variation of fractions of micrometers, and further software support
for precision can be provided. A three-point magnetic holder separates the diamond needle from the
body. In addition, as shown in Fig. 7, the probe is outfitted with an amplitude modulation transmitter
and receiver for communication with a central processing unit [19–21].

Time-consuming measurements with a stylus profilometer in 3D surface topography are a severe
restriction, as shown in Fig. 8. Spiral sampling is one way to avoid this problem [22]. Constructions
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based on optical phenomena are being created, regardless of the contact devices. As a result, the optical
approaches have been thoroughly detailed in the scientific literature [23–27].

Figure 7: Two modulations of amplitude in roughness measurement [21]

Figure 8: Application of spiral sampling [22]
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1.2.2 Non-Contact Methods

Surface finish is measured using optical and non-optical technologies such as pneumatic gauges
and thermal comparators. Optical techniques commonly employed to detect the fine surface quality
have a lot of potential for non-destructive and online surface roughness measurements during
manufacturing.

When a rough surface reflects a collimated beam of laser light, the radiation is scattered into an
angular distribution according to the laws of physical optics. The intensity and the pattern of scattered
radiation depend on roughness height, spatial wavelengths, and wavelength of light. In general, small
spatial wavelength components diffract the light into large angles relative to the specular direction,
and long spatial wavelength components diffract the light into small angles. This concept is applied
in many optical techniques, some of which are explained below. When a rough surface reflects a
collimated laser beam, the light is scattered into an angular distribution according to physical optics
laws. The intensity and pattern of scattered radiation are determined by the roughness height, spatial
wavelengths, and light wavelength. Tiny spatial wavelength components, in general, diffract light into
large angles relative to the specular direction, while long spatial wavelength components diffract light
into small angles. Many optical techniques use this notion, some of which are detailed below:

• Specular Reflectance: The easiest way in optical technology is to measure the intensity of
the specular beam to determine the rough surface’s specular reflectance. Most reflected light
propagates in the specular direction for very fine surfaces. The intensity of the specular beam
drops as roughness rises, whereas diffracted radiation grows in intensity and becomes more
diffuse [28]. Fig. 9 shows the specular reflectance detector 3.

Figure 9: Angular distribution of light scattered by a rough surface [28]

• Total Integrated Scatter (TIS): This approach works in conjunction with specular reflectance.
The overall intensity of diffusely scattered light is measured rather than the intensity of
specularly reflected light [29]. The schematic of the measurement instrument is shown in Fig. 10.
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• Diffuseness of Scattered Light: With increasing roughness throughout a wide roughness range,
the dispersed radiation pattern becomes more diffuse. This pattern can be described in terms of
roughness. In Fig. 10, the ratio of the specular intensity measured by detectors 3 and 4 might
be used to calculate roughness [29].

Figure 10: Schematic diagram of TIS apparatus [29]

• Angular Distribution: The angular distribution of dispersed radiation contains much informa-
tion about the concept’s surface topography. Fig. 10 shows how an array of detectors measures
the angle distribution. Other surface metrics such as the average wavelength or the average slope
can be determined by altering the angle of incidence and using mobile detectors.

• Ellipsometry: Ellipsometry is a method of measuring the index of refraction of solids, as well as
the index of refraction and thickness of surface films. When a beam of light is reflected from
a surface, this technique measures the change in its polarisation state [30]. An ellipsometer is
shown schematically in Fig. 11.

Figure 11: Simplified schematic diagram of the RPA ellipsometer, (1) Unpolarized light, (2) Fixed
linear polarizer, (3) Linear polarizer rotates at ω, (4) Isotropic sample, (5) Linear analyzer rotates at
ω, and (6) Detector [30]

• Speckle: The reflected beam from a rough surface irradiated with partially coherent light
consists of random patterns of brilliant and dark patches known as speckles. The spatial pattern
and contrast of the speckle are determined by the optical system employed for observation, the
illumination’s coherence state, and the scatterer’s surface roughness. The local intensity variation
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between surrounding locations in the overall distribution is known as speckle. The intensity
variations in speckle contrast measurements are quantified in terms of average contrast, which
is defined as the normalized standard deviation of intensity variations at the observation plane.
Two speckle patterns are obtained from the test surface by illuminating it with various angles
of incidence in the speckle pattern decorrelation measurement. Next, the speckle patterns’
correlation qualities are investigated by recording them on the same photographic plate.

• Interferometry: Interferometry is a useful method for determining the roughness of high-quality
optical surfaces. The Michelson two-beam interferometer allows for direct measurement of
surface heights in terms of optical wavelength. A partially transmitting mirror splits an optical
wavefront into two coherent beams. A smooth surface reflects one beam, while the test surface
reflects the other. Following that, the two beams are recombined. A circular interference pattern
can be seen when everything is perfectly aligned. The interferometer will produce patterns of
dark and bright fringes with a modest amount of tilt. The peaks and valleys of surfaces are
revealed by the variation of the fringes, which is analogous to the roughness profile [31]. The
fringe pattern and the Michelson interferometer concept are depicted in Fig. 12.

Figure 12: Principle of Michelson interferometer and the fringe pattern [31]

• Vertical Scanning Interferometry (VSI): New solutions have used CCD (charge-coupled Device)
lines and arrays to detect the light signal in light scattering approaches. These techniques have
been successfully employed in preventive inspection roughness measurements, and their vertical
measuring range reaches one micrometer [32–34]. Modern interferometers, which are used to
detect roughness, are white light-based systems. Phase-shifting interferometry (PSI), vertical
scanning interferometry (VSI), and enhanced vertical scanning interferometry are the most
used interferometric measuring techniques (EVSI). PSI uses a monochromatic light source and
is typically used to analyze exceptionally smooth surfaces due to its subnanometer resolution.
However, it has phase-ambiguity issues, limiting PSI’s applicability to a surface discontinuity
of no more than/4, where is the wavelength of the light employed. Furthermore, because of
the monochromatic light source, PSI can only be used in ranges where continuous fringes
may be obtained. A new approach known as Multiple Wavelength Interferometry (MWI) was
developed to tackle this challenge, which has successfully extended high difference constraints.
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Two wavelengths are chosen in this procedure, allowing the user to improve the dynamic range
while keeping the resolution the same. When white light is used, the dynamic range can be
increased even more (VSI). Then fringe continuity is less critical; identifying a focus is more
vital. Fig. 13 depicts the VSI system’s working principle [35].

Figure 13: Principle of a VIS [35]

1.3 Optical Measurement Techniques
The most sensitive and delicate measurement probe is light. Light-emitting diodes (LEDs) and

lasers are simple to make, while ultrasensitive photodetectors are simple to detect. For surface
characterization, light has become an essential tool in nanometrology. As a result, optical techniques
for line profiling and areal topography have been developed. These techniques can go close to the
spatial resolution limit of diffraction. Optical procedures have the advantage of being non-destructive
because they are noncontact. Optical imaging and microscopy technologies are also faster than
contacting procedures that rely on the mechanical scanning of a contacting probe.

On the other hand, optical approaches are sensitive to a variety of surface characteristics
in addition to surface height. Optical constants, surface slopes, small surface characteristics that
generate diffraction, and deep valleys where multiple scattering may occur are all examples of these.
Furthermore, stray light in the optical system caused by scattering from examined surfaces can reduce
the accuracy of an optical profiling method. A vertical resolution of 0.1 nm is achieved using high-
sensitivity technologies such as phase-shifting interferometric (PSI) microscopy [36,37].

• White-Light Interference Microscopy (WLI): Interferometers and microscopes work together
in interferometric microscopy. Very good resolution and a large vertical range can be attained
using this combination. Although interferometry is not a novel measuring technique, integrating
ancient interferometry techniques with current electronics, computers, and software has resulted
in incredibly powerful measurement instruments [37–42]. Two separate approaches are typically
utilized in phase-shifting interferometry (PSI) and scanning white light interferometry (WLI). A
wideband light source is used in WLI microscopy [43–45]. The principle and schematic diagram
of a white light interferometer (WLI) system [46], is shown in Fig. 14.
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Figure 14: (a) The schematic of the white light scanning interferometry (WLSI) setup and interference
data of dual-wavelength white light emitting diodes (LEDs) (b) Interferogram; (c) Interference
signal [46]

• Confocal Optical Microscopy: One of the most commonly utilized advanced surface metrology
techniques is confocal optical microscopy. As the name implies, confocal microscopes have two
lenses with the same focus point. The confocal microscope combines the concepts of point-by-
point illumination and out-of-focus light rejection. Minsky et al. [47–50] addressed the basic
principles of confocal microscope operation; as shown in Fig. 15.

• Confocal White Light Microscopy: WLI and confocal microscopy appear to be good and
adaptable techniques. PSI is limited to smooth surfaces, but WLI and confocal microscopy
have vertical dynamic ranges that span from nanometers (noise) to a considerable range [51].
Fig. 16 depicts the plan for this structure.

• Digital Holography Technique: In 1948, Dennis Gabor developed holography, a technique for
recording and reconstructing the amplitude and phase of a wavefield. The digital holography
(DH) approach is widely used in imaging, microscopy, interferometry, and other optical fields
[52–55]. Fig. 17 depicts the DH setup for recording off-axis holograms, with Ms representing
mirrors, BSs representing beam splitters, MOs representing microscope objectives, and S repre-
senting the sample object. DH uses a CCD camera to capture data on surface characteristics in
measurement applications, including engineering materials and biomedicine, such as fracture
tests. It is made up of a Mach-Zehnder interferometer that is lighted by a 633 nm He-Ne
laser [56].



930 CMES, 2023, vol.135, no.2

Figure 15: The principles of the optical system of the scanning confocal microscope [50]

Figure 16: Structure of single-point confocal system. (a) Target point is on focus; (b) Target point is
out of focus [51]

1.4 Nanoscale Roughness Measurement/Nonoptical Measurement Techniques
As the demand for microelectronic components grows, their quality and surface finish require-

ments do. Advanced systems and sensors based on Micro-Electronics Mechanical Systems (MEMS)
require micro parts, and measurement instruments with high resolution are required to assess the shape
and finish of these parts. Surface assessment at the nanoscale is required. The Scanning Tunneling
Microscope (STM) and Atomic Force Microscope (AFM) were created as a result of technical
advancements (AFM). The Scanning Probe Microscope (SPM) is a mechanical probe microscope
that scans an object in an areal space to detect surface morphology with atomic resolution [57].
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Mechanically moving the probe in a raster scan of the specimen line by line and recording the probe-
surface interaction as a function of position yielded a surface image. Scanning tunneling microscopy
(STM) and atomic force microscope (AFM) are the two main types of SPM. The STM was invented
in 1981 by Binning and Rohrer, for which they were awarded the Nobel Prize in Physics in 1986 [58].

• Scanning Tunneling Microscope (STM): It is a non-optical microscope that can take pho-
tographs of conductive surfaces down to the nanoscale scale. A voltage is supplied between
the probe and the surface of the substance being studied, and an atomically sharp investigation
is moved across it. Electrons will “tunnel” from the tip to the surface (or vice versa) depending
on the voltage, resulting in a weak electric current. A servo loop keeps the tunneling current
constant by regulating the distance between the tip and the surface. The surface structure of the
substance under study is recreated by scanning the tip over the surface and measuring the height.
STMs can display single atoms in great detail [59,60]. Figs. 18 and 19 depict the schematic view
and principle of an STM.

• Atomic Force Microscope (AFM): The AFM is made up of a micro-size cantilever with a sharp
tip at one end that is used to scan the surface of the material. The cantilever is typically made
of silicon nitride with a tip radius of curvature in the nanometer range. A cantilever with a
highly sharp tip is utilized to tap or continuously touch the sample surface during scanning.
The cantilever deflects when the tip comes into contact with surface forces between the tip and
the sample. A probe motion unit senses the force between the probe and the sample, which
sends a correction signal to the piezoelectric scanner to keep the forces constant. A laser spot
reflected from the top of the cantilever into an array of segmented photodiodes is used to
quantify probe motion. Controller electronics interact with the computer, the scanning system,
and the probe motion sensor. The AFM can be used in either static or dynamic mode (cantilever
static) (cantilever oscillating) [61–63]. Figs. 19 and 20 depict the principle and block diagram of
an AFM.

Figure 17: Schematic setup of digital holography technique: (a) Lensless in-line holographic system
schematic. (b) Mach–Zehnder interferometer-based holographic system schematic [56]
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Figure 18: Scheme showing the different Scanning Probe Microscopy techniques described in this
review for the characterization of two-dimensional (2D) materials [59]

Figure 19: General principle of STM [60]

Fig. 21 shows the block diagram in the X, Y, and Z directions for various AFM operation
modes [62].
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Figure 20: Block diagram of an AFM [61]

Figure 21: Operation of AFM system control loop: (A) Imaging mode and (B) Force spectroscopy
mode [62]
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AFM images produced on a 2D and 3D stamp [63], are shown in Fig. 22.

Figure 22: AFM image results in 2D and 3D [63]

1.5 Other Methods
3D-CT Technique: The computed tomography (CT) metrology employing X-rays is one of the

newly created concepts in recent years. CT metrology is a technique for simultaneously measuring
interior and exterior geometries in a wide range of items. As a result, the CT can be utilized as a basic
inspection tool and as a measuring principle that provides precise geometrical data. Industry quality
engineering is currently being revolutionized by CT [64–66]. Internal and external 3D modeling of the
measured part is also possible with the Metrotom CT equipment and Calypso software [67]. Fig. 23
depicts the essential components of CT technology.
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Figure 23: Principal operation of CT technique [67]

The measured part’s internal and external 3D modeling is possible with the Metrotom CT
equipment and Calypso software. Fig. 24 depicts the essential components of the CT method. Fig. 18
shows the CT machine, which comprises an X-ray source, a translational moveable rotating table where
the item to be scanned is placed on an X-ray detector, and a processing unit (made of six processors
working together) to analyze and display the measurement data. There are now two types of CT
systems [68–70].

• Ultrasonic Technique: With a non-formal incidence angle, a spherically focused ultrasonic
sensor is positioned above the surface. The sensor emits an ultrasonic pulse to the surface and
detects the signal’s amplitude. This information is transferred to a computer, which analyses
and calculates roughness parameters. Once calibrated with data from a stylus profilometer, the
system may generate the real roughness value [71]. Fig. 25 depicts a roughness measurement
setup.

• Acoustic Technique: This approach is based on the idea that rubbing two surfaces together
produces noise, the characteristics of which are determined by the nature of the two rubbing
surfaces. A transducer is affixed to the plate in this technique to detect the acoustic signals
generated by moving the human finger/contactor across the test surface. The voltage amplitude
ratio of the high frequency to low-frequency components is related to surface roughness, and
the received signals are separated into two frequency bands [72]. A typic acoustic technique for
surface roughness measurement are shown in Figs. 26 and 27.

• Pneumatic Gauges: Fig. 28 shows how pressurized air is forced out of a nozzle that moves across
the surface to be evaluated. The height of the surface’s micro imperfections determines the gap
between the nozzle tip and the test surface. The air discharge, which is monitored by a rotameter,
is affected by the size of the gap. The roughness variation can be measured with a suitable
calibration [73].
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• Light Cross-Section Method: A thin film of light is struck at a 45° angle on the surface to be
inspected, and a band of reflected light reproduces the profile of the surface flaws. This profile
is magnified and observed with a microscope placed at a 45° angle [74]. A double microscope
works on the following principle, as shown in Fig. 29.

Figure 24: Schematic test set-up in the in situ computed tomography (CT) (a), the cross-section of
the lap shear specimen in the initial position with the characteristic dimensions (b), and the overall
specimen dimensions (in mm) (c) [70]

Figure 25: An ultrasonic system for roughness measurement (a) Experimental setup and (b) Calibra-
tion curve [71]
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Figure 26: An acoustic technique for roughness measurement [72]

Figure 27: A typical application of acoustic technique for roughness measurement [72]

Figure 28: A pneumatic gauge [73]
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Figure 29: Light cross-section method for surface roughness measurement [74]

1.6 Comparison of Techniques of Surface Measurement
The conventional method to evaluate the surface properties is the contact-based method, which

involves using a mechanical stylus tool. The stylus is a sharp tip of a diamond having a very small radius
through which it touches traces the surface. Although this method has advantages like the mechanical
method is easy to use and creates reliable measurements of the surface, but in the meanwhile the tip
can also scratch the surface, causing damage to it [75]. According to a study, contact-based methods
usually involve the use of atomic microscopes and stylus profilers in which the stress is applied to
the surface, causing damage to the surface [76]. Also, the mechanical methods might involve the
incidence of human error [77]. So, to overcome these issues, the non-contact-based method is used.
The non-contact-based method, usually called machine vision, presents a better solution for real-time
examining and online monitoring of the surface quality [78]. The machine vision-based methods also
have advantages of high precision of measurement, low cost, great flexibility, and ability to obtain
huge information [79]. Therefore, the benefits of this method include minimization of errors due to
environmental conditions and reducing human interference. On the other hand, the non-contact-based
methods also have limitations, such as they are less reproducible and less trustworthy [80]. According
to a study, the main issue with the machine vision method is that the surface characteristics could only
be measured for the stationary specimens [81].

