
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2022.021562

ARTICLE

Analyzing Ethereum Smart Contract Vulnerabilities at Scale Based
on Inter-Contract Dependency

Qiuyun Lyu1, Chenhao Ma1, Yanzhao Shen2, Shaopeng Jiao3, Yipeng Sun1 and Liqin Hu1,*

1School of Cyberspace, Hangzhou Dianzi University, Hangzhou, 310018, China
2Research and Development Department, Shandong Institute of Blockchain, Jinan, 250102, China
3Security Team, Shanghai Anshi Network Technology, Ltd., Shanghai, 200233, China

*Corresponding Author: Liqin Hu. Email: huliqin@hdu.edu.cn

Received: 21 January 2022 Accepted: 09 June 2022

ABSTRACT

Smart contracts running on public blockchains are permissionless and decentralized, attracting both developers
and malicious participants. Ethereum, the world’s largest decentralized application platform on which more than
40 million smart contracts are running, is frequently challenged by smart contract vulnerabilities. What’s worse,
since the homogeneity of a wide range of smart contracts and the increase in inter-contract dependencies, a
vulnerability in a certain smart contract could affect a large number of other contracts in Ethereum. However,
little is known about how vulnerable contracts affect other on-chain contracts and which contracts can be affected.
Thus, we first present the contract dependency graph (CDG) to perform a vulnerability analysis for Ethereum
smart contracts, where CDG characterizes inter-contract dependencies formed by DELEGATECALL-type internal
transaction in Ethereum. Then, three generic definitions of security violations against CDG are given for finding
respective potential victim contracts affected by different types of vulnerable contracts. Further, we construct
the CDG with 195,247 smart contracts active in the latest blocks of the Ethereum and verify the above security
violations against CDG by detecting three representative known vulnerabilities. Compared to previous large-scale
vulnerability analysis, our analysis scheme marks potential victim contracts that can be affected by different types
of vulnerable contracts, and identify their possible risks based on the type of security violation actually occurring.
The analysis results show that the proportion of potential victim contracts reaches 14.7%, far more than that of
corresponding vulnerable contracts (less than 0.02%) in CDG.

KEYWORDS
Smart contract vulnerability; smart contract homogeneity; contract dependency graph; automated analysis

1 Introduction

With the rapid development of blockchain technology, the application of blockchains has
extended from simple decentralized point-to-point payment to decentralized applications in various
fields, in which the emergence and popularization of smart contracts play an important role. A smart
contract, a Turing-complete program running on the blockchain, enables users to develop different
decentralized applications that meet their own needs [1], such as new tokens [2–4], marketplaces for

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2022.021562
https://www.techscience.com/doi/10.32604/cmes.2022.021562
mailto:huliqin@hdu.edu.cn

1626 CMES, 2023, vol.135, no.2

digital assets [5], and so on. Those running on public blockchains have the characteristics of openness
and decentralization allowing arbitrary users to participate [6].

However, these characteristics also attract many malicious participants, who only need a general
blockchain account and a few low-cost transactions to exploit vulnerabilities in any on-chain contract,
especially, Ethereum; The world’s largest decentralized application platform on which more than 40
million smart contracts are running according to the Ethereum public dataset on Google BigQuery [7]
are running, is frequently challenged by smart contract vulnerabilities. What’s worse, vulnerabilities
in a certain contract could affect a large number of other on-chain contracts or even the entire
Ethereum ecosystem, due to the widely revealed homogeneity of smart contracts [8,9] and the increase
in inter-contract connections [9,10]. A real-world case is the Parity Wallet Bug [11–13]. In less than
half a year from July to November 2017, the Parity Wallet project suffered two attacks initiated by
unknown Ethereum accounts, resulting in significant financial losses to nearly 600 wallet contracts.
These vulnerabilities are not in wallet contracts themselves, but in the shared library contract [14] on
which they depend. The case shows that as multiple contracts work together to complete a function,
they will share the risk of vulnerabilities.

Although several existing works [15–18] have done large-scale analysis on the Ethereum smart
contract vulnerabilities, two problems still have not been considered. On the one hand, a vulnerable
contract could put other on-chain contracts that depend on it at risk, just like the real-world case above,
yet they are unable to specify which on-chain contracts would be affected. On the other hand, due
to the inter-contract connections, whether a contract is vulnerability-free rests not only with its own
bytecode but also with the bytecode of contracts on which it depends [17]. Besides, their analyses stayed
at the state of Ethereum smart contract vulnerabilities before 2019, but little is known about how their
states have changed in recent years. In fact, an increasing number of complex decentralized applications
require the cooperation of multiple contracts nowadays, such as dynamic libraries [19], version control
[20] and duplicate proxies of smart contracts [21]. These contracts form an inter-contract dependency
through a special type of internal transaction, namely DELEGATECALL, but existing tools or
schemes do not combine these interconnected contracts in the process of their vulnerability analysis.
Therefore, a new large-scale analysis of current Ethereum smart contract vulnerabilities based on inter-
contract dependency is urgently needed.