1.6.1 Pros and Cons of Techniques

• Stylus based profilometer
o Advantages: easy to use, surface independence, and stylus tip radius very small up to

20 nm [82].

o Disadvantages: low speed of measurement, low resolution [83].
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• CMM coordinate technique
o Advantages: high precision and accuracy, robustness, accurate measurement, and less

labor required [84].

o Disadvantages: very costly, less portable, problems with software [84].

• Vertical scanning interferometry
o Advantages: do not damage to sample, non-contact process, high resolution, and high

accuracy.

o Disadvantages: exposure to the vibration and effects of the transparent thin film [85].

• White-light interference microscopy
o Advantages: fast speed, measure noncontinuous surfaces.

o Disadvantages: vertical scanning requires frequently consuming so much time, a com-
plicated method [86].

• Confocal white light microscopy
o Advantages: can optically ‘section’ almost transparent materials, shallow field depth,

out of focus glare eliminated [87].

o Disadvantages: background noise, and scattering noise [87].

• Atomic force microscopy
o Advantages: generates 3D images [88].

o Disadvantages: measurement uncertainty, complex geometry, and challenges of tip
characterizations [89].

• Digital holographic technique
o Advantages: high accuracy and high efficacy [90].

o Disadvantages: slower process, used for small objects, and does not change resolution
[91].

Table 1 presents some more publications from the past that have researched types of illumination
techniques used in various types of manufacturing practices for the purpose of measurement.

Table 1: Literature summary for types of illumination techniques used in various types of manufac-
turing practices for measurement

Illumination
types

Illumination
specification

Authors Involved
machining

Remarks

Gaussian intensity
profile

Fischer et al. [92] Rolling Nanometer-scale,
in-process roughness
inspection

Laser Auxiliary equipment:
dichroic mirror,
galvanometer
scanner, F-theta lens

Kwon et al. [93] AM Melt pool imaging,
laser power
monitoring

(Continued)
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Table 1 (continued)

Illumination
types

Illumination
specification

Authors Involved
machining

Remarks

Diffused light Tele-lens with UV
filters, CCD camera,
surface roughness
tester

Datta et al. [94] Turning Progressive wear
monitoring

Ambient light Logitech C-910
high-resolution
camera, specular
light minimization

Al-Kindi et al. [95] Milling Both machine
surface quality
inspection and tool
state evaluation

Ring light Microscopic ring
LED illumination

Aminzadeh et al. [96] AM Image collected from
every layer of AM
parts

Dome
illumination

CMOS camera with
miniature zoom
monocular video
microscope

Wang et al. [97] Turning Tool condition
monitoring using
machined surface
images

2 Research Methodology

The systematic literature review was performed to explore the applications and research on
machine vision using surface characterizations of any conventional and non-conventional produced
parts using text mining analysis to recognize, evaluate, and analyze the published literature between
2017 and 2022. Primarily; a literature review is used to explore, choose, and evaluate related pub-
lications. It is described as a systematic, precise, and consistent process to recognize, evaluate, and
combine the existing literature of documented work given by the researchers or authors. The review
process usually involves multiple steps [98], which involve identifying research questions, recognizing
the type of research, and selecting and assessing the assembled publications. During the paper selection
and evaluation method, specific inclusion and exclusion standards are needed to assess every probable
main study. After conducting the systematic review, the clustering and co-occurrence evaluation for
chosen studies are employed to produce a comprehensive summary of the primary research areas and
topics.

2.1 Research Questions
The research question to perform the systematic review are given as follows:

RQ1: What are machine vision methods of measuring surface characteristics, and how do they
work?

RQ2: How are the machine vision methods different from the conventional evaluation methods?
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RQ3: What are the advantages and limitations of the traditional and non-traditional methods for
evaluating surface characteristics?

2.2 Search Strategy (Identification of Search Terms)
The strategy of search created for this paper contained: recognizing the keywords, searching

resources, method of searching, and article selection criteria for the collection of existing and
competent available articles related to the topic. The query for search used the Boolean operators
who were: “machine vision techniques” or “computer vision techniques” or “machine learning” and
“conventional evaluation methods” or “traditional methods of measurement” and “surface quality”
or “surface characteristics” or “surface texture”. The terms used for the search were improved by
lowering the synonyms while searching the databases because of the limitations of search terms.

2.3 Resources Used for Searching
To search for the appropriate and related articles, we performed a search by incorporating the

keywords or the search terms in five databases, involving “ACM digital library, IEEE Xplore digital
library, Science Direct, Springer Link, and Scopus.” These are the highly illustrative databases for
scientific research and provide results directly relevant to our research topic and are comprised of a
huge quantity of literature, such as review papers, journal papers, conference reports, books, etc.

2.3.1 Inclusion and Exclusion Criteria

Depending upon the study directions, the exclusion and inclusion criteria are defined below. The
criteria for exclusion were used for the title, abstract, and list of keywords of the publication, but the
inclusion criteria were applied for the full-text articles. Those articles were excluded which

• Articles focusing on other than machine vision or computer vision technologies for evaluation
of surface characteristics.

• Articles not provided in the English language.

Those articles were included in our study were:

• Articles reporting machine vision or computer vision technologies, written in the English
language.

• Articles about modifying the existing technique or introducing new techniques for the evalua-
tion of surface characteristics.

2.3.2 Selection and Assessment of Articles

The process of searching started with searching the publications from the databases described
above using specific Boolean operators, and 10,145 articles were included. Then the articles were
filtered depending on the exclusion criteria, and then only 3224 articles remained. Depending upon
the inclusion criteria, only 200 articles were included for the review. Then, manual research was carried
out to search for the additional sources according to the method described by [99], applying exclusion
and inclusion criteria. Additional 20 articles were selected. The quality assessment of the articles was
performed according to the criteria:
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• Has the article focused on machine vision and clearly define the research aim?

• Has the newly introduced methodology improved the evaluation of the surface?

• Has the proposed methodology been clearly described?

• Has the design of the study been clearly presented?

3 Machine Vision

This method employs a microcomputer-based vision system to analyze the pattern of scattered
light from the surface to derive a roughness parameter. It is based on the analysis of the pattern of white
light scattered from a surface. The microscopic waveform of the surface profile modulates the incident
light beams into scattered beams whose intensities and scattering angles can be described as functions
of the amplitudes and wavelengths of the surface topography. The information from the surface can be
obtained by studying its light-scattering pattern. The generalized schematic arrangement of the setup
used for machine vision studies [100], is shown in Fig. 30 [101]. Similarly, Fig. 31 shows the typical
machine vision setup for the inspection of the manufactured parts [101].

Figure 30: Schematic of the machine vision setup [101]

A proposed methodology or architecture [102] for a computer vision system for measuring surface
roughness is shown in Fig. 32.

3.1 Machine Vision System
Machine vision is defined as the capture of image data, followed by computer processing and

interpretation for a specific application. Machine vision is a fast-evolving technology with a focus on
industrial inspection. Image acquisition and digitization, image processing and analysis, and interpre-
tation are the three roles of a machine vision system [103]. Fig. 33 depicts this diagrammatically.
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Figure 31: A typical machine vision setup for the inspection of the manufactured parts [101]

Figure 32: Architecture diagram for the proposed computer vision system for measuring surface
roughness [102]
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Figure 33: Basic functions of a machine vision system [103]

3.1.1 Image Acquisition and Digitization

A camera and a digitizing system are used to capture and digitize images. The camera is focused
on the object of interest, and an image is created by dividing the viewing area into a matrix of discrete
picture elements (pixels), each with a value proportional to the light intensity of that part of the scene.
An Analog-Digital Converter converts each pixel’s intensity value into its analog-digital converter
(ADC). In a binary vision, each pixel’s light intensity is converted to one of two colors: white or
black, depending on whether the light intensity reaches a certain threshold. To create the grey scale
image, a sophisticated vision system must be able to detect distinct shades of grey in the image. Surface
and area characteristics can be determined reasonably with an eight-bit (28) memory of 256 intensity
grey levels. Each frame of digitized pixel values is saved in a computer memory device known as a
frame buffer. A frame is read at a rate of 30 frames per second. In most machine vision applications,
two types of cameras are used. Vidicon cameras obtain relative pixels by focusing the picture onto
a photoconductive surface and scanning the surface with an electron beam. Varying voltage levels
correspond to different light intensities impacting different locations on the photoconductive surface.
The electron beam reads the voltage level of each pixel throughout the scanning operation. The image
is focused onto a 2-D array of very small, carefully spaced photosensitive components in solid-state
cameras. The photosensitive elements make up the pixel matrix. Each element generates an electrical
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charge in response to the intensity of light impacting it. The charge is stored in a storage device made
up of an array of storage elements that correspond to the photosensitive elements one-to-one. These
charge values are read sequentially in a machine vision’s data processing and analysis function. Because
of the time-lapse scanning, Vidicon cameras suffer from distortion in the image of a fast-moving object.
Solid-state cameras are physically smaller, more robust, create a more reliable image, and thus have a
wide range of applications in industries. Pixel arrays available in a variety of sizes, including 256 ×
256, 512 × 512, 1035 × 1320. The more pixel elements and resolution it has, the better it can detect
fine details and features in a picture. Another crucial consideration is lighting. For seeing the image
using a machine vision system, the item should be well-illuminated and consistent across time. For
machine vision applications, special lighting systems should be implemented, and the type of lighting
changes depending on the type of inspection [104]. Fig. 34 depicts some of the most prevalent lighting
approaches.

Figure 34: Common lighting techniques used in machine vision systems [104]

3.1.2 Image Processing and Analysis

Decisions must be made based on the data captured and stored by the frame grabber. As a result,
the image captured may not have all of the necessary information to make a judgment. For analyzing
picture data in a machine vision system, a number of techniques have been developed:

• Segmentation: Its purpose is to delineate and segregate zones of interest in an image. Threshold-
ing and edge detection are two prominent segmentation techniques. Thresholding is the process
of converting each pixel intensity level into a binary value that represents white or black. If a
pixel’s value exceeds a threshold, it is assigned a binary bit value of white, or 1. If the value is less
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than the threshold, it is assigned a bit value of black, or 0. Thresholding aids in the recognition
of objects in photographs. The contrast in light intensity that exists between adjacent pixels at
the object’s borders is determined using the edge-detection approach, which aids in detecting
the object’s boundary.

• Feature Extraction: It is designed to extract features such as the object’s area, length, width,
perimeter, diameter, and aspect ratio. The features of an object can be assessed by counting the
number of pixels with a specific value.

3.1.3 Interpretation

The image must be interpreted using the extracted features for any application. The job of
interpretation is to recognize the object or characteristic. Template matching and feature weighting are
two typical interpretation strategies. The image is compared pixel by pixel with one or more features
of the model image, which is saved as a template in template matching. Each feature (e.g., area, length,
perimeter) is given a weight based on its importance, and the total score is compared to an ideal object
stored in memory.

3.2 Application of Machine Vision
Machine vision is used extensively in manufacturing and other fields. Here are some of them:

• Inspection: Machine vision is used most frequently in the inspection. In mass production,
machine vision systems are used for automated inspection of I dimensional measurement, (ii)
dimensional gauging, (iii) verification of the presence of components or features, (iv) detection
of surface faults or defects, and (v) errors in printed labels. The majority of inspections are
conducted online or while the process is in progress [105–109].

• Sorting: The part is identified using vision systems, which can then be utilized for sorting,
counting, or inventory management [110].

• Visual Guidance and Control: The vision system’s images can be used to guide the robot to the
goal position in robot control. Vision cameras can also help in collision avoidance and tracking
of distant parts. Vision technology can be used to track the seam welding movement [111,112].

• Agriculture: In agriculture, machine vision is becoming more prevalent. It helps in fruit
identification and sorting. Machine vision techniques are utilized to classify olives, weeds, seeds,
and other plants [108,113].

• Surface Characterisation: Machine vision is used to analyze the structure of the surface. It’s used
in textiles to spot texture flaws, change the texture pattern, and spot color variations. It is used
in metal surface studies to identify the manufacturing process, classify texture, estimate surface
roughness, detect surface wear, and so on [4,114–117].

3.2.1 Roughness Evaluation Using Machine Vision

Many attempts to employ integrated reflectivity of the surface as a surface evaluation method
have been made in the past. This is how gloss meters work. The machine vision system can directly
evaluate the surface picture, taking into account the surface’s reflectivity. Discrimination may be
shown in the image intensity distribution of the different surface images with fixed illumination and
camera arrangement. The surface picture is used to determine several intensity-based metrics that are
then compared to the Ra value measured in m by the stylus instrument. A consistent and acceptable



CMES, 2023, vol.135, no.2 947

approach to surface roughness evaluation is always being sought in this sector. This paper is an attempt
to investigate some of the variations in picture surface evaluation.

• In Defect Analysis

A defect in any of these materials can appear during or after administration. Defect testing is
constantly required to provide data for the development of surface efficacy, competency, and resilience.
Consider artificial hip joints, which require a long life. Prospect hip substitute measures can be
calculated by calculating the surface substance for wear, scrapes, and the profile of the artificial joint
after it has been removed for substitution.

• In-Process Control

To produce a final product, industrialists must manage processes. Surface estimation controls the
process when precision in surface engineering is required; based on inspection results, the approach
appears to be adequate.

• Surface Roughness Measurement Concerns

Shape: Surface topology is the calculus of the attention region in its entirety. The adjournment
confers to the request “Area of Interest.”

Roughness: Roughness of surface Ra calculates the roughness of the linear profile or the area by
estimating the surface finish. The roughness of the surface area (Sa) is calculated as a line covering the
full region in 3D optical profilometry.

Surface Asperity: Asperities are characteristic features. For the purposes of inaccuracy engi-
neering, these asperities usually refer to submicron height and form irregularities. For asperity
measurements, AFM and TEM & SEM have greater resolution and are commonly utilized.

3.3 Significance of Machine Vision Techniques for Measuring the Surface Characteristics
Optical methods, including computer vision techniques, have a more significant potential for

‘surface characteristics measurement’ and a broader range of options. ‘Optical microscopy’, ‘light
scattering techniques’, and ‘vision systems’ are some of the most common optical technologies for
measuring surface quality. Two forms of light, “coherent and incoherent light,” are used in computer
vision-based methods. Surface characteristics can also be measured using light that scatters or reflects
from the surface [118].

3.3.1 Light Scattering

Many experiments on the surface characterization of various machined surfaces have used
scattering. Tian et al. [114] proposed a method by utilizing the ‘plane-polarized light’and a ‘scatter light
detector’ to characterize the surface. The two-light scattering-based techniques for measuring surface
roughness are ‘angular-resolved scatters (ARS)’, and ‘total integrated scatter (TIS)’. Scattering is used
in many surfaces’ characterization studies regarding machined surfaces. This article has characterized
the surface using ‘plane-polarized light, and a scatter light detector.’ ARS and TIS are known to be
the two-light scattering-based procedures for measuring surface roughness (TIS) [118].

3.3.2 Laser Speckle Image

The mutual interference of dispersed light generated by the uneven surface’s spatial variations
produces a speckle picture of a coherent light beam (laser) projected over the rough surface. Numerous
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laser speckle methods for measuring surface roughness have recently appeared. The speckle images
obtained can measure roughness because surface roughness causes ‘light scattering’; the speckle images
obtained can measure roughness. To describe surface roughness, a researcher used a speckle contrast
approach. The speckle pattern is created by lighting the rough surface with a He-Ne laser. Surface
roughness measurements and characterization are judged based on the distinct parameters of the
speckle pattern. ‘Surface roughness characterization’ is evaluated based on the contrast parameters
of the speckle pattern. The contrast parameters are calculated by varying the intensities of the speckle
image. Various studies have been conducted regarding surface roughness using statistical properties
and the ‘distribution of speckle image intensity.’ The standard deviations of the intensity fluctuations
in the speckle patterns were found to have a linear relationship with surface roughness values.

A step-by-step machine vision-based condition monitoring and surface roughness measurement
process reviewed in this paper has been illustrated in Fig. 35.

Figure 35: Machine vision-based surface roughness processes illustration
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3.3.3 Computer Vision System

Machine vision-based procedures are appropriate for ‘online assessment of machined compo-
nents’ surfaces and are considered safe for both the surfaces that are to be measured and the
measurement system. In various studies, it has been observed that the obtained surface images using a
vision system and quantified surface roughness using regression analysis. The surface image’s average
grey value (Ga) was computed and calibrated using the stylus’s measured average surface roughness
(Ra). Various authors have used the ‘Gray Level Co-occurrence Matrix (GLCM) procedure’ [112] to
characterize the surface roughness using machine vision. The spatial correlation among the pixels on
the surface image is taken into account by this statistical technique. Surface roughness is collected
by investigating the relationships between average surface roughness (Ra) and the GLCM features of
the surface image [119,120]. The procedure of the computer vision system for measuring the surface
roughness [121], is shown in Fig. 36.

Figure 36: Computer vision system procedure [121]

3.3.4 Key Aspects of Machine Vision Techniques for Surface Characteristics Measurement

Nowadays, the manufacturing industry’s productivity needs high-quality NC, CNC, and auto-
mated machine shops widely used for higher productivity. Quality scrutiny of the product also requires
higher productivity as a critical feature. Inspection methods are categorized into direct and indirect
techniques. Besides machine vision, there exists a new and innovative technology that is used to analyze
and calculate the products with the help of ‘CCD camera’ as well as the ‘image processing techniques’
such as ‘image acquisition’ first step in digital image processing, de-noising with filters and comparison
between actual and accurate image, mapping in image, image processing technique. The main methods
discussed in this section is surface characteristics measurement’. Vision-based measurements have
great attention in industries due to their high capacity and faster measurement using hardware, camera,
and sensors. In the inception of dimensional accuracy, geometry features surface finish are significant
features in the machining area; newer measurement techniques optical measurement plays a vital role
[81,121]. A new trend has emerged in industries due to its intelligence and simplification. Vision-
based manufacturing is considered significant to reduce the time taken by the production and acquire
better quality; this approach to the measurement of surface quality is then known as an ‘automated
inspection system [122].’ The typical measurement of angle for the diffused model is shown in Fig. 37.
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Figure 37: Angles derived for the diffuse model

It has also been observed that surface characteristics, i.e., surface roughness, dimensional accuracy
and flatness, and other surface flaws, are characterized and measured using the machine vision system
[102]. The working principles of the machine vision system are shown in Fig. 38.

Figure 38: Working principles of the machine vision system [102]

The technology of machine vision is used to examine the quality of parts using image-based
data. Surface texture can be characterized using this approach as its data is represented in the two-
dimensional intensity of the image produced, which depends on the amount of light incident on
the surface and the amount of light reflected. Hence, machine vision could provide a contactless
and automated method of measuring surface roughness, which replaces conventional methods [2].
In conventional systems, the surface quality is measured by the use of mechanical stylus profilers and
determined by offline operation [123]. For examining the quality of the machined surfaces, e.g., the
roughness of the surface, the technical descriptions are hard to be assured using a simple one-step
process. Also, the regular initial judgment of the quality of the machined part is based on empirical
rules by manually observing the machining time and noise of the processing method [124]. So, in
comparison with the traditional methods for quality examination, the machine Vision is capable of
evaluating the roughness quality of the surface with a higher speed and is able to detect the irregularities
without scraping the surface [125]. Also, machine vision methods are more suitable and have better
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inspection reliability than the traditional manual processes [126]. The machine vision methods have
several advantages, such as non-contact analysis, high accuracy, high speed, low cost, and flexibility,
which are essential for industrial use to detect different parts’ surface defects and surface qualities [127].
The assessment of the roughness of the surface has been carried out by many researchers using the
laser speckle pattern method which examines the surface characteristics at micrometer and nanometre
levels. Townsend et al. [128] performed a systematic review on different techniques used to evaluate the
surface roughness of metal additively manufactured, which highlighted the importance of non-contact-
based techniques to examine the surface characteristics. Fischer et al. [92] described the evaluation of
roughness quality of the surface of metal sheet rolling by using the method of speckle pattern and
instruments of optically scattered light. A study performed by Patel et al. [127] compared the stylus
method of contact type and machine vision of non-contact type methods of examination of surface
quality and a correlation was developed between both the methods. A difference of 15% was observed
between both the methods revealing the high advantage of the non-contact type machine-based
method. Similarly, Balamurugan et al., evaluated the surface roughness using the laser speckle method
and compared it with the traditional method of stylus profiler. The results were better in the case of
the machine vision method as compared to the traditional one [129]. However, Patzelt et al. [130]
examined the uncertainty of the laser-based method. Some of the researchers revealed this technique
to be costly and sometimes the speckle patterns are not practically created especially for its application
in environments with limited installations of the equipment [131,132].

The other technique of roughness evaluation includes the use of atomic force microscopy, which
images the surfaces depending on their hardness, smoothness, or roughness [133]. Zhao et al. [134]
applied the AFM technique to examine the coal’s surface roughness and pore structures with the help
of Gwyddion software. The results showed the reliability of the surface roughness and pore sizes when
compared with the other methods. AFM is more versatile because of imaging the 3D topography
compared to other instruments; however, it also has some limitations. While imaging a smooth or a
rough surface, it gets affected by the tip geometry, which could be destructive to the sample surface
[135].

Similarly, the evaluation of the surface structure was performed on aluminum thin films by
Mwema et al. [136] and compared with the SEM technique, which proved to be more advantageous
and significant than the SEM. Liu et al. [88] performed the characterization of the surface roughness
of coal using AFM and compared it with the low-pressure nitrogen gas adsorption method. The results
showed that using the AFM method made the results more accurate than the other. The disruption
factors from the machining procedure are non-trivial in highly accurate measurements of the surface
roughness.

Regarding the onsite roughness evaluations at the micro or nano level, the precision is hindered
by the constraints of the principle of the instrumentation involving imaging with inadequate light,
high-resolution techniques with microsecond level exposure, and in the case of microscopic imaging,
the restriction of motion blur [92,132]. From the studies, it has been found that time series is most
important in the metal cutting procedures, and the relationship between the indirect measurements
and the roughness of the surface was found, such as using sound characteristics and the vibration
characteristics [137–139]. The measurements carried out with the help of vibration characteristics
attained the relative errors of about 15% [139], and the evaluations established on the time series
analysis are also not advantageous as compared to the vision-based methods [140,141]. The surface
roughness measured with the methods of CNN and GLCM has been achieved to the best precision of
about 80%–90% compared to the conventional stylus-based method [142]. So, in short, the methods of
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vision-based techniques acquire more sensitive principles of measurements as compared to the other
techniques.

The machine vision process is done using the following procedure [143]:

• Image capturing: The first step in machine vision is the image capturing from the CCD camera
when the light emits and hits on the source. The image is transformed into a digital image with
the help of imaging sensors.

• Image Acquisition: This processing step converts the optimal image to that of the digital image
by following three different procedural steps, which are (1) image sensing, (2) image data
representation, and (3) digitization.

• Image Processing: This step is used to arrange the pixel values, and it changes these pixel values
into a more appropriate form so that further processing can be done. It entails five distinct
operators (1) global pattern, (2) point operation, (3) neighborhood operation, (4) temporal
operation (5) geometric operation.

• Feature Extraction: It identifies the ‘inherent features’ of the item/image or object.

• Pattern Classification: It is considered the last and final step in machine vision processes. It
determines the unknown image or the item from the available set of items.

4 Types of Computer Vision for Measurement
4.1 Surface Characteristics Measurement

‘Surface texture’ is considered to be a significant aspect of machine design. If the surface finishing
is done poorly, it will affect the functional performance of various machined components. The ‘direct
con-tact components’ like scratch cards and profile meters are used for surface roughness measurement
in various industries, especially manufacturing [144,145]. This ‘direct method’ also wears over the ‘high
accuracy machined surface.’ Therefore, non-contact components like ‘machine vision system’ as well as
‘optical devices’ are utilized to calculate the surface roughness values. In such a scenario, the ‘machine
vision technique’ plays a significant role as the ‘online monitoring system’ of the surface texture. In the
same way, the main benefit of utilizing this approach is that it becomes possible to control and regulate
the parameters while machining operations and the assistance of ‘intelligent system incorporation.’
Thus, awareness regarding the ‘machine vision system’ for measuring surface roughness is crucial and
im-important [14]. The basic requirement to measure the surface finish using machine vision are as
follows:

• Proper lighting and optics

• Image processing algorithm

• High computer configuration, i.e., speed, storage, and capacity, surface finish measurement
procedure.

The surface finish measurement on machined components procedure is carried out as follows:

1. Image Capturing:
a. The light that is reflected from that of the machined surface is captured using a CCD camera.
Surface nature and roughness are assessed using these images.

2. Filtering the Image:
a. Image filtering is done via three steps as follows:
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• At first low-pass filter is applied over the original image to get the ‘low pass filtered image.’

• This image is then deducted from that of the original one to acquire the ‘surface roughness
image’.

• The filtered ‘surface roughness image’ is then quantified through the ‘grey level average’.
Usually, these processes are done according to the 2D standard ‘ISO 11562-1996’. To get better
computing efficiency, ‘Fourier transform’ can be used for image filtering.

4.1.1 Steps of Surface Characteristics Measurement Using Machine Vision

The quantified and the binaries images have been analyzed in terms of ‘matrix form’ based on the
light intensity. The following algorithm is followed:

• The intensity of the white area is denoted by 1.

• The intensity of the black area is denoted by 0.

‘Surface Roughness’ is based on the ‘variation in the intensity values’ starting from 1 to 0. The
following algorithm is considered to measure the ‘surface profile.’

• It is started by scanning the first pixel of the first column in the image matrix.

• On obtaining 0, scanning is stopped, and the second row is considered.

• If the obtained value is not 0, then the second pixel is scanned in the row.

• The scanning process keeps on finding the 0 pixels in the first row.

• Scanning of the 0-value pixel is done in the second row.

• This process is repeated for each row.

5 Classification of Surface Characteristics Measurement Using Computer Vision Techniques

The classification of various computer vision techniques to measure surface characteristics of any
part manufactured by various traditional manufacturing, i.e., CNC machining, casting, forging, addi-
tive manufacturing (AM), and non-traditional manufacturing processes. Electric discharge machining
(EDM), Laser surface processing (LSP), etc., are given below.

5.1 Surface Characteristics Measurement Using Image Processing
Metal machining surfaces via various procedures, for instance, milling, planning, grinding, or

EDM, generate the particular lay pattern. For example, a milled surface comprises a typical periodic
and regular layer pattern [146]. Surface topography is composed of two main characteristics:

• The peak amplitude or surface valley.

• Wavelength among the valleys and peaks.

The measurements of the surface are usually articulated as surface profile denoted as y(x) in
2-D and are expected to be equal to the 3-D expressions. The ‘average surface roughness parameter
(Ra)’ denotes the average surface profile deviation in regard to the mean line. Ra is usually utilized
for the measurement of sur-face roughness characterization and measurement. For several years,
the ‘stylus instrument’ has been significantly utilized to measure the surface roughness parameters
and the high-reliability percentage. The vertical tip movement of the stylus is calculated for the
predetermined horizontal length. The ‘high-frequency components of surface roughness’ are filtered
with the help of the stylus tip and also the non-linear deformation within the surface. Furthermore,
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the tip of the stylus may disrupt or may get disrupted when making contact with the surface that
needs to be measured. The requirement for a non-contact, high-speed, and highly reliable surface
measurement system is considered to be on the rise. Even though several techniques are there for the
measurement of the ‘surface roughness,’ that also includes ‘optical techniques. It has been observed
that no techniques have yet been established that are robust and reliable enough for floor applications.
The technique of ‘biometric recognition’ has proven to be not only robust but reliable and is found
highly recommendable for surface characterization. It comes under the non-contact method utilizing
the surface imaging to calculate the Euclidean distance and the hamming distance of reference images
and for testing the surface image to make the comparison. The ‘surface roughness measurements’ of
the ‘reference surface’ are done using the ‘stylus method,’ and corresponding images have been saved
within the database. Testing surface image is characterized based on Hamming as well as Euclidean
distance [146].

The steps involved in the measurement of surface roughness using the image processing are as
follows.

5.1.1 Image Acquisition

To perform image acquisition, a ‘Basler PiA2400gm CCD camera’ is fitted using a Zoom 6000
lens whose optical magnification can be done up to 45.0X. Besides this, a lighting system and two
halogen bulbs are also used. The specimen is held using the adjustable table and set the cameras to
some specific angles. The CCD camera is adjusted in angle to the specimen using a protractor located
in the center. The images can be taken by adjusting the camera to different angles. It is then ensured
that uniform illumination is there in the setup by diffusing the light source. Surface images are taken
for all the specimens at different positions.

5.1.2 Image Database

To perform the procedure, specimens are collected so that they can be saved in the database
as reference images. For every specimen, various images are taken, and among these, one is saved
and stored in the database; however, the rest are used as test images. Immediately after capturing it,
images are dealt with the lighting. Fluctuations and variations in image acquisition can affect image
processing. Through normalization, the image matrix is transformed to have the equal and uniform
intensity of each captured image pixel.

5.1.3 Feature Comparison

To perform the surface characterization, feature extraction is done, and then a comparison is
made using the two metrics, i.e., ‘Euclidean and Hamming distance.’ Up till now, these metrics
have performed significantly in ‘iris recognition’ in human identification. The Euclidean distance is
considered to be the spatial distance between the vectors, suppose p and q. It also measures the
‘dissimilarity’ among the two vectors, p, and q. If the Euclidean value is higher, then higher would
be the value of dissimilarity. ‘The circular shaft-based matching’ removes the possibility of a ‘simple
shift’ within the image, which could affect the Euclidean distance [147]. The steps of measuring surface
roughness using image processing are shown in Fig. 39.

Table 2 presents some more publications from the past that have researched surface characteriza-
tion and measurement using the Image processing technique.
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Figure 39: Steps involved in surface roughness using image processing [147]

Table 2: Literature summary for surface roughness measurement using image processing technique

Types of
descriptors

Involved
machining
operations

Year Authors Data Specific techniques

Structural
descriptors

Grinding,
milling,
shaping

1993 Ramamoorthy
et al. [148]

Machined surface
images

Gray level histogram

Turning 2000 Mannan
et al. [149]

Machined surface
images, sound
data

Sobel descriptor,
thresholding-based
segmentation, PSD

Turning 2000 Kassim
et al. [150]

Machined surface
images

Sobel descriptor &
thresholding

(Continued)
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Table 2 (continued)

Types of
descriptors

Involved
machining
operations

Year Authors Data Specific techniques

Turning 2008 Prasad
et al. [151]

Machined surface
images

Amplitude
parameters

Turning 2010 Wang
et al. [97]

Machined surface
images

LOG operator,
Hough transform

Grinding 2017 Zhao
et al. [152]

Machined surface
images

Intensity
histogram-based
analysis

AM (Powder
bed fusion)

2019 Zhang
et al. [153]

Machined surface
images melt pool,
plume & spatters

Median filtering,
global thresholding,
designed comparison
function

First-order
statistical
descriptors

End milling 2001 Bradley
et al. [154]

Machined surface
images

Intensity histogram,
spatial domain
texture descriptors

Turning, face
milling,
polishing

2004 Gadelmawla
et al. [155]

Machined surface
images

GLCM descriptors,
the maximum width
of the matrix

Milling 2008 Elango
et al. [156]

Scattered pattern
Image of
machined surface

Taguchi technique

Milling 2012 Ai-Kindi
et al. [95]

Machined surface
Image

Histogram-based
feature extraction

Turning,
grinding,
H-M, V-M,
lapping,
shaping

2016 Ashour
et al. [157]

Machined surface
image

Histogram-based
Feature extraction,

Laser welding 2018 Zhang
et al. [158]

Plume Geometric features
(area, perimeter, etc.)