In this paper, we combine contract automated analysis with graph analysis of Ethereum to
explore the impact of vulnerable contracts on other contracts. We first present the concept of contract
dependency graph (CDG), a directed acyclic graph with contracts as nodes and DELEGATECALL-
type internal transactions as edges, to capture inter-contract dependencies in Ethereum. Subsequently,
we formally define three categories of security violations against CDG on which different types of
vulnerable smart contracts can be checked for finding potential victims affected by them. Then,
we perform large-scale analysis which focuses on three specific known vulnerabilities to check their
security violations against the CDG that was constructed with the latest Ethereum internal transaction
data (from January 2, 2020 to August 10, 2021). Our analysis shows that 38 vulnerable contracts make
28,786 contracts become potential victims, in total after considering the Ethereum smart contract
homogeneity. Compared with previous large-scale analyses that simply mark vulnerable contracts
with known vulnerabilities, our analysis for the first time marks a new class of contracts that do not
have known vulnerabilities but may become victims of these vulnerable contracts. Our scheme can be
extended to more types of known vulnerabilities considering that different types of vulnerabilities pose
different risks to potential victim contracts. In summary, we make the following three contributions
to this paper:

CMES, 2023, vol.135, no.2 1627

• A Contract Dependency Graph (CDG) is defined to characterize inter-contract dependencies
in Ethereum, smart contract homogeneity and DELEGATECALL sequence are considered in
it. Further, we identify three classes of security violations against CDG to formally describe
how different vulnerable contracts affect other contracts in CDG.

• A CDG-based vulnerabilities analysis for Ethereum smart contracts is designed and imple-
mented on the latest Ethereum. In addition to vulnerable contracts, our analysis scheme also
identifies potential victim contracts that are not caught by previous works, since their lack of
the organization for multiple contracts based on inter-contract dependencies.

• Our analysis shows that a few vulnerable contracts create hundreds of times more potential
victimized contracts in Ethereum, similar to what happens with some real-world vulnerability
exploits. Compared to previous large-scale analysis, four observations worthy of attention about
current Ethereum smart contract vulnerabilities landscape are mentioned.

The remainder of this paper is organized as follows: Section 2 briefly introduces Ethereum smart
contract and related work in recent years. Section 3 describes the definition of contract dependency
graph and three categories of security violations against it. In Section 4, the design and implementation
of a large-scale analysis with real-world datasets are presented. Section 5 shows the result of our
analysis in detail and compares it with the work of other researchers. The final section summarizes
this paper and presents a preliminary discussion on the future directions.

2 Preliminary and Related Work

In this section, we give an introduction to Ethereum smart contract, its execution model and
different types of inter-contract interactions. Then we briefly describe other researchers’ work in the
field of smart contract vulnerabilities automated analysis and graph analysis of Ethereum.

2.1 Ethereum Smart Contract and Execution Model
Ethereum smart contract, a special type of Ethereum account, is uniquely identified by a 160-

bit address on blockchain. It stores bytecode usually compiled by Solidity, which is immutable and
repeatable. In other words, the bytecode of all smart contracts cannot be modified once deployed,
and those identified by different addresses may have exactly the same bytecode [6]. Besides, Ethereum
smart contract is an event-driven code contract with state attributes that are permanently recorded on
Ethereum [22].

The bytecode of each smart contract is interpreted and executed by the Ethereum Virtual Machine
(EVM); the execution model specifies how the system state is altered given a series of opcodes and a
small tuple of environmental data. To keep our notation close to the formal specification of Ethereum
[23], we use μ to denote the EVM machine state with memory μm and stack μs. σ [a] is used to
denote the account state of address a with storage σ [a]S. Furthermore, we use I to refer to the
execution environment data, where Id is the data field of the transaction which can be malicious user-
controlled inputs. As of July 29, 2021, there are a total of 145 active opcodes [24], each of which has
different semantics to manipulate the data in all types of the memory above (μm, μs, σ [a]S and Id),
e.g., CALLDATACOPY copies part of the Id to μm, and SLOAD reads a 256-bit value from σ [a]S

to μs. In particular, the opcodes to perform a write operation on σ [a]S are defined as state-changing
operations.

1628 CMES, 2023, vol.135, no.2

2.2 Internal Transaction for Inter-Contract Interaction
In Ethereum, the execution of EVM is triggered by the transaction, a message call from one

account address to another. According to the account type of the transaction caller, a transaction
can be classified as an external transaction and an internal one. The former is sent by an externally
owned account (EOA), and a smart contract account sends the latter. An internal transaction cannot
be performed directly, but is attached to at least one external transaction. Ethereum offers four types
of internal transactions for inter-contract interaction: CALL, CALLCODE, DELEGATECALL and
STATICCALL. Table 1 shows the differences between all types of message calls, by defining the caller
contract address as u, the callee contract address as v, the caller field of external transaction that results
in the execution of current message call as tx.origin, and the caller field of the current message call as
msg.sender. Specifically, the function of STATICCALL is equivalent to CALL, except it disallows any
state-changing operations during the call (and its subcalls, if present).