Second-order
statistical
vdescriptors

Turning 2012 Dutta
et al. [94]

Machined surface
images

GLCM descriptors,
pixel pair spacing

Turning 2016 Bhat
et al. [159]

Machined surface
images

VT descriptors

Turning 2016 Dutta
et al. [160]

Machined surface
images

VT & DWT
descriptors

Turning 2016 Bhat
et al. [161]

Machined surface
images

GLCM descriptors

(Continued)
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Table 2 (continued)

Types of
descriptors

Involved
machining
operations

Year Authors Data Specific techniques

Transformed
domain
descriptors

Textile fabrics,
milling

2000 Tsai
et al. [162] and
Josso
et al. [163]

Machined surface
images machined
surface images

Gabor Filter

Eight
engineering
processes
comparison

2001 Bharati
et al. [164]

Seel surface image FNW
transform-based
descriptors

Rolling 2004 Stachowiak
et al. [165]

Tribological
damaged surface
image

PLS-DA, 2D-FFT,
MIA, WTA

Sandblasting,
abrading

2005 Dutta
et al. [166]

Machined surface
images

DWT, Gabor filter,
and LBP descriptors

End milling 2016 Lei
et al. [167]

Machined surface
images

DWT, GLCM
descriptors

5.2 Surface Characteristics Measurement Using Machine Vision Techniques
Vision-based measurement in the industrial field has more attention due to fast measurement

combined with cameras, hardware, and sensors [168].

In [142], the findings show explicitly that when a machine vision procedure is used to measure the
parameters for the surface texture, the orientation of the workpiece must be considered. The findings
demonstrate explicitly that the optimal connection to multiple parameters may be achieved through an
approach to machine vision; therefore, the measured dimensions of vision and the lay orientation of
the workpiece must be explicit. The average roughness parameter Ra from perthometer is compared
to the image parameters of the job piece in the X-Y plane by the images taken from a number of
directions (0 fee, 30 fee, 45 fee, 60 fee, 90 fee, 120 fee, 135 fee, 150 fee, and 180 fee). This pattern was
completely followed by the Ga, GLCM contrast and fractal scale, and average 3D roughness. GLCM
energy and Max chance have nearly identical patterns, with the addition of a minor shift of 45 bucks.
The maximum association of GLCM energy and likelihood is 45 and 180 livres. However, for the
GLCM parameter, the pattern is different. The max values are 90 pounds, and the orientations are
at least 45 pounds and 150 pounds. Therefore, it is understood that Ga, GLCM comparison, GLCM
energy, GLCM Max likelihood, and Fractal dimensions have a similar pattern when correlating to R.
Inconsistency in the quantification of surfaces with visual ruggedness parameters can be reduced to
a large degree by considering the transition and properly collecting images from machined surfaces.
Manjunath et al. [147] show clearly that the Machine Vision approach is used to approximate the
surface roughness of the machined components and that the results show a strong linear relation
between stylus Ra values and optical Parameters. The standard deviation strongly correlates with
Ra values of all given optical parameters, as determined by traditional and commonly agreed type
instruments on machined surfaces produced by electric discharge processes, milling, and grinding
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processes. The calculation of optical parameters is identical to the roughness measuring technique
for the stylus surface. Machine Vision technology can be used easily with a low-cost configuration,
resulting in stable and high precision [169].

In [170], a vision-based method was tested using the gray-size imaging technique to characterize
the surface texture. An image histogram for further analysis has been analyzed to better the image. This
method prohibits close interaction with the surface to be studied. Scratches are made very plain on
the surface image, and the distance between them is apparent to examine the surface texture quickly.
Different filtering techniques can enhance the precision and visibility of the area of interest for the
better use of this visual approach. This processed image can also be used for the surface roughness
attribute estimation. In [171], the machine vision technology was investigated for the surface roughness
inspection of 38 mm grinding shafts.

First, Luk’s procedure analyses the influence of ambient light using the root mean square height
parameter and a regular gray-level distribution differentiation, and a co-occurrence matrix solution.
The input variables then suggest the new RBF neural network, which is the average grey value for
the context sample area, the average gray-scale value, and the second-order of the work-piece sample
area for the co-occurrence matrix, and their corresponding inspection values. This approach used five
shafts and II shafts for the neural network training.

Yao et al. [172] presented the light section microscope and machine vision of the surface roughness
measurement device and automatically detected the roughness of the surface. The device reduces
the artificial read, grab, and estimation and significantly enhances surface roughness measurement
efficiency. And with the use of the traditional measuring error, the surface ruggedness measur-
ing procedure is evaluated more stably and credibly based on the experimental contrast findings.
Kumar et al. [173] revealed very clearly that the vision technique can be used to measure the
roughness of machined surfaces, and a high degree of precision is found in the measurement of the
strong linear relationship between Ra and Ga. The interpolation process of Cubic convolutions has
proven to become the perfect alternative for enlarging digital images and the Linear Edge Crispening
algorithm for subsequent image enhancement. In these magnified and improved images, the Ga,
optical roughness, calculated correlates better (i.e., a higher coefficient of correlation) with the mean
rugged surface (Ra) of the components generated by machinery, framing, and grinder, which shows
its effectiveness to measure the ruggedness of the surface using a vision system machine. It can also be
concluded that for machining activities that yield a normal and uniform surface texture, this scheme
of optical roughness estimations appears more promising.

Patel et al. [174] explicitly showed that a vision strategy for the machine can be applied to
test the ma-chined surface roughness. The fitness of experimental measurements is measured by
multiple regression analyses. Surface roughness estimation regression models (R2 > 0.93) match the
experimental results very well. The Cubic convolution method of interpolation was the optimal
alternative for optical picture mag-modification. Ga’s, optical roughness value estimation, was best
related to the overall surface roughness (Ra) calculated for the ground components relative to two other
approaches employing these lengths and im-proves images of the cubic convolution algorithm. This
Cubic convolution algorithm also offers a better (h3) convergence rate scheme of optical roughness
measurement, which shows its efficiency in the measurement using the vision method.

In [175], the combination of a light microscope and a computer vision system was developed
as a non-contact and multi-parameter system to quantify surface roughness. The visual method was
used to record and store photographs for roughness profiles visited by a light cutting microscope.
A specially written software (SRLSVision) was written in-house to process the recorded images. Two
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modules with a graphical user interface (GUI) were created to extract the images captured and measure
ISO roughness parameters from the extracted profiling. The machine added could measure twenty-
two parameters of roughness. The machine was calibrated with a typical specimen to measure the
parameters of roughness in metric units for both horizontally and vertically resolutions. The method
was tested with the normal sample. Furthermore, the device and the design instrument were taken
to test various samples processed by separate operations, and the maximum discrepancy between the
results of Ra and Rt was ±5.5%.

Joshi et al. [2] proposed an introduction to machine vision to assess the surface resistance of free-
hand earth specimens. Normal slip gauge pictures were taken by a camera for free hand grinding
surfaces and collected at MATLAB for processing. Images to remove GLCM texture parameters
were generated and processed: contrast, similarity, energy, and homogeneity in different directions,
including 0, 45, 90, and 135. The GLCM function data were primarily analyzed with respect to
components for all slip gauge surfaces in order to detect directions with particular data variances. For
construct validity, discriminant validity, convergent validity, and nomological validity, the findings
of PCA were validated. The PCA results revealed that there were two key components dependent on
GLCM characteristics, which explained 94.308% of the data variation. Contrast and correlation along
the center, correlation, and energy in 45, the correlation between 90, and correlation, and energy in
135 were factors loaded on the first main component. Contrasts between 0, 45, 90, and 135 were the
factors loaded for the second major portion. Moreover, many regression analyses have been modeling
the relationship between the surface ruggedness attribute and GLCM-based concept components.
Results from regression analysis for predictive relevance, control Multicollinearity, and standard error
concept have been validated. The regression equation of Ra = −9,574 + 12,933 ∗ PC1 + (−1,022) ∗
PC2 is formed for the prediction of the free hand field surface roughness.

In [176], a vision-based system for surface roughness characterization of the milled surface using
speckle line images was proposed. At first, a set of 2-D speckle and white images of a milled surface
are obtained as the standard derivation of the image pixel intensity for the line speckle, and white
light images were calculated from each surface image. The mean speckle image intensity parameters
correlate very well with the stylus parameters. The stylus hybrid parameters arithmetic mean slope
(Rda) correlate well with the speckle line parameters and the slope of the various points on the free
surface. This technique of using the mean of the speckle line images of non-contact evaluation of
surface roughness is promising, and the reliability of the measurement establish through the bigger
sample size of the experiment.

Kamguem et al. [177] suggested methods for estimating the surface resistance of machined
components based on image analysis and machine-learning techniques. Bagging trees and the booster
algorithm have been sufficient in the ten timescales of the ‘Ra’ value when considering the correlation
coefficient, except those higher values of 0.9289 have been found for bagging trees. Bagging three
values have not been regarded. In terms of correlations of 0.7005 and 0.9206, thus estimating
‘Rz’ values, the algorithm of bagging trees and stochastic gradient enhancement obtained adequate
results for ten times cross-validation. However, the author can infer that the Stochastic Gradient
Boosting algorithm is more feasible than the bagging tree, based on the output parameter: Root-mean-
square error, and it also has the advantage of being computationally simpler than the Bagging-Trees
algorithm. Future research methods in deep learning, such as recurrent neural networks and long-term
memory (LSTM) networks, may predict surface roughness and other workmanship parameters.

Chethan et al. [178] proposed a work that has evolved an image processing-based vision system
(computer/machine) for the assessment and evaluation of the surface roughness while keeping the
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non-contact phenomenon. A group of 2-D images of the ‘milled surface’ has been acquired, and there,
the reference images are then changed to the 1-D reference signals. For the test image (‘or the image
having unknown surface roughness’). The Hamming distance among the test signals and that of the
reference signals are used to expect the surface roughness of the test image. Using both the Hamming
and Euclidean distance formula, the similarity of the test images and the ref images gives exceptionally
good results. It has also been observed from the past experimentation regarding the vision system-
based image processing that both of these distances are extremely low for the surfaces having values
of surface roughness nearly equal to each other. Thus, this approach is ideal for performing the
‘online surface characterization’ of the ‘machined surface.’ The exploitation of the huge database
of the reference images and the technique exploration for various other machinings procedures, like
EDM, planning, and Nithyanantham et al. [179] show clearly that the visual approach of the computer
can be used for determining the surface ruggedness of machined surfaces and that there is a strong
linear relation between Ra and Ga with a high degree of precision. The calculation of Ga as an
optical roughness was better related to the average surface roughness (Ra) following geometric search
techniques for components manufactured especially using forming, milling, and grinding methods
using a traditional and widely accepted style instrument. To show their usefulness in quantifying
machine vision surface roughness.

Due to surface consistency, the surfaces produced are analyzed using a vision method using a Ga
parameter with shaping, milling, and grinding with a surface finishing range of Ra 0.3 to 30 μm. Just
regular exemplars use the stylus instrument to calibrate the Ra values. However, in most cases, Ga has
an excellent relationship with Ra must be stated in particular.

In [14], computer vision methods have been utilized to examine the rough surface of a workpiece
under separate turning procedures. The benefits of these methods are contactless measurements and
easy automation. In this analysis, a polynomial network of an integrated adaptive system uses learning
skills to process the surface image to get the work-pieces surface roughness. The polynomial network
has been shown to correlate the input correctly Variables (speed cuts, feed rate, cutting depth, and
surface image feature) with the output factor of work-piece surface ruggedness. The results from
experiments show that after the picture of turns on the surface and turning conditions (cutting speed,
feed rate, and depths of cut) are given, the surface roughness of the rotating component can be
accurately predicted, even during various rotational operations. Patel et al. [180] proposed a contactless
computer vision method named, Ground roughness measurement vision method. It demonstrates a
reliable surface assessment roughness over a given 2D region instead of a single 1D course. The surface
picture in the FT approach Conditions of the elements of frequency. The frequency part quantity
increases the frequency characteristics present and directionality of the surface picture. The lay course
of the frequency component’s surface area is the highest peak frequency, F1, which is a frequency of
feed marks (or opposite wavelength). Other ruggedness attributes in the picture usually outperform
for evaluation of roughness. Since F1 is the gap, A robust measure for the main peak and the origin
Surmount the environmental lighting effect.

Jeyapoovan et al. [146] examined the roughness of the casting surface Digital image capture
measurement tool Technology. The approach includes the acquisition of images, improved image,
binary image dialogue, and extraction of roughness casting characteristic parameters surface area.
The preprocessing and the image interface Roughness assessment criteria extraction is compiled by
MATLAB, the base of which can be solid Casting surface roughness digitally and rapid identification.
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5.2.1 Surface Characteristics Measurement Using Artificial Neural Network (ANN) Technique

Dhanapalan et al. [181] proposed a method Prediction of surface roughness of aluminum alloy
end milling. Aluminum alloy 6061 is predicted from the image’s features extracted from images
machined using machine vision. This non-contact method using a CCD camera and (ANN) Neural
Network controller is designed to predict the surface roughness of machined from the image features
used such as Skewness, Kurtosis, entropy, mean and standard derivatives as in input parameters for
training neural network and surface roughness value measured experimentally given as a target value.
Regression between input and target value using a neural network to predict the surface roughness of
the machined surface [181–184].

Vision-based surface roughness evaluation system for end milling in this paper digital recon-
struction and calibration of inspected surface and qualitative evaluation of surface texture. Vision-
based results vary from 9% to 11% compared to the stylus-based ones. Spacing parameters were also
implemented including autocorrelation length and angular power spectral density function. Cusp
lines and tool marks and analysis on further evaluation of surface texture. Texture evaluations are
implemented in software that interacts with the microscope camera. A microscope camera is used
for image acquisition to ensure repeatability, accuracy, and high precision for the centralization of
the inspected surface [185]. Fig. 40 represents the ANN-based surface roughness characterization
process flow.

Figure 40: ANN-based machine vision procedure schematic for surface roughness measurement [1]
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In [186], the proposed scheme demonstrates that optical roughness is well correlated and thus
acceptable with the expected ANN values. The coefficient of differentiation achieved for Ga vs. ANN is
0.941. In addition to optical roughness, the stylus values are often compared. The obtained coefficient
is 0.7991 for the Ra vs. Ga correlation. In [187], a vision program has been introduced that can
conduct selective image processing and analysis. The filter beats normal designs in terms of quality
estimation, high speed, and low power consumption. It is easy to scale and can be mapped with non-
linear operators from Digital Logic. Thus, systems such as the EHW, Wavelet, and ANN filters will
replace standard systems with success. A new attempt has been made in [188] to predict the surface
roughness of rotated components using the neural network model that is trained by non-traditional
optimization technology. The error percentage of the DEA-based ANN is similar to the BP-based
ANN, and the convergence velocity of the ANN-based DEA is less than the ANN-based BP. The
suggested ANN DE-based model for numerical optimization is simpler, faster, and more stable. It is an
efficient, direct population-based search algorithm to optimize functions globally by real parameters.
The approach precision can be improved by using a high-resolution frame-grabber in the computer
vision method and the shadow algorithm.

Morala Argüello et al. [189] showed that regardless of the kind of substance of the turned work-
piece being examined for surface roughness, the ANN model-based method introduced in this paper
can estimate the surface ruggedness of the work-piece in question with a high degree of precision.
Compared with current non-contact surface roughness estimates for turned workpieces, a significantly
improved degree of precision is obtained by the method presented in this paper, as far as non-Contact
sur-face roughness calculation (without the use of turning parameters) is concerned. In the current
methods that apply to machine (turning) parameters in non-contact surface roughness calculations
of turned work-pieces, the proposed model-based ANN solution also offers a limited (not very
significant) increase in precision. It can therefore be inferred that imagery textural characteristics such
as contrast, energy, homogeneity, entropy, range, and standard deviations have very high potential
when used to estimate the surface roughness of turned parts on a computer vision-based basis,
particularly where prior data on the concerned machining (turning) parameters cannot be obtained.

The surface condition of all machined parts was difficult to verify in the mass manufacturing
process [190]. Thus, it adopted the process of job sampling to assess product consistency. This
work may substitute for the mass production sampling technique. The vision-based calculation of
the roughness of the surface will minimize the test time for all processed parts, thus reducing the
scarp frequency. Based on this work, the ANN model will achieve 98.35% precision in predicting
the roughness of a surface. The subject of [191] is Al-10 wt% Si3N4 machining. The products have
been treated with stir casting. The experimental computer used was the 4-axis CNC WED machine
CONCORD DK7720C. Pulses (20, 24, 26 μs), pulse-off times (5, 6, 7 μs), current (4, 5, 6 amps), and
bed speed (30, 35, 40 μm/s) were the parameters of the inputs. Surface roughness and electrode wear
are the response variables. In this investigative job, the Wire EDM computer has developed a machine
vision device to calculate the wire electrode b status of the workpiece’s wiring and surface roughness.