Table 1: Differences among CALL, CALLCODE, DELEGATECALL and STATICCALL

Call Type msg.sender Execution Context

CALL u σ [v]S

CALLCODE u σ [u]S

DELEGATECALL tx.origin σ [u]S

STATICCALL u σ [v]S

Noted that a DELEGATECALL-type internal transaction makes the caller contract dependent
on the callee contract at a bytecode or a storage level. On the one hand, the caller contract can call
methods in the callee contract through DELEGATECALL in its own context, denoted as bytecode-
level inter-contract dependency, which is similar to a traditional binary program executing third-party
library functions. On the other hand, DELEGATECALL preserves the execution environment data
of the original call (e.g., tx.origin), and state-changing operations of the callee contract acts on the
storage of the caller contract, denoted as storage-level inter-contract dependency. For consistency, we
consider a DELEGATECALL-type internal transaction between two contracts to be equivalent to
having an inter-contract dependency between them in the remainder of this paper.

2.3 Smart Contract Vulnerabilities Automated Analysis
Automated analysis of smart contracts, whose main motivation is to detect various types of known

contract vulnerabilities, has been a field of active research for the past few years. Krupp et al. [15]
proposed a method to identify vulnerabilities caused by transaction sequences and automatically
generate corresponding exploitations. In the same vein, Nikolic et al. [16] presented three types of
tracking vulnerabilities, each of which results from tracing vulnerable transaction sequences of a
contract over its lifetime. So et al. [25] extended the considered transaction sequences by guiding
symbolic execution with a language model for effectively hunting vulnerable ones. A few automated
analysis tools support inter-contract analysis, including Manitcre [26], Mythril [27] and ETHBMC
[17], where Manitcre supports such analysis in a non-automatic way that requires a multi-contract
environment with the storage value at a certain block for each contract account. Both Mythril and
ETHBMC offer an on-chain analysis that relies on a running Ethereum archive node to automatically
load other contracts’ bytecodes from the blockchain when needed.

CMES, 2023, vol.135, no.2 1629

2.4 Graph Analysis of Ethereum
Graph analysis empowers us to better understand the Ethereum ecosystem [10]. Unlike Bitcoin,

which only has money transfer activities between users, the majority of Ethereum’s activities revolve
around smart contracts, such as smart contract creation and invocation. Kiffer et al. [9] focused on
the activities of smart contract creation and interaction between EOAs and contract accounts that
occurred in the first 5,000,000 blocks (January 30, 2018) of Ethereum. Their research reveals the fact
that most contracts are copies of other contracts. Chen et al. [10] used Ethereum’s transaction from July
30, 2015 to November 01, 2018 to construct three types of graphs depicting money transfers, contract
creation and contract invocation, which were used to solve three types of security issues: anomaly
detection, attack forensics and deanonymization.

Compared to all those approaches, which focus on either automated analysis for a single contract,
or building relationship graph for the Ethereum ecosystem, our work combines contract automated
analysis with Ethereum graph analysis in order to explore the impact of vulnerable contracts on
other contracts, given that different contracts are not isolated but rather depend on each other in the
Ethereum ecosystem. Besides, the latest Ethereum internal transaction data (from January 02, 2020
to August 10, 2021) is collected as support for our work, which more realistically reflects the current
state of the Ethereum ecosystem.

3 Contract Dependency Graph

In this section, we first propose the concept of contract dependency graph to characterize inter-
contract dependencies on Ethereum. Several properties of CDG that are not directly derived from
the definition are discussed in Section 3.1. Then, we define three types of security violations against
CDG for our analysis scheme to find respective potential victim contracts affected by different types
of vulnerable contracts in Section 3.2.

3.1 Definition of CDG
There are sufficient incentives to disperse complex functional logic to multiple different contracts,

including gas cost reduction [11], code reuse [28], contract version iteration [20] and so on. One contract
can invoke methods provided by other on-chain contracts through internal transactions. Due to the
complex environment of blockchain, Ethereum provides a variety of invocation methods, the most
special of which is DELEGATECALL, which makes the caller contract dependent on the callee one at
a bytecode or a storage level (see Section 2.2). To characterize such activities throughout the Ethereum
smart contract ecosystem, we propose the concept of CDG.

Definition 3.1. CDG = (V , E), where V is a set of nodes, E is a set of edges. Each vi ∈ V is a smart
contract represented by a tuple v = (A, C), where A is the 160-bit address used to uniquely identify the
contract, C is the bytecode of contract σ [A]. E is a set of ordered pairs of nodes, E = {(vi, vj)|vi, vj ∈ V},
where a directed edge (vi, vj) from vi to vj indicates there is at least one DELEGATECALL-type internal
transaction whose caller contract address equals to vi

A and callee one equals to vj
A.

Different from the Ethereum smart contract graph constructed by existing work [10] without
considering the problem of contract homogeneity [8,9], vi, vj ∈ V(vi

A �= vj
A) are judged to be

identical if their bytecodes are identical when constructing the CDG. This practice is adopted by
many other works [15,18] to extract bytecode-unique contracts by ignoring the duplicate ones. Besides,
(vi, vm), (vj, vn) ∈ E(vi

A �= vj
A, vm

A �= vn
A) with both the same tail node and the same head node will be

merged, since the presence of multiple edges is disallowed in CDG. According to the above description,
CDG is the modeling of multiple non-isolated contracts, where there are no nodes with exactly the

1630 CMES, 2023, vol.135, no.2

same bytecode, and each node is connected by inter-contract dependencies. Fig. 1 is an example
demonstrating our method of CDG construction, in which contract “0x70e . . . 489”, “0xb35 . . . 321”
and “0x5d5 . . . f73”have exactly the same bytecode, as do contract “0xc99 . . . 5c5”and “0xa65 . . . bc3”.
As a result, the constructed CDG has only three nodes connected by two edges, but covers all the
inter-contract dependencies between bytecode-unique contracts. For convenience, we use the terms
bytecode-unique contract and node interchangeably in the remainder of this paper.

0x70e...489

from_address to_address

0xc99...5c5

0xb35...321 0xa65...bc3

0x5d5...f73 0xf9e...9f2

0x70e...489 0xc99...5c5

0xf9e...9f2

DELEGATECALL-type
internal transaction

CDG

Figure 1: An example demonstrating our method of CDG construction

In the following, we focus on the connectivity of CDG and prove that it is a directed acyclic graph
(DAG) from the perspective of gas mechanism.

We assume the CDG = (V , E) is a non-DAG, equivalent to the statement:

∃v ∈ V , P(v, v) �= ∅, (1)

where P(v, v) indicates that contract v calls its own methods by the way of loop call. Correspondingly, a
calling contract’s own methods is always converted into a conditional JUMPI that leads to the starting
program counter address of the callee method, denoted as an internal call. The following gas analysis
proves that each P(v, v) will be replaced by an internal call that invokes the same function (i.e., execute
the same bytecode), yet with lower gas cost.

According to the Ethereum’s yellow paper [23], the general gas cost function for all EVM opcodes,
C, is defined as:

C(σ , μ, I) ≡ Cmem(μ
′
i) − Cmem(μi) + Cw, (2)

where σ and μ represent the World State and the Machine State (see Section 2.1), and μi is defined as
the maximum number of words of active memory, and w is one of the EVM opcodes. To compare the
gas cost of a loop call with that of an internal call, we define the gas cost of a loop call as Cloop, another
one as Cinternal. Moreover, the gas cost of the function F called by both of them as CF .

Cinternal = C(σ , μ, Ib[n : m])

=
∑m

t=n

(
Cmem

(
μ

′t
i t

) − Cmem

(
μt

i

) + CIb [t]

)

= Cmem(μ
′m
i) − Cmem(μn

i) + CF + Cother (3)

where Ib[n : m] indicates the byte array calling F in the way of an internal call. Based on the fee schedule
stipulated in the Ethereum’s yellow paper, we have

Cother ≈ CPUSH4 + CEQ + CPUSH2 + CJUMPI + CJUMPDEST = 20 (4)

CMES, 2023, vol.135, no.2 1631

As Ib[j : k] indicates the byte array calling F in the way of a loop call, we have

Cloop = C(σ , μ, Ib[j : k])

=
∑k

t=j

(
Cmem

(
μ

′t
i

) − Cmem

(
μt

i

) + CIb [t]

)

= Cmem(μ
′k
i) − Cmem(μj

i) + CF + C
′
other (5)

Similarly, by defining the path length of P(v, v) as n, we have

C
′
other ≈ nCcall > 700n(n ≥ 2) (6)

Since both the loop call and the internal call invoke the same function which performs the same
state transition for EVM, we have

Cmem(μ
′m
i) − Cmem(μn

i) = Cmem(μ
′k
i) − Cmem(μj

i) (7)

So far we have proved that Cloop > Cinternal. Thus, none of v ∈ V has a loop P(v, v) to itself that will
be replaced by internal calls with lower gas costs.

3.2 Security Violations against CDG
With the concept of CDG, we define and distinguish three categories of security violations against

CDG based on the location and characteristics of vulnerable contracts that have different types of
known vulnerabilities, in order to describe how vulnerable contracts affect other contracts in CDG.
It is worth mentioning that for a node v ∈ V , all the nodes that depend on v are equivalent to
{v′|P(v′, v) �= ∅, v′ ∈ V}.