The findings of [192] are used to develop the traditional rolling mill (ANN) model to determine
surface roughness (Ra) and are used for various cutting parameters. This review draws the following
conclusions:

• Surface ruggedness (Ra) can be accurately predicted by using input variables such as cutting
depth, cutting speed, and feed rate.

• The built model of surface roughness (Ra) can be correctly predicted as a correlation factor
between the artificial neural network prediction.
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Table 3 represents the few of the papers that have worked significantly in machine vision using the
ANN technique for surface characterization and surface roughness measurement.

Table 3: Literature review of machine vision using the ANN technique for surface characterization
and surface roughness measurement

Articles Year Techniques Objective

[193] 2021 ANN Non-contact-based surface characterization
[194] 2019 Parameters of ANN To assess the feasibility of using signal features

for vibration measurement in the milling
process. Prediction of surface roughness

[195] 2020 ANN, ANFIS, and GA To extract statistical features7 by measuring
surface roughness through computing
approaches

[196] 2021 BPNN and automatic
acquisition

To perform the rapid detection of surface
roughness

[197] 2016 Micro-milling
processing tech-
nique/ANN

To assess the effects of surface roughness
through computational fluid dynamics

[15] 2015 Grey level invariant
moment technique

To perform surface roughness measurement with
‘sub-pixel edge detection’ in finish turning

[198] 2019 Histogram analysis
using machine vision

To perform the non-contact evaluation of
surface roughness texture

[8] 1999 - To measure the surface roughness using optical
techniques

[199] 2002 Computer vision-based
ANN technique

Enhancement of surface roughness using
computer vision techniques.

[177] 2015 Blob analysis Tool status monitoring for surface roughness
measurement

[200] 2021 CNN-a deep neural
network approach

For measurement of non-contact surface
roughness

[201] 2021 AI techniques (ANN,
RSM)

AI-based surface estimation

[202] 2019 Machine vision based
DL

For identification of chatter and estimation of
surface roughness

5.2.2 Surface Characteristics Measurement Using Adaptive Neuro-Fuzzy Inference (ANFIS) Technique

In [203], a method proposed online measuring of surface roughness and grinding wheel using
ANFIS-GPR hybrid algorithms and Taguchi analysis solved a difficult problem in the grinding Ti-
6AI-4V, which is the most difficult material to process but commonly used in industries, so ANFIS-
GPR hybrid algorithms predictability is better than ANFIS, and also ANFIS-GPR system provides
a CLs of the predicted results. This model is transcendental predictive. This method is Intelligent
production conditions, self-adaptable, self-learning, and has a variety of potential applications.
Although the data changes, it only needs to follow new empirical data generated by a new training
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sample [204,205]. Fig. 41 represents the methodology for the surface roughness measurement using
the ANFIS techniques.

Figure 41: Surface roughness measurement using ANFIS techniques [205]

In [206], surface roughness assessment based on digital image features is proposed to build real-
time online surface roughness monitoring for machined surfaces. The system is faster in carrying out
the required control of the machined surface. The cost for testing would be cheaper during monitoring
of machining, helping to timely react for the positive derivatives and reducing subsequent costs. This
idea is based on ANFIS (Adaptive neural-fuzzy interface system) average arithmetic parameter of the
roughness profile is Ra. The fuzzy interface system investigation has an assessing error of 6.98%; with
such an error, the technical requirement set on the workpiece as a regards quality of machining should
be not diminished [199].

The research is part of a study whose overall purpose is to develop a web framework for
monitoring machined surface roughness in real-time [207]. The device can conduct the tasks of the
machined surface control criteria quicker, checking is cheaper, and tracking during machining allows
to respond in good time to potential anomalies and minimize costs. The research in this paper focuses
on evaluating machined surface roughness based on digital image characteristics using the neuro-
fuzzy adaptive inference system (ANFIS). The arithmetic average of the rawness profile Ra is a
regulated parameter for surface roughness. The following characteristics are examined in the paper:
the average grayscale value of all members of a digital image matrix, the standard deviation of all
the components of the digital image matrix, and the entropy of the digital grayscale image matrix.
The study is carried out in a high-speed work environment. The machined surfaces are therefore
of high quality, and the roughness measured is very limited. Thus, the digital pictures have very
similar characteristics, and a higher evaluation error is predicted. There is a 6.98% flaw in the fuzzy
inference method obtained in the present study. But the technical specifications of the workpiece about
machining efficiency should not be reduced even with such a mistake. Makadia et al. [208] proposed
an ANFIS approach to determine the exact relation of input parameters such as cutting speed, feeding
rate, cutting depth, high peak frequency, the main component squared value magnitude, the average
grey level, and surface ruggedness performance. The proposed ANFIS model beats the ANN model
concerning simulation and prediction precision. The findings promote the expansion of machine vision
technologies to so many industrial inspection applications in real-time. Radha Krishnan et al. [183]
provided a way of reliably determining the relationship between the properties of the surface image
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and real surface roughness using the adaptive neuro-fuzzy inference method (ANFIS) and thus can
efficiently approximate surface roughness by means of cutting parameters (such as cutting speed, feed
rate and cuts depth) and grey surface image level. Non-contact calculations, easy automation, and high
precision are the benefits of the process suggested. The proposed ANFIS-based approach showed
experimental simulation and estimation accuracy results to outsmart the conventional polynomial
network-based method. Table 4 mentions a few of the papers that have worked significantly in machine
vision using the ANFIS technique for surface characterization and surface roughness measurement.

Table 4: Literature summary for surface roughness measurement using ANFIS technique

Articles Publication year Technique Objective

[209,210] 2020 ANFIS Validation of surface roughness characterization
[211] 2012 ANFIS & ANN To identify the surface characterization and

damage of structure
[212] 2017 ANFIS process For surface roughness modelling
[213,214] 2005, 2012 ANFIS process For predicting the surface roughness
[215] 2019 ANFIS and GA Optimization of surface roughness within

thermal drilling

Fig. 42 shows the flow chart of the ANFIS technique with step-by-step process for surface
roughness characterization.

5.2.3 Surface Characteristics Measurement Using Convolutional Neural Network (CNN) Technique

In [216], a new method was proposed in which the roughness Rz of a laser-cut edge based on
an RGB image can be estimated by a CNN. An average error between 4.8 (line 0.3) and 3.2 μm
(line 1.5) could estimate the roughness at various layer depths. As a result, only model training data
and outdated in practice is a 3D measuring system required. For example, cameras that take pictures
of cut boundaries or different photo stations can be used, if necessary, by the machine operators to
sort laser cuts automatically. For the largest measuring line, the CNN seems to function worse. Any
marks are incorrect due to inconsistencies in measuring, in which case the CNN forecast is higher
than the real calculation. Comparing the errors of the various runs, it becomes apparent that there
might be changes if more or better data were available. Then the result is less contingent on the data
breakdown, and the contours have less effect on the overall performance. The data accuracy may be
increased instead of an optical measuring tool (e.g., stylus tip measurement device). This will also
increase the time it takes to gather data.

Fang et al. [217] suggested an alternate surface perception assessment using profound learning
models. The proposed CNN model omits the process by extracting functions automatically with
convolutional layers, in comparison to former approaches that involve feature extraction. This study
suggested an alternate surface perception assessment using profound learning models. In comparison
to earlier approaches which would include the extraction of features, the proposed CNN model does
not use convolutional layers to automatically extract the features. To fix this issue, in future studies,
an adaptive model may be considered that can automatically change the value of hyper-parameters
based on their real-time output during the training phase.
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Figure 42: Flowchart of ANFIS technique for surface roughness measurement

Using a neural network, an estimate was made of the Ra surface roughness parameter in [218]. As
an input of the neural network estimator, the machined image surface parameters have been increased.
There were five cross-sections in the image, from which the six wavelet decomposition levels were
calculated by statistical parameters. The Optimal Brain Surgeon Method selected these six parameters.
Where increasing these parameters and the estimated value is applied at a given point, it was possible
to determine the Ra estimator at times when surface roughness parameters were unknown. Leistung
of the surface roughness parameter estimator Ra showed the presented method for tracking surface
roughness quality during turning to be very usable. The test set error was clearly less than 20% and
marginally less than 5%. The recurring neural network-enabled an accurate assessment of the given
value of Ra based on data from the processed surface image only [218]. The “Deep Learning” CNN-
based technique for measuring surface roughness [219] using vibrational signal analysis is shown in
Fig. 43.
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Figure 43: Flowchart of CNN-based technique for the measurement of surface roughness [219]

Table 5 mentions a few papers that have worked significantly in machine vision using the CNN
technique for surface characterization and surface roughness measurement.

Table 5: Literature summary for surface roughness measurement using CNN technique

Articles Publication year Technique Objective

[219] 2019 Deep CNN For surface roughness prediction
[102,199] 2018, 2020 CNN For estimating the roughness of the non-contact

surface
[220] 2021 CNN Visual measurement of surface roughness
[221,222] 2017, 2012 Deep CNN ImageNet classification
[223] 2018 CNN To detect the damage and defect on the metal

surface

Table 6 mentions a few papers that have worked significantly in machine vision using the Deep
Learning technique for surface characterization and surface roughness measurement.

Table 6: Literature summary for surface roughness measurement using deep learning technique

Articles Publication year Technique Objective

[224] 2019 Deep learning To evaluate the damage condition of steel
structure

[225] 2016 DL approach Recognition of the surface drill condition
[226,227] 2021 DL approach using drill

classification
To perform the dill wear classification for
surface characterization

[228] 2020 Machine learning and
DL approach

For material roughness

[229] 2020 Machine
Vision Approach

Colored illumination on features of
surface textured

5.2.4 Surface Characteristics Measurement Using Deep Learning (DL) Technique

Ali et al. [230] suggested a deep learning approach based on photographs of die-sink EDM
work-piece surfaces acquired by a typical visual computer sensor, which can ensure Ra’s roughness
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values equivalent to that obtained with a touch profilometer (line profiling method). This allows
operators to calculate roughness values in accordance with roughness goals on drawings in a machine-
integrated manner. The possibility of characterizing superficial morphology (a key problem when
working functional surfaces) and detecting defects given an automated input was also demonstrated
in learning-related methods. Table 6 mentions a few of the papers that have worked significantly in
machine vision using the Deep Learning technique for surface characterization and surface roughness
measurement.

5.3 Surface Characteristics Measurement Using Optical Techniques
Metallic surface characterization is an important problem in developing new products and devices

in various industries, from the metallurgical to the medical industry, and understanding fundamental
aspects of wave dispersion from rough surfaces [231]. A new optical method for characterizing raw
metal surfaces was proposed and experimentally demonstrated. In approach, the effect of surface
roughness on the formation of sprinkles in the diffraction plane has been examined. It is that the
B/D ratio increases exponentially when surface resistance increases in samples produced with different
production processes by analyzing binary speckle patterns. Statistical characteristics of spindles are
available in both the image and the diffraction plane. For information on the rough surface, they
also suggested a device with a simple experimental set-up and minimal alignment to measure the
relative surface roughness of metal surfaces. Even though there are many optical surface ruggedness
characteristics with different methods, optical imaging (e.g., microscopic) systems and advanced
optical techniques are not required for this proposal.

For surface texture characterization, a view-based system was tried using the grey image approach
in [170]. A picture histogram for subsequent investigations was analyzed to improve the picture. This
method prevents direct contact with the area to be examined. Scratching is clearly shown on the surface
image, and the space between them is apparent in order to examine the texture of the surface easily.
Different filters can be implemented to enhance the precision and clarity of the area of interest in order
to make more use of this vision-based approach. This graphic can be used in addition to the surface
roughness value calculation [203].

Kumar et al. [81] proposed the in-process roughness measurement of a spinning workpiece, a
machine vision system using a commercial DSLR camera and sub-pixel edge sensing was created.
Photos from nine separate specimens of surface roughness. The calculation used spindle velocities
between 0 and 4000 rpm. In comparison with the precision of the parameters of roughness, a style
profilometer was employed, whereby a mean difference of 4.6 percent in Ra between the two was found.
There was also a strong association with the various dimensions of suitability between the proposed
method of vision and the stylus process. The findings demonstrate that the approach proposed is
efficient at calculating the roughness at high spindle speeds of a workpiece. In-process roughness
calculation this process has major potential for use. The suggested approach offers real-time compared
to other non-visual approaches.

Tootooni et al. [232] proposed a system in which measurement of surface ends of turned shafts
on location using a CCD camera setup was suggested by Fiedler number (2). First, a simulation study
validated the technique, using numerically generated 3D surface profiles with surface roughness (Sq)
between 3–30 m (Section 4). The number of Fiedler (2) revealed a steady increase in surface roughness,
although not linear. Then tests were performed with machining (OD turning). Two shafts, the first
AISI 4340 steel and the other Al 6061, were machined on a lathe of feed ranging from 45 m/rv to
500 m/rev (average area roughness, Sa approximately between 1 and 20 m) in three different conditions
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along its length with a cutting rate of 256 rpm and a cutting depth of sixty-five m with a cutting tool
for carbide. The CCD was taken first when the machine was static (0 rpm) and at two other speeds,
45 and 256 rpm, from the respective shaft zones. The CCD was then used. The Fiedler figure was then
calculated less than ten times a second and correlated with offline surface roughness measures in a
rational regression setting. The difference between the real surface ruggedness and that estimated at
Fiedler is less than 15 percent. When Sa is in the 1–10 m range, there is an error of ±2 m in the mean
arithmetic surface ruggedness (Sa). The technique was then discovered to be robust to rotating speed,
and it does not need to stop the machine.

A visual-based calculation of the machined surface roughness parameters for online surveillance
is defined in [233]. It is concluded that the optical characterization of machined surfaces can be used
for this affordable vision device. In order to differentiate between surfaces with varying roughness
levels, Parameters obtained from captured images are examined. The ruggedness of the surface has
also been shown to influence the vision parameters conclusively.

It is also investigated that ambient light has no marked effect on measuring vision-based
parameters during image capture. It is also assumed that the roughness of machined surfaces can
be measured successfully using these vision-based parameters. In order to monitor influencing
parameters, including rpm, feed, and depth of cuts, if the values of the surface finish are above the
permitted levels stored in a device, the machine sends a feedback signal.

Narayanasamy et al. [234] proposed a new camera-based measuring device to conduct high-
resolution analyses of technological surfaces. In order to ensure an individual alignment of the
image points in the images, the image matching technique involves a non-reflective surface and an
odd and non-respecting pattern. However, the preparation of the object’s surface can also overcome
these restrictions. In order to have a distinctive pattern on the wall, for example, the surface can be
coated in a very thin layer of paint. Therefore, a device will usually calculate any substance (e.g.,
structural elements, metals). They also developed a two-stage image pipeline like SfM and DIM
for the 3D reconstruction of object surfaces. The SfM algorithm is used to estimate the camera’s
external orientation and is used by the OpenCV library. The SGM algorithm is used in DIM. To
reduce runtime and satisfy real-time criteria, the authors have introduced SGM for GPUs using
CUDA’s programming models. The specification of the GPU is also 47.5 times quicker than the
pure implementation of the CPU. Further, it modified the roughness parameter Ra to 3D point
clouds and examined 18 concrete specimens of varying surface-surface textures to achieve the initial
results for the calculation of roughness. A strong linear correlation is observed when comparing Ra
values measured by our measuring device and the MTD reference values calculated by the sand patch
procedure. Furthermore, more detailed investigations were carried out for a specific specimen to prove
the necessity of an area-based calculation of the object surfaces.

Özcan et al. [235] presented a new measuring device based on a camera that allows high-resolution
analyses of technological surfaces. The roughness estimate using concrete specimens has been shown
as a use case. However, the proposed systems will essentially quantify any surface in the depth of
the camera field and hence sharply caught in the photographs. However, to achieve a single pairing
of the image points of the pictures, the image-association technique allows the surface to be non-
referential, irregular, and non-repetitive. In [236], two methods have been introduced to estimate the
concrete SR through the images with sufficient resolution. The first approach used the DIP method to
differentiate the coarse aggregate from the cement paste. The second approach, data augmentation, is
used to transfer the learning approaches in computer vision to classify the newly acquired images based
on predefined images. Both of these applications have been applied using the basic camera approach.
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Gharechelou et al. [237] proposed using optical digital camera and photometry techniques to use
a basic method for calculating surface roughness. The derived measurements of surface roughness
can be used to enhance the modeling of the Remote Sensing Microwave. Researchers more recently
attempted to use the inverse models for back-scattering without parametrizing surface roughness, but
the approach requires in situ ground moisture estimation and is mostly not valid in the future model
because of a lack of evidence.

The viability of machined surfaces’ optical characterization using a cheap visual method has been
tested in [238]. In order to differentiate between surfaces with different roughness values, parameters
obtained from the representation of the optical spectrum were investigated. To assess the efficacy of
the vision findings in discriminatory precision, four of those criteria were chosen. The roughness of
the surface has been shown to impair the limits of perception. The values of the CV parameter with
low roughness (smooth surfaces) are more correlated than other parameters, and the grey arithmetical
average (Ga) is well correlated with the rough surface area. R1 and R2, with all roughness ranges,
show a strong association. Nan-Nan et al. [239] proposed an online technique for measuring surface
roughness. The roughness of the surface is collected from the light dispersion intensity ratio of the
examined surface. The procedure is simply configured with three lasers, two detectors, and a fiber-
sensor of multi-wavelength. The technique is efficient for measuring surface roughness and accurately
measuring the level of surface purity of particulate-contaminated mirrors. From experimental findings
of distinct surface roughness using the grinding standard, it is recognized that surface roughness has a
strong linear relationship to the raw area ratio light dispersion intensities. The curve diminishing rate
is ten times greater than by using a single wavelength fiber sensor by using a multi-wavelength fiber.
Therefore, the relationship curve may differ for surfaces made of different materials.

5.4 Surface Characteristics Measurement Using Laser Speckle Techniques
A final set of laser texture-based textures for elevation characteristics and a comprehensive

and detailed texture characterization through confocal microscopy were constructed using various
geometries [240]. After initial laboratory parameter optimization (laser power, distance, angle) of
objective and subjective setup, speckle patterns were obtained for every texture. Three speckle
techniques were applied (contracting method, binary imaging analysis, spot size method) in relation to
the usual USIBOR metallic surface roughness measure. A robust correlation was observed for different
speckles. Laser texturing is a flexible method for altering metal surfaces’ roughness. Using the Speckle
non-contact technique, measurements of roughness may be obtained and correlated by traditional
techniques.

In [118], there was a planned and investigated hybrid vision scheme to record laser speckles and
scatter pictures simultaneously with two stereo cameras. The formal features of scattering images
and texture features are separated and combined with sophisticated signal processing to characterize
surface roughness.

Aulbach et al. [76] presented a promising technique, which is easy to execute, and the data collected
mostly conform to major patterns to the extent practicable for comparison. A laser source with
high-intensity stability is needed to improve the accuracy of the system. The central factor in this
method’s configuration is the LCSLM, which explicitly associates the accuracy of the findings with the
functionality of this instrument. As discussed previously, the Holoeye PLUTO-VIS modulator used
is based on PWM to digital adjustment of liquid crystals. A known problem with PWM schemes is
that liquid crystals flicker in a certain grey value spectrum that cannot be removed entirely by external
triggers. The amplitude of the flickering stage is linked to the chosen digital series and can be reduced
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by other digits. The reflectivity of the goals needs to be taken into account, last but not least. Three
targets with reflection coefficients nearly equal to the Vnorm estimate are examined in the presented
experiments. The effect of the reflectivity must be considered to apply the technique to other materials
in the philosophy approach.

Al-Kindi et al. [241] proposed a method of measuring the surface topography without touch and
on-site. Laser confocal technology has been developed. With a precision two-axis linear stage and a
robotic arm, a laser confocal sensor. The test results indicate that the machine proposed is capable
of measuring 0.2–7 μm Ra surfaces, covering a typical spectrum of friction, rotation, and grinding.
Relative errors can be managed within 5 percent in this range with linear error compensation. The
suggested laser confocal measurement method has the following properties from the above sections:

• High precision calculation accuracy down to 0.2 μm Ra, checked by a stylus profilometer with
high precision,

• Calculation of noncontact that prevents potential contamination and sample surface injury,

• Compact architecture that can be integrated for in-situ calculation using a robot or other motion
device,

• Three-stage movement control which reduces the robot and positioning vibration Mechanisms
of movement, and

• Low-cost architecture relative to the style or optical profilometer desktop system.

In [242], a 3D laser scanning is demonstrated to test the surface roughness of casting surfaces
using the PCA flat fitted to point cloud data using a built R software. The findings from this report
are as follows:

• Before running surface roughness calculations, different considerations such as shininess,
scan machine constraints, depth of view, scan path, and dot density have been studied and
understood.

• The study concluded that, after the application of a cut-off filter wavelength, the roughness
values specified on the comparator plate had been determined. Based on the absence of
wavelength components (availability), The PCA roughness values obtained differed from those
of the comparator.

• An independent ‘ACI’ specimen was then created and validated with the recognized ‘C9’
comparator specimen. A correlation curve was used. The surface ruggedness of unknown
SCRATA surface texture plates has been quantitatively defined according to satisfactory
findings.

• For casting surface, it is apparent that the proposed methodology to approximate roughness
by sampling area (Sq), as opposed to traditional methods for calculating roughness based on
online sampling, is reliable and has a lower coefficient of variance.

A design to quantify the surface roughness using the speckle images was attempted in [243]. Using
the Euclidean and Hamming distances is very promising, and we can use these findings in in-process
calculations. For surfaces with identical surface ruggedness values, the difference between Euclidean
and Hamming was extremely limited. The use of a broader reference frames database would make
online calculation outcomes more efficient. In iris detection, other biometric and wavelet methods can
be used in surface estimation.
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In [244], the surface roughness quantifying and reconstruction of the thin-walled surface profile
of the pieces deposited in the WAAM is suggested by a determination process. The surface roughness
calculations are as follows:

• The surface profile is scanned with a laser vision device consisting of a diode laser and a CCD
sensor. The points in the world coordination structure are reconstructed using an imaging
coordination system by calibrating the camera and the laser plane.

• Any potential cause of the error, including the tangential lens distortion and uncertainties in
the image process algorithms for reconstruction accuracy, is discussed. The laser vision sensing
approach is shown to be an accurate and cheap method for characterizing the roughness of the
surfaces of WAAM deposited components.

In [245], various techniques were used to cover a wide variety of laser-speckle measuring processes,
which rely on a single-speckle image processing. Since there are several measurements in any system,
more than one calibration relationship must also be obtained to cover a wide variety of the techniques,
and more than one detail from the single picture taken from the surface must be retrieved. Each
of the data relates to one of these techniques of speckle. The measured data must be calibrated
to an acceptable value of surface roughness if the precise information is covered in any calibration
connection. Singh et al. [246] presented a computer-based approach for assessing the roughness of the
mechanized surfaces of semi-finished goods for vehicle industries to be built and tested experimentally.
The laboratory assessment confirms the adequacy of the same moment, the strategy, and the desire
to refine the Model of regression for roughness assessment. This is why more work would focus on
deriving the model from more samples that are larger, routinely collected, and more representative.

This approach expects to exact and capable of resulting model. Detection of patterns in the
roughness value of the commodity that are information for effective process management steps.
Moreover, the process optimization can be expanded to include the parameters of the extraction
protocol and the algorithm settings of the machine. The online implementation and assessment will
also be carried out of the system built in the production context. A water surface can be assembled
with a stereo vision device for three-dimensional measurements, as proposed in [247]. A simple
understanding of the stereo algorithms and the transition between coordinate frames are essential
for successful outcomes. There is also a need for sufficient lighting and surface texture. This method
could be suitable for student projects around the disciplines and could include informatics, electrical
engineers, or mechanical engineers in ocean technology. Although the findings are for a static camera,
more research should look at vessel-based measuring systems [248]. Fig. 44 represents the speckle
imaging technique for surface characterization.

5.5 Surface Characteristics Measurement Using Atomic Force Microscope (AFM) and Scanning
Electron Microscope (SEM) Based Techniques

Hameed et al. [249] proposed that the findings show that employing AFM measurements, the
SEM images quantify the ruggedness parameters that are accurate on a wide area and provide an
acceptable computational ruggedness parameter compared with AFM measurements. The shift of the
SEM image acquisition scale affects little of the contrast surface heights (Sp, Spm, Sv, Svm, St, and
Sk), and the samples may relate to the homogeneity of the surface. The impact of using a wide scale
on the sample surface can be noted on the Sk parameter’s value, where the value determined using
the AFM differs significantly from the values estimated with SEM photographs, which the irregular
presence can show.
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Figure 44: Speckle imaging technique for surface characterization [248]

Chen et al. [250] established a new 3D measuring method focused on a supervised profound
learning perspective in AM processes. The main advantage of this approach developed is that the 3D
morphology information can be assessed in real-time only by using a single image since the proposed
system used the connection between the image pattern and the point cloud to its maximum extent.
Furthermore, case studies focused on numerical and real Metal AM parts have demonstrated that the
suggested approach produces reliable results with high computer performance. This study has also
answered a major problem from the current one, 3D Surface Data Acquisition Methods for Real-
time Data Collection Capacity. To sum up, the findings of this analysis indicate that in real-time
measurements of AM surface morphology in layers, the proposed approach is very promising. Future
analysis and study along these lines, primarily in two ways, will also be very useful. For example, further
real-life case studies in the future should be undertaken to further check the efficacy of the proposed
approach, particularly actual online layer measurements in AM. Secondly, this approach is also highly
useful for the identification of AM processes online.

6 Applications of Surface Characteristics Measurement Using Computer Vision Techniques for
Manufacturing Processes
6.1 Surface Characteristics Measurement for Part’s Surface Generated by CNC Machining Processes

Research on CNC-making surface consistency for applications using Internet-based diagnostic in-
instruments offers an informative case study of principles and methods of equality [251]. The problems
of production efficiency with CNC machining are conceptually simple. Each CMM or computer vision
laboratory may be done in a CNC laboratory session. The test results include an algorithm that is
consistent with the simple vision-based results of roughness characterization for predictive method
inspection. The MET 3201 CNC course allows students to define the geometry and the surfaces of a
variable and study GD&T (Geometric Dimensioning & Tolerancing) as well as CNC code scripting,
CAD/CAD/CAM competencies.

The study of the CNC surface consistency [252] for the use of internet-based noncontact diag-
nostic instruments gives a case study of principles and methods of E-quality. With CNC machining,
the problems with production quality are conceptually simple. Each CMM or computer vision
laboratory can be conducted in a CNC laboratory session. The findings of the experiments are in
strong harmony with simple visually dependent rugged characterization results of predictive phase
inspection algorithms. The MET 316 CNC course has provided students with the skills required to
specify the geometry and surface and the CNC code and CAD/CAM skills. The MET 316 CNC Course
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presented students with the ability to determine the geometry and surface ruggedness for the part and
the qualitative power of GD&T (Geometric Dimensioning & Tolerance).

The CNC turning workpiece was used in [184] as a result of a study to detect surface roughness
by im-age texture processing, which proposes to detect the material using a non-contact vision system
approach. The statistical relation was developed using multiple regression modeling, calculated with
a profile meter, between image texture characteristics of machined surfaces and the arithmetic mean
deviation (Ra). To evaluate the behavior of the detection model and interpret experimental results,
numerous linear and nonlinear regression models were used. Statistical analyses have shown that linear
and nonlinear model recognition matches well into a multivariate regression model. In the present
research analysis, the efficiency of the linear detection model’s maximal detection error was 2.01%
over the nonlinear −9.60% model, which shows enhanced performance characteristics of the linear
detection model over the nonlinear model to estimate different statistical rough-surface parameters.
From the results, a non-contact method will accurately forecast surface roughness. Experiments have
shown that Ra was a minimal relative error and hence the results obtained motivate the proposed
amplitude parameter prediction model, namely the size root average roughness (Rq). The method of
in-situ camera-based surface characterization of the part surface is generated using CNC machining,
as shown in Fig. 45.

Figure 45: In-situ camera-based surface characterization of the part surface generated using CNC
machining

6.2 Surface Characteristics Measurement for Part’s Surface Generated by Other’s Traditional and
Non-Traditional Manufacturing Processes

Different pictures of tile and wood flooring are considered in [253] to approximate parameters
of roughness, such as average surface roughness (Ra), highest depth (Rv), and square roughness of
root mean (Rq). Instead, the Weiner filter produces stronger effects if the sound is linear but not
nonlinear, i.e., pulse sound. Thus, an adaptive median filter is used to eliminate the non-linear noise
from the bicubic interpolation, which produces a highly improved picture compared to the stretching
of contrast. Adaptive medians and bicubic interpolations have a stronger root mean parameter of
square roughness (Rq) because they respond to minor changes in surface imperfections. The same
result is achieved using the bicubic algorithm, while the contract stretch algorithm has not provided a
correct result.
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A surface characterization can be studied using texture parameters as presented in [254]. The
lighting compensation technique was successful in removing Inhomogeneity with various lighting
settings and Various processes in machining. The photos offset healthy correlation with 3D roughness
parameters has been shown Uncompensated pictures in contrast. The work, therefore, emphasizes the
fact that lighting irregularities support the pattern of texture in the acquired image. Light compared
texture parameters in the grinding phase under halogen lighting demonstrated an improved correlation
coefficient with 3D surface roughness values. This work characterizes improvements in the texture
pattern of the images by second-order, mathematical approaches based on GLCM and GLRLM
methods. The experimental findings propose an online measurement technology for the monitoring
of machined component surface quality using these methods in the manufacturing setting for faster
inspection. This technique can be used as a roughness estimation instrument based on a comparator
for quicker surface ruggedness inspections. For texture-based surface evaluation, several other texture
parameters may be used.

Sun et al. [102] suggested a smart approach for estimating surface roughness. This new approach
includes steps to correct the texture skew, filter images, and define image characteristics. In tandem
with the Hough transform, an optimized Sobel operator is used to correct image skew phenomena
[255–257]. 2D-DTCWT is used for more efficient pattern recognition preservation functionality. The
photos you generated are used to develop a smart model based on ResNet [102]. The conclusion of
the approach presented in [86] can be summarized as:

• ResNet has shown that its surface ruggedness assessment approach is successful. The proposed
approach is non-contact, without additional surface defects, instead of conventional calculation
approaches for measuring surface roughness. This model does not focus on prior experience
because of ResNet’s involvement with practical learning.

• Studies in surface friction show the potential way to change the image variabilities is the
proposed texture skew corrector process.

• A surface roughness estimate on milled components would verify the effectiveness of the
proposed new process. This approach can differentiate between different roughness of the
surface and high accuracy grades.

• A filter analysis has shown that the feature networks can be considered as an automated and
intelligent manual surface roughness estimate based on reference specimens.

Chang et al. [258] suggested using a non-contact area-based roughness assessment method, which
applies digital surface picture transformations on wavelets. The machine efficiency has been evaluated
for the flat steel surfaces made of three different methods, forming, grounding, and polishing. The
models produced show a close association between the roughness parameters (Ra and Rq) and the
significant multiresolution channel characteristics obtained from surface images. Surface methodology
response tools have been applied to create adequate polynomial models for the association between
important wavelet channels and Ra/Rq values. In order to validate the models’ hypotheses, sequential
model building measures and residual checks were performed. The validation process focused on
digitalized images, which were historically not used to develop the model, using the projected RSM
models to forecast the Ra/Rq value of the specimens. During this survey, they observed that the
system’s repetitiveness was stronger than the stylus instrument.

Naresh et al. [143] proposed a study that concluded machining specimens by the use of a
stylus probe and machine vision techniques are measured for surface roughness. As a contact-free
and accurate technology, the computer vision technique is highly successful for measuring machine
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specimens. This study further concluded that the technology of vision has average precision and best
tolerances.

The study discussed in [259] deals with the online control of the surface during cylindrical rotation.
In this study, an online rotated surface control device with computer vision and a digital image phase
was introduced for cylindrical rotation. In order to assess the regularity of surface texture and function,
the machined surface was analyzed with fractals.

Hameed et al. [249] proposed a stylus roughness test that is used extensively to measure the
roughness of turned components. Since turned pieces are axisymmetric, there is a single trace along
with the component. Vision-based measuring roughness has some benefits compared to the standard
stylus system. Existing vision-based approaches extract data from either a rotating work-piece region
or a gray-intensity line scan. Using the simple 2D image on the side of the piece, one can extract a
profile that provides precise details on roughness. A standalone vision-based ruggedness tester may be
used to assess ruggedness offline or to measure ruggedness on the computer. Vision-based estimation
techniques have considerable potential for commercial use due to decreasing costs for cameras and
frame captors. However, before this methodology is generally accepted in the industry, a new standard
need to be established.