3.2.1 Deviation Violation

Deviation means that a malicious smart contract controlled by an attacker is unauthorizedly
added into CDG, replacing its equivalent that was originally called by the vulnerable contract.
Specifically, a caller contract in CDG that is called normally cannot be controlled by arbitrary
Ethereum accounts, but can be controlled by the contract owner who has access to control [29].
However, a vulnerable contract that allows malicious Ethereum accounts to bypass the access control
exposes the CDG to the risk of Deviation. Given the above insights, we formally define the Deviation
violation against CDG as follows.

Definition 3.2. CDG = (V , E) suffers Deviation at node v ∈ V whose out-degree is non-zero, if v
is a vulnerable node by which an attacker can replace node {m ∈ v′|(v, v′) ∈ E, v′ ∈ V} with attacker-
control contracts. All the nodes that depend on it becomes potential victims of this security violation,
suffering from code injection by malicious contracts.

Taking Code-Injection [15] for example, a vulnerable node detected with such a known vulnera-
bility can lead to the security violation of Deviation in CDG. More specifically, once the node exists
the problematic uses of DELEGATECALL opcode where the second stack argument μs[1] denoting
the callee of the internal call is an attacker-controlled smart contract account address B, the smart
contract σ [B] is considered as the new callee replacing its counterpart.

1632 CMES, 2023, vol.135, no.2

3.2.2 Interruption Violation

The Interruption means that there is at least one node that can be removed unauthorizedly from
CDG causing the internal transactions from callers be interrupted at the current node. Further, once
a callee contract in CDG is removed by an attacker, its caller contract is unable to call its function to
get the expected result. Therefore, we give the formal definition of the Interruption violation against
CDG as follows.

Definition 3.3. CDG = (V , E) suffers Interruption at node v ∈ V whose in-degree is non-zero, if v
is a vulnerable node which can be unauthorizedly destructed by an attacker. All the nodes that depend
on v become potential victims of such a security violation, suffering from out of service.

A real-world case, for example, is Suicidal vulnerability [25] where a contract can be killed by any
arbitrary Ethereum account. More specifically, once a node in CDG exists, the execution of reachable
SELFDESTRUCT opcodes where the only stack argument μs[0] representing the address to which
all remaining funds of this contract will be transferred is either an attacker-controlled address or an
arbitrary one. The vulnerable contract can be removed at any time with its balance transferred to the
address specified by μs[0], and all contracts that depend on it will suffer from out of service, such as
Locked Ether [30].

3.2.3 Betrayal Violation

Different from the above security violations, Betrayal (see Definition 3.4.) does not make any
structural change to CDG, but allows the same vulnerabilities to propagate along a path in CDG
from vulnerable contracts to other contracts. Specifically, if a callee contract has callable bug codes or
logical errors an attacker has the opportunity to let its caller contracts execute the same bug codes or
make the same logical errors in their own context. Both caller and callee contract are victims of such
an attack. The formal definition of the Betrayal security violation against CDG is as follows.

Definition 3.4. CDG = (V , E) suffers Betrayal at node v ∈ V if v is a vulnerable node having
callable bug codes or logical errors. For the nodes that depend on v, an attacker utilizes call sequences
starting from them to execute the same bug codes or logical errors in their own context. Neither being
removed nor replaced, the original victim node v behaves like a betrayer, creating new victims in nodes
that depend on it. v together with all the nodes that depend on it become potential victims of this
security violation.

The security violation of Betrayal can be extended to various known vulnerabilities, including
Integer Overflow, Steal-Ether [30], and so on, since exploiting vulnerabilities in an on-chain smart
contract, rather than replacing or breaking it, is more common in Ethereum, according to previous
research [15,17]. For example, Steal-Ether vulnerability [17] allows an attacker to transfer Ether from
node v to attacker-controlled addresses or arbitrary addresses unauthorizedly. More specifically, once
a node in CDG exists, the bug code that causes unrestricted Ether transfers using CALL opcodes with
the following propositions:

• the second stack argument μs[1] representing the beneficiary of the transaction is an attacker-
controlled address or an arbitrary address;

• the third stack argument μs[2] denoting the number of value that will be transferred by this call
is non-zero;

• reaching a normal stopping opcode, including STOP and RETURN.

CMES, 2023, vol.135, no.2 1633

The attacker would continue to transfer Ether in nodes that depend on v by utilizing their
DELEGATECALL to the bug code of v. In other words, the potential victims of Betrayal will suffer
from the same vulnerability as the vulnerable contract.

The three classed of security violations against CDG are intuitive, either replacing, removing or
exploiting contracts in CDG. Many known vulnerabilities can be converted into one of three security
violations after being assigned exact checkable properties. However, some of known vulnerabilities
cannot translate into corresponding security violations against CDG. Take Re-Entrancy [30] as an
example, an attacker-controlled contract can make loop calls to attack the vulnerable contract itself,
but cannot further exploit, replace or remove it, thereby affecting other contracts in CDG. In Section 4,
we focus our attention on three specific known vulnerabilities, including Code-Injection, Suicidal
vulnerability and Steal-Ether to check of their security violations against CDG in our vulnerability
analysis scheme based on inter-contract dependencies.

Noting that both CDG and related security violations against it are not targeted at a specific
type of business scenario, such as decentralized finance applications, since only the inter-contract
dependencies among contracts are preserved and considered in our CDG-based analysis scheme.
Therefore, by constructing the CDG with specific types of smart contracts and accurately defining
the checkable properties of specific business vulnerabilities, it can be extended to a variety of specific
scenarios.

Finally, it should be noted that the current definition of CDG cannot effectively reflect the
execution path within contracts and the degree of dependency between contracts.

4 Large-Scale Analysis Based on CDG

We implement a large-scale analysis for the entire Ethereum smart contract ecosystem to find
three types of security violations against CDG. As shown in Fig. 2, the process of our large-scale
analysis consists of three phases, which are described in the following sections. The first phase, data
acquisition (Section 4.1), shows the source and scope of real-world Ethereum data. Then, the details
of CDG construction are explained in the second phase (Section 4.2). The third phase (Section 4.3)
conducts our security violations detection algorithm for CDG to get vulnerability reports of contracts
active in the Ethereum ecosystem.

Blockchain

internal
transactions

contract accounts

perprocess

CDG

safe contract

vulnerable contract

victim contract

Data Acquisition

construction

CDG Construction Security Violation Analysis

ETHBMC

security
violations

Report

0xa65…bc3

0xbec…d7e

0x501…6fc......

......

0xbec…d7e

0xa65…bc3

0x501…6fc

Figure 2: An overview of our approach for finding security violations against CDG

1634 CMES, 2023, vol.135, no.2

4.1 Data Acquisition
Different from external transactions directly obtained from the blockchain, the acquisition of

internal transactions needs the Ethereum client to log all of the successfully-executed operations that
modify the internal state of the EVM. For the correctness and completeness of on-chain data, the
best approach is to retrieve these data directly from an Ethereum node with the tracing enabled and
fully synced, but we do not have such a node available. Therefore, we obtain internal transactions
and smart contract accounts from Google BigQuery [7], an Ethereum public dataset, also used by the
authors of ETHBMC [17] as an alternative. Specifically, we query all DELEGATECALL-type internal
transactions covering a time period from January 30, 2018 through August 10, 2021, and then analyze
the trend of their daily number over time, as shown in Fig. 3. Since the number of DELEGATECALL-
type internal transactions increased significantly after January 02, 2020 (over 100,000 per day), we
collect all relevant data since then (block numbers ranging from 9,200,000 to 13,000,000), including
214,414,657 DELEGATECALL-type internal and 3,465,796 smart contract accounts involved.

Figure 3: The number of DELEGATECALL-type internal transactions over time

4.2 CDG Construction
In the second phase, we first preprocess the above transactions to filter out the inactive inter-

contract dependencies in the Ethereum ecosystem. Subsequently, we construct a CDG based on the
definition given in Section 3.1, and an algorithm calculating attribute values for nodes in CDG is
given.

4.2.1 Transaction Preprocessing

We first preprocess all internal transactions by the following conditions: (a) extracting unique
internal transactions with addresses of caller contract and callee contract, and (b) the cumulative
number of a unique one is greater than or equal to 10 (“active” to some extent). The preprocessing
result shows that only 5.63% (195,247) of all contracts involved in internal transactions we collected

CMES, 2023, vol.135, no.2 1635

are active. The reason we only keep active contracts is that the degree distribution of most contract-
related activities in Ethereum follows the power law [9,10]. Therefore, active contracts generally hold
more Ether and are more likely to be targeted by attackers. Besides, a mapping from bytecodes to
160-bit addresses is built at this stage, used to obtain multiple Ethereum contract account addresses
corresponding to the C attribute of a CDG node, considering that contracts identified by different
addresses may be copies of the same bytecode. In our work, the number of bytecode-unique contracts
acting as CDG nodes accounts for only 7% (13,682) of all active contracts, and the rest are copies
of them.

4.2.2 Construction Stage

Based on the definition previously proposed to characterize inter-contract dependencies in the
Ethereum ecosystem, we build a CDG with unique DELEGATECALL-type internal transactions
obtained from the data acquisition phase as edges, and bytecode-unique contracts involved as nodes.
Such a CDG models the inter-contract dependencies among contracts that are active between the
9,200,000th and 13,000,000th block of Ethereum.

Observation of the CDG shows that it consists of multiple disconnected subgraphs, indicating
that each inter-contract dependency is limited to a group of contracts. In other words, a subgraph of
CDG denotes a collection of all on-chain contracts that share the risk of vulnerabilities in Ethereum
ecosystem. Fig. 4 presents a statistics of different types of subgraphs based on the number of nodes
in CDG defining the SGi as a subgraph of CDG whose number of nodes is equal to i. Each subgraph
consists of a number of nodes (at least 2, up to 1,905 in our work) with inter-contract dependencies;
the number of nodes is used as the basic unit of subsequent vulnerability analysis. Visualization of
SG>6 in CDG is given in Fig. 5.