In [260], an examination was carried out for the relationship between GLCM’s texture characteris-
tics and the surface roughness of specimens that are machined by turning operations. The summarized
finding of this examination are as follows:

• There has been a found strong association between six texture features (SVAR, SENT, DVAR,
ASM, CSH, SAVR) and Ra (correlation coefficient over or equal to 0.9).

• Correlation equations for strongly corresponding texture characteristics were taken from Excel
graphs, and calculation equations were obtained to determine the value of Ra from the texture
characteristics measured.

• A new Cpp-module has been developed in order to approximate the surface ruggedness of the
like specimens with known Ra values using the very correlated texture characteristics.

• The system was tested, and the results revealed that the overall error percentage between the
real Ra and the predicted Ra was about 7%.

• The effects of the used vision system may be affected by certain parameters. If these conditions
are to change, the machine has to be calibrated to solve this problem. The used vision method
will also be used to estimate surface roughness for various machining operations in mass
manufacturing.

In [261], statistical software for sample surface roughness assessment was proposed as a form of
non-contact to use two process components. The materials chosen have been machined by numerous
cutting criteria. The roughness of surface in the CNC frying press. In the preparation of artificial
neural networks, the collected surface images were analyzed and used. In MATLAB, a program was
developed to assess the roughness of the photographs from Machined surfaces and the application of
artificial neural networks. Tests were performed and executed with the following steps:

• Evaluated the binary image matrix in Networks of preparation, black and white lines route.

• Chosen extended parallel in the excess path of these lines. The recognition efficiency of the
training network improves in the horizontal direction.

• The best results of 300 to 240 resolutions have been achieved in pictures.
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• Log-sigmoid was chosen for the training networks as a transition function, combination
gradient scale (SCG) was employed as an algorithm for testing, and the Full number of neurons
in training was chosen Network.

• The overall output of the qualified networks of AA 5083 Aluminium was 99.926%, and AISI
1040 steel, on average, 99.932%.

• In comparison with experimental findings obtained in the first photographs, they validated each
other at 99.999%.

In Pino et al. [262], by examining the characteristics of the texture picture greyed co-occurrence
matrix in the surface speckle pattern, the authors have implemented a surface ruggedness assessed
technology. The Gray-Level Co-occurrence matrix includes several texture properties that can be
removed. This study examined comparison, correlations, energy, and homogeneity concerning surface
ruggedness in the four typical characteristics. It was observed that a shift in the energy function with
varying offsets varies between two papers, which quantify the ruggedness of paper by air leak and
have very different Bendtsen parameter values. This study claimed that it has to characterize more
documentation to validate the process and to figure out what the framework will do.

Abidi et al. [263] proposed a new application for the algorithm of the facet model. It has
demonstrated that the paper web’s surface on the wet end can be described with an image improvement
algorithm accompanied by topographical descriptions with the facet model (the context subtraction).
For the final segmentation of the data, mathematical morphology is then used. Geometric filtering
provides well-defined non-uniformities for well-segmented images. Measures are also calculated on
position, scale, and structural orientation. The initial work on implementing the facet paradigm in
real-time is discussed.

In [264], the methodology and process method used in the prototype design allowed the entire
roll calculation to be performed, meter by meter, on the Web paper, in real-time at high speeds. It is
possible to improve the current measurement rate of a software prototype by 6 per second and only
if the overall roughness is measured by a single Ra or Rq component. The presented online results
demonstrate the ability to distinguish between surfaces with very similar roughness and to use the
tool in papers and board industries for the micro-level ruggedness calculation. The online and offline
experiments provide indications of the precision of the process of the On Top prototype. The real-time
surface profile data allow the possibility to extract and quantify surface irregularities and roughness,
such as cockling and waviness.

In [265], the findings showed that the current photometric stereo and CMM approach to textural
surface measurements are able to quantify the surface roughness of work parts. In addition, the CMM
will greatly minimize the light source location errors and increase the calculation precision of the
PS device. The pre-test surface roughness varies from 3.2 to 50 μm (Ra), and proper filtering of the
measuring result can be carried out to eliminate low-frequency signals. The findings of the inclined
angle experiment can be used conveniently to refine the roughness measuring method. The thesis is
theoretically useful for improving the precision of the PS system based on metrology. The job can also
be used for the measurement of Ra for industrial online measurement. This further study involves
characterizing the measuring efficiency and assessing PS system calculation insecurity.

In [266], assessed material surface quality was considered to be an important way to assess the
surface quality or standardization in the calculation or study of roughness parameters. In addition,
it offers civil engineering practitioners a more precise monitoring instrument for comparing and
assessing the surface condition by localization and spatial arrangement, and subdivision of these sites.
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For example, multiple surface samples of the same material can be provided, and sample roughness
patterns can be checked. The construction or environmental conditions like temperature, pressure,
and friction have assembled the piece. The proposed instruments provide a new and advantageous
perspective for the analysis of surface roughness following the principles outlined in the reference
works, which allow local and comprehensive evaluation of surface roughness coefficients while
encouraging comparative analysis between different sample surfaces. The study of roughness is critical
in the determination of rock surface discontinuities’ shear strength, deformation, and intrusion.
Various books illustrate the complexity of data processing using the conventional approach and the
propensity to use 3D point clouds in the practical and accurate calculation of surface roughness. As
defined in roughness is part of the determination of a surface profile’s shape calculation. The Joint
Roughness Coefficient (JRC)) the parameter is used in the sense of rock geo-mechanics. This parameter
is determined based on surface geometry and ultimately is a calculation similar to the Ra calculated
in this work, which is related to the distance from the point to the surface plane.

In [267], a robust FCM algorithm with non-neighborhood spatial details to measure surface
roughness is proposed. The proposed FCM NNS algorithm can explore a surface image aliasing that
can solve FCM algorithms’ drawbacks for spatial information in the neighborhood. In particular, a
method is suggested for the first time to obtain the relevant initial cluster centers to allow the FCM
NNS algorithm to converge quickly to the global optimum. The non-neighborhood space information
is obtained from these aliasing images to increase the robustness of the noise and maintain efficient
fluid data in aliasing images. The adaptive scale factors μ1, β2 are calculated directly by the noise
level of the aliasing picture in the proposed algorithm. The test results show that FCM NNS is very
powerful and reliable. The F index depends on the partition matrix to measure surface roughness and
use the fluctuating details in clustering results completely. The comparison of roughness evaluation
indexes indicates that, while aliasing images are at high levels of noise, this proposed F-figure is closely
correlated to surface roughness. For thirty grinding samples, the R2 coefficient is 0.9327. In addition,
the value of R2 for an F index based on FCM NNS is higher than that of other indices of roughness,
which can check the viability and supremacy of the proposed surface measurement process.

Al-Kindi et al. [241] provided an approach focused on perception to the measurement of surface
roughness in micro and nano areas [241,268,269]. The suggested solution offered effective outcomes.
Surface roughness parameters, in contrast with styling-based parameters, are achieved with sufficient
precision. Nevertheless, the description of these parameters incorporates less susceptible models to
changes in local scale, which results in greater precision than other parameters found. In a similar
way as in the stylus-based technique, the values derived from the parameters of surface roughness give
valid distinct values among the different specimens. The results of micro/nano regions in the proposed
approach show no evident im-improvement to the obtained roughness parameter values. In terms of
the interaction between a metal and a metal-cavity for micro-nanocyclonic areas, the methodology
of the cavity graph is followed clearly. The resulting graphs of the data area of the nano-scale were
observed to be steadily changing. This denotes the technique’s ability to capture the macro surface
information invisible in micro results. The auto-correlation technique also shows how much vital
knowledge is available in nanoscale data concerning regularity and the randomness of the surface
texture characteristics. The overall results ensure that the vision data are accurate in determining
surface ruggedness. The suggested approach, therefore, promotes further development of techniques
for wide-ranging industry applications.

Shahabi et al. [270] recommended a new method of calculation of the object’s surface roughness.
This proposed approach was taken from the 3D cognition system of humans, especially the shading of
psychological data. The CLS generates shadow images from multi-light sources along with the surface
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form. The surface ruggedness is derived from shadow photographs by the MRA and graded according
to the SOM. The roughness of unknown surfaces can be evaluated by the SOM after studying as a
result of simulations. CLS imaging device’s practical uses include squamous cell carcinoma detection.
Some traits of this method contain squamous cell carcinoma granular surfaces, uniform white macules,
bumps, eroded surfaces, or ulcerative surfaces and surface induration are uniforms. Of particular
importance is the coarse-granular form (concavo-convex) of the surface of the mucosa. Thus, the
infected sections are diagnosed to assess whether the affected section is cell carcinoma or not by
assessing the ruggedness of the mucosa membrane. In order to test this device’s performance, tests
based on real carcinoma data are now required.

To obtain sea surface ruggedness measurements from observable pictures based on a novel sea
surface random field principle, Pan et al. [271] has introduced a new sea surface picture analysis
technique. These algorithms include the grey co-occurrence matrix, the grey co-occurrence matrix, the
Tamura texture, the autocorrelation function, the edge frequency, and brownish fractions of movement
autocorrelation. Dutta et al. [94] studied the surface properties of generated micro-scaled samples
in their surface ruggedness and the use of image processing techniques for analysis of the surfaces.
The results of the discrete transformation of waves based on the evaluation of image processing will
help increase potential surface texture consistency and optimize the characterization of technological
structures. This study shows that computer vision has significant potential as a non-contact step to
assess surface ruggedness parameters. The collection and analysis of DWT images imply that this
method is useful for determining the roughness of the surface.

In [272], an analysis has been conducted to examine the relationship between GLCM texture
features and surface roughness of exemplars machined by rotating operations:

• A strong association was found between six textures (SVAR, SENT, DVAR, ASM, CSH, SAVR)
and Ra (coefficient of correlation over or equal to 0.9).

• In the case of graphs drafted by Excel, the correlation coefficients of the strongly correlated
texture characteristics were derived, and then the value of Ra was computed from the calculated
texture characteristics.

• In order to approximate the surface roughness of comparable specimens with defined Ra values,
the new Cpp has been written to use strongly correlated texture characteristics.

In [4], a self-organized polynomial has been developed to model the method of vision measure-
ments for surface roughness. Several experiments on steel S55C have shown that the absolute limit
error between vision system-measured surface ruggedness and stylus measured. The tool is less than
11.32%. In other words, the device built with computer vision can efficiently be utilized to calculate the
roughness of the surface of this substance in several turning conditions. The direct imaging technique
on the shop floor is efficient and simple to use. The objective of the study in [273] is to finish milling.
The contours of the peak and valley are visible in 3D reworking, and in contrast with the surface
course, the high value varies very little. The characteristics of the fundamental morphology on the
end-frying surface will rightly be reflected.

In [182], the relevance of using the acquired data for actual dimensions of surface roughness was
examined. The ITC model has shown that the diffuse model uses the hardware required for more
accurate measurements. Concerning relative stylus-based parameters, the overall accuracy obtained
from all the parameters obtained by using the ITC model, except for the Rsk parameter, is less than
15%, but certain roughness parameters, such as sv, rp, raq, rt and rsm, have shown that they produce
close performance. These five parameters were primarily intended to determine aspects of various
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surface roughness characteristics, including amplitude altitude, amplitude average and distribution,
spacing features, and integrated amplitude spacing steps. The calculation of the acquired parameter
from the multiple traces of the same pro-file indicated a very small distribution, normally less than
4.5% of its standard deviation from the average. The Sv parameter was the most advantageous
parameter that can trustfully be used using the ITC model. Deviated from the Sv parameter using
the ITC model by just 0.35% compared to the data acquired from the stylus.

In [274], a new kind of diagram (quasi fractal diagram) was suggested to achieve image ruggedness.
The proposed method is not optimum as the selection of criteria for the various phases was made by
hand, but for a group of samples of roughness collected using such processing techniques, it must
be made only once. A large collection of pictures can also test the algorithms. The collection of box
dimension range for the BC3D process and frequency range for the PSD approach was analyzed as
further advances. The effect of magnification on almost fractal discrimination parameters and meth
will also be examined.

Fu et al. [83] aimed to determine the roughness of milled surfaces using a non-contact vision-based
processing tool. At first, a collection of 2-D mounds and white-light pictures were obtained of milled
sur-faces. From each surface image, a means and standard deviation of the image pixel intensity were
measured with the following steps:

• The similarity between the picture parameters and the design parameters is very weak for white-
light imaging. This may be due to the effect of the incidence angle of the light source on the
surface leading to the peaks that create shadows in the immediate vicinity.

• The parameters of image strength are very well related to the parameters of the stylus.

• The style parameters for the arithmetical average pitch (Rda), and root average square pitch
(Rdque) have been found to correspond well with the picture parameters in Speckle because at
different points of the free area, the skyscrapers are responsible for the reflection of lights rays.

• Measurement efficiency can be measured by greater sample size studies.

In [275], one of the technologically easiest and most critical technical parameters that influence
the Ra and Rz of surface roughness and depth of material at the defined cutting head feed speeds of
the separation of the respective materials is the feeder speed of the cutting head. All the dependencies
display an increasing pattern in roughness values. The surface area assessed and evaluated of 0.11–
19.91 μm steadily passed from smooth to the rough surface. The smooth zone (characterized by less
ruggedness) is increased with the rate of feed decrease. In [157], the following outcomes were inferred
from the analysis of the results using the ANOVA procedure and the S/N ratio methodology.

• Experimental design to analyze the problem is suitable and effective.

• Similar results are provided by analysis of the variance methodology and the S/N ratio method.

• The angle of grazing is the light condition that affects the Ga value in terms of both physical
and statistical aspects. The next influence factor is the angle of striation.

• For the interactions analyzed in the ga estimate, the grassing angle/angle of striations interaction
has the greatest physical importance. There is no physical importance to the rest of the
relationships in Ga.

• The mistakes associated with the ANOVA table in relation to the parameters demonstrate a
satisfactory consideration of the contributing factors.

• The higher the grazing angle, the smaller the difference of the ga value with the parameter
roughness for image analysis through the vision process.
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The analysis of photographs may be a reliable way of calculating various textile characteristics
[276]. Other measuring systems may make such features as surface strength very difficult. But
image processing is specifically concerned with the surface, and this will improve and make surface
characteristics such as roughness much more precise. A novel approach based on the scanned image
of nonwovens was proposed in this study. A proposed approach focused on the analysis of scanned
photographs of nonwovens is proposed in this study. Rs as a criterion means the surface ruggedness
determined by the algorithm of the virtual surface profile. This element was strongly associated with
the coefficient of friction. Then a new factor, named Rs, which has the effect of the rubbing coefficient,
was proposed. This Rs is a decent factor that indicates a light unwoven layer surface roughness factor.

A new strategy for adaptive image improvement is developed by analyzing the image characteris-
tics of the adaptive images in [277]. Firstly, MSRDS segmentation of the base layer of the image. The
MSRDS process is then carried out on the base layer section, and the detailed picture is expanded
such that the base layer is dynamically comprised.

7 Discussion and Analysis
7.1 Quality Evaluation of Machined Surface

Abellan-Nebot et al. [278] made a review on the AI-based “Machine monitoring system” model;
in their review study, they showed the importance of the satisfying quality of surface to make
the machine parts able to perform their flawless functionalities. Therefore, in the last two decades,
the development of surface quality monitoring has rapidly increased. The evaluation systems for the
surface quality are basically developed on the ‘accurate physical modeling,’ which is lesser competitive
as compared to the methods of data-driven, but it is way more expensive [279]. A review study was
made by Kurada et al. [280] on the sensors of machine vision to monitor the condition of the tool. They
have studied the major instruments, principles, and processing schemes for the production of advanced
sensors with respect to the accuracy, spatial resolution, and flexible measurement. In addition to this,
Gee et al. [281] developed a patent for the measuring tool for coarse and found materials surfaces’
characteristics by measuring the depolarization degree on the light reflection from the surface. A
research study [282] proposed a method for the characterization of surface nature by implementing
the computer vision system. They have discussed the lighting and optical principles during their study,
conducted the experiments, and verified the feasibility of their methodology.

Cuthbert et al. [283] made a study on the optical assessment of the surface’s texture. They utilized
the histogram of grey-level optical “Fourier Transform Pattern” to the surface in order to find out the
relatable statistical parameters with the roughness of the surface. They found the parameter R for the
optical roughness of the surface and correlated it with the surface roughness of different materials. As
a result, they obtained calibration curves of optical roughness for the surface’s finishing measuring up
to 0.8 mm. Furthermore, the approach has been shown to be capable of identifying faults on machined
surfaces. This methodology provides a quick, non-contact way of assessing the surface roughness of
2D surfaces that most other techniques cannot quantif. Before that, another group of researchers
studied the correlation between the roughness measurements and the topography of the surface [284].