Figure 4: Statistics of different types of subgraphs based on the number of nodes in CDG

Note that we can find call sequences consisting of sequential DELEGATECALL in CDG, which
only exist in seven subgraphs with a maximum length of 3. Fig. 6 shows these subgraphs and specially
marks the nodes involved in the DELEGATECALL sequences (the graph structure of four subgraphs
is exactly the same, one of them is reserved).

After building the CDG, we use Algorithm 1: to calculate a dependency hash table H for a CDG
subgraph SG = (V , E). For a bytecode-unique contract v = (A, C) ∈ V , all other contracts that
depend on it in subgraph SG will store in H(v). We calculate the H(v) in the order of topological sorting
(lines 1–3), ensuring the H(v) of caller contracts always calculated before that of callee contracts. Since
each node has a H(v) corresponding to it, the H(v) of the node whose in-degree is not zero is only
related to its predecessor nodes (lines 6–11).

1636 CMES, 2023, vol.135, no.2

Figure 5: Visualization of CDG (for the ease of illustration, only SG>6 are chosen)

Figure 6: All subgraphs of CDG containing at least one DELEGATECALL sequence(marked in blue)

Algorithm 1: Calculating a dependency hash table for a subgraph of CDG
Input: A subgraph SG = (V , E)

Output: A dependency hash table H
1: TS ← TopologicalSort(SG)

2: for k ∈ 0 . . . TS.len do
(Continued)

CMES, 2023, vol.135, no.2 1637

Algorithm 1: (Continued)
3: i ← InDeg(SG, TS[k])
4: if i = 0 then
5: H.insert(TS[k], ∅)

6: else
7: P ← Predecessors(SG, TS[k])
8: T ← ∅
9: for j ∈ 0 . . . P.len do
10: T ← T ∪ H.find(P[j]) ∪ {P[j]}
11: H.insert(TS[k], T)

12: return H

4.3 Security Violation Analysis
Based on the definition of security violations against CDG, some subgraphs of CDG are marked

if there is at least one vulnerable node in them. The automated vulnerability analysis of each node in a
subgraph is implemented on the top of ETHBMC [17], a bounded model checker based on symbolic
execution that supports the detection of vulnerabilities in a single contract, including the three types of
known vulnerabilities discussed in Section 3.2. Moreover, other nodes that depend on the vulnerable
node in marked subgraphs are also exposed to risk, denoted as potential victim contracts.

Algorithm 2 shows our security violation analysis algorithm for a subgraph of CDG. The input is
a CDG’s subgraph SG = (V , C) which is generated in the construction stage, and a dependency hash
table H which is calculated by Algorithm 1 for SG. The output is two vulnerability reports Rb and Rp,
where Rb contains the vulnerable contracts with any of the three security violations and Rp contains
the potential victim contracts affected by these vulnerable contracts in SG.

To identify all potential victim contracts in a subgraph of CDG, we first conduct security violation
analysis (line 6) based on the out-degree and in-degree of each node, where we call the ETHBMC to
generate W , a set collecting all known vulnerabilities of the current contract considering that a contract
may have more than one vulnerability. For each security violation in W , the currently analyzed contract
x is marked as a vulnerable contract, followed by all contracts that store in H.find(x) marked as the
potential victims (lines 10–12). According to the definition of Betrayal, x is also marked as a potential
victim contract if Type(w) gets the type of known vulnerability as Steal-Ether (lines 15–16). Different
from most existing works, whose vulnerability reports only serve a single contract, ours covers multiple
contracts with inter contract dependencies recorded in Ethereum. Therefore, reports for all types
of security violations in CDG can be used to generate smart contract blacklists for Ethereum after
considering appropriate classification and updating schemes.

Algorithm 2: Our security violation analysis algorithm for a subgraph of CDG
Input: SG = (V , E), v = (A, C) ∈ V

A dependency hash table H
Output: A vulnerability report Rb,

A potential victim report Rp

1: Rb ← ∅
2: Rp ← ∅

(Continued)

1638 CMES, 2023, vol.135, no.2

Algorithm 2: (Continued)
3: for all x ∈ V do
4: Ax, C ← x
5: i, o ← Degree(SG, x)

6: W ← Violations(i, o, C)

7: if ||W || > 0 then
8: for all w ∈ W do
9: Rb ← Rb ∪ {(Ax, w)}
10: Q ← H.find(x)

11: if ||Q|| > 0 then
12: for all y ∈ Q do
13: Ay ← y
14: Rp ← Rp ∪ {

(Ax, Ay, w)
}

15: if Type(w) = StealEther then
16: Rp ← Rp ∪ {(Ax, Ax, w)}
17: return Rb, Rp

5 Ethereum Smart Contract Vulnerabilities Landscape

We ran the above large-scale analysis on a Ubuntu machine with AMD Ryzen 5800X CPU
(4.5 GHz) (8 cores and 16 threads in total) and 32 GB of memory. Additionally, we ran 16 ETHBMC
instances on the machine, each of which uses Yices2 [31] as backend SMT solver with three minute
timeout. And the analysis timeout of a single contract is limited to 30 min. Scanning 2,616 subgraphs
with a total of 13,682 nodes took the machine around 1 month in total.