7.2 Evaluation of Surface Finish
A fundamental technological hurdle that inhibits firms from adopting additively produced (AM)

components is a lack of quality assurance. This is especially true for high-value utilizations the failure
of components cannot be accepted. The advancement in process control has enabled substantial
advancements in AM methods. As a result, the use of AM methods is accelerating. In contrast
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to buildup subtractive processes in which monitoring of in-process is ubiquitous, AM techniques
need to include monitoring technology that gives room for the detection of discontinuities in the
process. Process control advancements have enabled considerable advances in AM methods, significant
increases in surface roughness and material characteristics, and a decrease in inter-build variance while
the incidence of “embedded material discontinuities” [285]. On-machine surface measuring (OMSM)
enables the evaluation of produced surfaces within the time [266]. This study aims to evaluate the
most recent OMSM and its utilization in the ultra-precision machining process. The advantages and
disadvantages of metrology integration are highlighted. Offline lab-based solutions are migrating
toward implementing surface metrology on production ends to improve measurement efficiency and
availability [286].

Hashmi et al. have reviewed the various surface finishing techniques, i.e., preprocessing and post-
processing techniques, to improve the surface quality [287–289]. They have suggested the measurement
of surface roughness using machine vision technique for in-process measurement and optimization of
surface roughness of the AM parts [290–292]. Similarly, authors have suggested various simulation
and modeling methods to evaluate the surface roughness of machine profiles [293]. Pan et al. [271]
had made a study on the in-process and on-machine surface metrology. According to their study, the
“machined surface quality” is assessed by the offline procedure employing “mechanical stylus profil-
ers” in typical CNC machining methods. Diversified metallic characteristics considerably influence the
workpiece’s mechanical strength, wear resistance, and machinability. Many features are directly tied
to the final level, largely dependent on the established production parameters. de Chiffre et al. [294]
did this study where they examined the many strategies for quantitatively characterizing the texture
of the surface. The study includes traditional 2D and 3D roughness characteristics, with a focus on
contemporary international innovations and standards. It introduces new texture characterization
ways, including wavelets, fractals, and others, and a brief overview of the new method’s parameters. It
is difficult to ensure that some product quality parameters will be satisfied, such as surface roughness.
The general manufacturing challenge may achieve a set product quality within the equipment, money,
and time restrictions. The study in [294] aimed to present the many approaches and practices used to
forecast surface roughness. With manual observation, machining time is measured by the processing
noise or overall machining time, according to the ISO 8688 Standards.

“Surface topography can be characterized by geometric parameters, including Ra (i.e., the average
of the set of independent measurements of a surface’s peaks and valleys), Rmax (i.e., the maximum
height roughness), etc.”

In the study [295], several equipment’s roughness measuring and analysis capabilities were com-
pared. The notion of multi-level contact area and roughness models is given. When applying the theory
of image recognition methodologies functioning with 3D digital image processing, surface topography
analysis as a spatial pattern is provided. The spatial organization is frequently described qualitatively
by means of texture properties such as random, linear, wavy, and so on. Chen et al. [296] mentioned
that the wavelet transform is used to examine surfaces created by normal industrial processes. Scientists
can use the wavelet transform to connect manufacturing and surface functional elements with the
properties of multi-scaling. Wavelet transformations’ key benefits over the other contemporary signal
processing algorithms are their “space-frequency localization” and multi-dimensional perspective of
signal components.

On the basis of wavelet transformation, the research of Josso et al. [13] provided a novel technique
for the analysis of surface roughness and description. Following a brief discussion of wavelet-based
approaches used in surface roughness research, the results of the new equipment of analysis known as
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the “frequency normalized wavelet transform” (FNWT) are given. Gadelmawla et al. [272] said that
a vision system was initialized to take photos for the characterization of surfaces. Based on the “grey
level co-occurrence matrix,” software has been created to evaluate the collected pictures (GLCM). The
GLCMs have been plotted in three dimensions for various collected photos. A new measure termed
greatest matrix width is initiated to use as a marker for surface roughness. Niola et al. [297] also did
research on the said topic, and according to their research, a pixel in an image only supplies one
quantity: the luminance of the associated spot on the object, but a normal vector defines the surface
orientation with double degrees of freedom. The amount of brightness is determined by a variety
of elements, including the uniformity of the material’s reflecting qualities or its physical continuity
and the surface roughness or smoothness. Wavelet transforms outperform Fourier transforms and
typical statistical processes in modeling uneven data patterns such as abrupt changes. Similarly,
Kumar et al. [173] used regression analysis to measure the machined surfaces’ roughness. For the
original photos and the magnified quality upgraded images, a parameter known as Ga was determined
using the regression analysis based on the surface image attributes.

In 2007, Al-Kindi et al. [114] conducted research to interpret obtained visual data and compute
roughness characteristics; the “Intensity-Topography Compatible” (ITC) model and the model of
model Light Diffuse were employed. The skewness parameter (Rsk) yielded significantly different
results than the stylus approach. The results demonstrated that the ITC model outperforms the Diffuse
Light model. These findings are anticipated to spur more research into practical applications [297].
Al-Kindi et al. [298] conducted another research and gave an assessment of the possibility of gathering
“vision-based surface roughness” metrics for samples generated by various machining methods. In the
experiment, 20 examples were manufactured utilizing five of the most typical machining procedures.
The results revealed that the parameter values obtained from vision data differ significantly from those
obtained from stylus data. However, some roughness assessment metrics proved to be more dependable
than others. A training model’s input parameters include spatial frequency, standard deviation,
and arithmetic mean, of grey levels from a surface picture, with no cutting parameters involved.
This research provides a method to develop the link between real texture and surface roughness
information that uses an adaptable neuro-fuzzy inference system (ANFIS) [299]. Hu et al. [300]
presented a three-dimensional measurement approach for surveying component surface roughness.
The following equipment was utilized in the current experiment: a stereomicroscope, a digital camera
with a particular parallel light, an interface, an X, Y bidirectional laboratory bench, and a computer.
A thorough review of “surface texture metrology” for AM of metal is conducted. The findings
of this investigation are organized into parts that focus on specific aspects: industrial sector, AM
techniques and materials; surface types explored; surface measuring technology, and surface texture
characterization [301]. The study of Fischer et al. [92] showed that the fast “roughness measurements”
of >0.08 m2/s on a nanoscale are required for a reliable in-situ evaluation of the surface quality of
working rolls. An FPGA-based image processing and a high-speed pulse laser are used to produce a
speckle-based measuring technique. In a reconditioning procedure, the quality of surface inspection
is confirmed on the rolling wheel to determine instrument roughness distribution and tool wear.

Okamoto et al. [302] mentioned that due to the difficulties of visual inspection during the
polishing, complete automation of the polishing procedure had not been realized. A CCD camera
placed on a “6-axis controlled robot hand” was used to acquire photos of the polished surface.
The measurement of Surface microtopography (e.g., shape, waviness, roughness) is required before
assessing components’ surface quality in relation to their applications. An Optical scattered light
measuring method is known as Laser speckle-based roughness measurement with a mean of view size
of a few square millimeters and frequency measurements within the domain of kilohertz. The results
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demonstrate a measurement uncertainty ratio compared with fewer than 0.033 nm, mostly confined by
shot noise [302]. A study in [126] aims to provide an automated judging mechanism for non-periodic
cutter mark patterns. The creation of robot programs for the polishing operations was based on the
data of CAD, which was originally proposed in the earlier study. A study provides a cost-effective
and modular real-time “AOI system for hot-rolled flat steel.” The picture improvement approach
is intended to correct irregular lighting, over-or under-exposure, and other flaws in surface photos.
To enhance inspection speed, the suggested algorithms are implemented in parallel on FPGA. The
experimental findings demonstrate that the suggested technology is fast and efficient enough for real-
world applications in hot-strip producers. Second, the picture improvement approach is intended to
compensate for uneven illumination and over-or under-exposure. Based on their wear level, machine
learning and computer vision learning might be utilized to evaluate if cutting tools utilized for “edge
profile milling” procedures are disposable or serviceable. The suggested technique divides the cutting-
edge picture into multiple sections termed Wear Patches (WP), which are then classified as serviceable
or worn using texture descriptors. All of the inserts were fragmented, and the cutting edges were
trimmed, there were about 577 images of cutting edges: 301 functional and 276 discarded. The optimal
“patch division” setup and texture descriptor” for the WP achieve 90.26% of accuracy.

7.3 Inspection of Surface Defects
Most of the methods to inspect surface defects are designed to increase product uniformity and

the efficiency of detection, with the goal of gradually replacing or supplementing the inspection with
manual methods in the conventional manufacturing lines. JFE Steel JFE TMBP is the manufacturing
line for the final product of “Tin Mill Black Plate” (TMBP) and has the greatest operating speed in
the world. Sasaki et al. [303] described an autonomous surface inspection system that uses a “Charge
Coupled Device” (CCD) scan camera and was placed on a JFE Steel continuous annealing machine.
Luo et al. [304] said that with the rising demand for surface quality assurance industrial flat steel
manufacture, automated computer-vision-based flaw detection has garnered much attention. In [304],
Luo et al. aimed to give a subsequent outlook on surface defect detecting technology. Existing methods
are categorized into four types of the algorithms’ nature and picture features: statistical, spectral,
machine learning, and model-based.

Hashmi et al. [305] have investigated the surface defects occurs during metal AM process. They
have discussed the importance of surface characteristics measurement for metal AM parts. Similarly,
Authors have also discussed the importance of machine vision techniques and artificial intelligence
(AI) based technique for implementation of intelligent manufacturing [306,307]. Farukh et al. [308–
314] have compressively emphasized the importance of compute vision techniques using image pro-
cessing for various field of engineering applications. These techniques may useful for manufacturing
applications i.e., surface characteristics measurement using computer vision techniques.

Gonzalez-Val et al. [315] conducted research and showed that the ConvLBM is an innovative
technique for real-time monitoring of Laser-Based Manufacturing operations. It extracts charac-
teristics and quality measures from raw “Medium Wavelength Infrared” coaxial pictures using a
Convolutional Neural Network model. The results obtained reflect a milestone in 3D printing of
big metal objects as well as quality monitoring of welding procedures. Liu et al. [316] conducted
research. According to their study, the chatter frequencies are extremely intricate, have time-variant
features, and “multi-frequency/frequency band” are influenced by several parameters throughout the
milling process. Because of these qualities, previous chatter detection systems are fragile in actual
complicated machining situations. The intricacy of grinding chatter frequency was explored initially
in this study. The impact of machining settings and dynamic features of a machine tool on “Grinding
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Chatter Frequencies” was investigated. The suggested method’s efficacy was effectively validated using
grinding procedures, including constant and variable machining. In the year of 2006, Zhang et al. [317]
also conducted a study on the grinding and polishing surface product defects. According to them,
polishing and grinding are common activities in the industry of material processing. The former
method identifies problems into 15 predetermined types based on shape data 30% of the time. Other
feature extraction approaches, including as Laws filter bank, DCT filter bank, and Gabor filter bank,
were attempted in addition to shape features. The “Support Vector Machine” (SVM) has been installed
as a “multi-class classifier” with extracted characteristics as input.

Xie [318] conducted a review study on the advanced surface detections in the year 2008. According
to their study, surface defect surveys are broadly classified into two groups. One point of concern with
most of the “Visual Surface Inspection” methods is local abnormalities. The other is universal texture
and/or color deviation when local texture or pattern is not revealed irregularities. Other imaging data
and system acquisition-related concerns are outside the domain of the said survey.

Saini et al. [319] reviewed the effects of cutting parameters on the residual stress, tool wear, and
surface roughness. The study looks at how cutting parameters affect the roughness of a surface,
residual stress, and tool wear in hard turning. Surface integrity and tool wear are the two most
important elements influencing hard turning dependability. In [320], Tapia et al. thoroughly examined
the impacts of cutting parameter exactness, tool wear, and residual stress. There is another review
study made by Tapia et al. on the metal-additive MP monitoring. According to their study, Additive
manufacturing (AM) is a group of latest industrial technologies that provide distinctive capabilities
that traditional manufacturing methods cannot match. Metal components’ quality and repeatability
continue to be important barriers to their broad adoption as feasible manufacturing techniques. This
is especially true in industries with severe part quality standards, such as healthcare and aerospace.
According to Neogi et al. [321], a review study, the futuristic vision-based flaw identification and
categorization of the surfaces of steel are made. The conventional inspection processes for the
manual surface are not sufficient anymore to consistently ensure high-quality surfaces. Work on
detecting surface defects on hot strips and bars/rods has also increased during the last ten years.
Everton et al. [285] have shown that a fundamental technological hurdle that inhibits firms from
adopting additively produced (AM) components is a lack of quality assurance. This is especially
true for high-worth implementations where the failure of a component cannot be allowed. The
advancement in process control has enabled substantial advancements in AM methods. As a result,
the use of AM methods is accelerating. The milling procedure for Inconel-718 reduces the fatigue life
of the essential components of the aerospace industry. The system installed to monitor the surface
quality based on the acoustic signal’s time frequency is addressed in this research. In order to monitor
the roughness of surface exact fault detection, binary clustering has been used, which is a two-step
recognition method [322].

8 Conclusion and Directions of Future Research

The technology of machine vision makes use of image data to investigate the component’s quality.
The industrial components’ surface quality is considered the crucial quality characteristic from various
aspects. Machine vision techniques are used for the surface roughness characterization by making use
of the concept that the image is embodied as the 2-D (two dimensional) function of the image intensity,
which is characterized by the two parameters: (1) the amount of light that hit of the surface and (2)
amount of the light that reflects from the surface. For any components to execute their intended
functions and operations, surface quality is considered equally significant to dimensional quality.
Surface Roughness (Ra) is a widely recognized measure to evaluate and investigate surface quality.
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Various conventional methods and approaches to measure the surface roughness be not feasible and
appropriate in industries claiming 100% inspection and examination because of the time and efforts
involved in performing the measurement. However, Machine vision has emerged as the innovative
approach to executing the surface roughness measurement. It can provide economic, automated,
quick, and reliable solutions. This article discusses the characterization of the surface texture through
a computer/machine vision approach and assessment of the surface roughness on the basis of various
machine vision parameters. This paper has also discussed different machine vision techniques to
perform the surface characterization measurement. Computer vision techniques can be used for
multiple aspects of intelligent manufacturing philosophies. The surface characteristics measured using
computer vision techniques, as shown in Fig. 46, may be a promising solution for non-contact type
metrology for implementing smart and intelligent manufacturing systems.

Figure 46: Computer vision techniques for intelligent manufacturing systems

8.1 Future Work
For future work, it is suggested to perform a more in-depth analysis of machining of surface

roughness using machine/computer vision as well as image processing. Machine vision has emerged
as the innovative approach to executing surface roughness measurement. It is capable of providing
economic, automated, quick as well as reliable solutions. There exists very little data on the machined
surface roughness using computer vision. From the literature, it has been observed that these new and
novel techniques perform well for surface characterization. With more research on machine vision-
based systems, surface characterization measurement can be improved. In the three factors below,
challenges and opportunities are depicted:

• New problems and opportunities are presented by emerging deep learning techniques and
present transition procedures toward smart manufacturing, primarily examined from two
perspectives: streaming data processing and imbalanced categorization.

• The computer vision techniques should be implemented using smart sensors in In-situ manu-
facturing processes.

• The implementation of smart and intelligent manufacturing could be done using computer
vision techniques to measure surface characteristics.
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• Due to the limited availability of standardized statistics in the early stages of the commercial
big data era, a transfer learning-based strategy could be a viable alternative where the dataset
contained is insufficient.

• The rising pace with which goods are upgraded in modern industries focuses on short-cycle
production with quick response capabilities. On-computer vision equipment’s trial-and-error
tests have a significant impact on production.

• The question of how to shorten the time it takes to define parameters for In-situ computer vision
algorithms has recently become critical. On-machine data acquisition, validation, and diagnosis
platforms based on edge computing and cloud technology should be addressed in detail.

• The computer vision techniques for measuring surface characteristics of additively manufac-
tured parts should be implemented.

• The measurement accuracy should be improved by processing a large set of data using advanced
computation methodology, i.e., deep learning technique or big data analytics.

• The following computer vision technique may be implemented for the measurement of surface
characteristics of additively manufactured parts, as shown in Fig. 47.

Figure 47: Computer vision techniques for the measurement of surface characteristics of the additively
manufactured parts
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