5.1 Results
Our analysis finished successfully for the majority of bytecode-unique contracts (73.10%), with a

certain number of timeouts (26.89%) and a negligible number of contracts encountering errors during
analysis (0.01%). Noting that the failure rate in our analysis is significantly higher than one done in
ETHBMC [17] (8.79%), one of the possible reasons is that ETHBMC experiment additionally runs a
modified Parity archive node [32] to restore the storage states for all contracts, but we adopt the same
approach as the author of teEther [15] just initializing them to zero, which affects the code coverage
of the analysis process (only 38.02% in average in our analysis). However, it is not the problem of our
CDG-based large-scale analysis, but can be resolved by running a modified Parity archive node until
the 13,000,000th block is synchronized, which means several TBs of hard drive and months of time. We
may be able to do that in future work. Bytecode-unique contracts that are not successfully analyzed,
including timeouts and errors, are marked as bug-free despite possible false negatives among them, but
they can be marked as potential victim contracts once the corresponding security violation is detected.

5.2 Betrayal Subgraph
Our analysis has flagged 16 subgraphs of CDG that may have the security violation of Betrayal.

Each subgraph has at least one vulnerable node (11 at most in our work) that is exposed to the Steal-
Ether vulnerability. According to the definition of Betrayal, a total number of 31 vulnerable nodes
make 62 nodes become potential victims, including vulnerable nodes themselves. On the one hand, the
bug code on the callee contract could leak not only its own but also its callers’ Ether to the attacker.
On the other hand, a caller contract can act as an entry point for the attacker to successfully exploit

CMES, 2023, vol.135, no.2 1639

the callee’s vulnerability by taking advantage of one of DELEGATECALL’s features that retains the
execution environment data of the original call. As shown in Fig. 7, all vulnerable contracts are callee
contracts in our large-scale analysis, which supports the above two situations. Besides, since a potential
victim contract has a large number of copies in Ethereum ecosystem, we find an additional 3,480
contract accounts that have exactly the same bytecode as potential victim contracts, all of them share
the same risk.

Figure 7: Topology of Betrayal subgraphs and distribution of different marked contracts

For any Betrayed subgraph, vulnerable contracts need to be replaced with bug-free contracts due
to their immutability, while the potential victim contracts do not need to change their bytecodes, but
change their persistent storages to other dependable smart contracts.

5.3 Deviation Subgraph
Six subgraphs of CDG are flagged with the security violation of Deviation, each of which has at

least one vulnerable node suffering from a Code-Injection vulnerability. We find that six vulnerable
nodes make other three nodes become potential victims, since some vulnerable nodes in our large-
scale analysis are caller contracts on which no other contracts depend, as shown in Fig. 8. Besides,
an additional 25,235 contract accounts have exactly the same bytecode as potential victim contracts,
and one contract account considered vulnerable. An attacker can hijack the control flow of the
vulnerable contract to execute a well-designed shellcode by constraining the target address of the
CALLCODE/DELEGATECALL to be an attacker-controlled contract account address [15,17]. In

1640 CMES, 2023, vol.135, no.2

other words, the attacker can add nodes to a Deviation subgraph without being restricted by access
control, and thereby intrude a subset of nodes in the subgraph by making the vulnerable contract
depend on these nodes.

Figure 8: Topology of Deviation subgraphs and distribution of different marked contracts

For any Deviation subgraph, the vulnerable contracts in it need to be replaced by newly deployed
contracts because they may be used for malicious code injection, and all potential victim contracts
they bring either become re-dependent on the new contracts or are discarded.

5.4 Interruption Subgraph
Our analysis only flags one two-node subgraph of CDG with the security violation of Interrup-

tion. Since the only vulnerable node1 having Suicidal vulnerability is a caller contract, there is no
potential victim contract in such an interruption subgraph. Compared with the existing large-scale
analysis results (see Table 2), there are two possible reasons for the significant decline in the number of
Suicidal contracts. First, we only analyze contracts that are active (called at least 10 times) in the latest
blocks. Second, this type of vulnerability has already been well contained throughout the Ethereum
ecosystem, such as increasing the gas cost of SELFDESTRUCT [33].

Table 2: A survey of the evolution of the Ethereum smart contract vulnerabilities landscape

teEther [15] ETHBMC [17] Our work

Time range July 30 2015– July 30 2015– Jan. 2 2020–
Nov. 30 2017 Dec. 24 2018 Aug. 10 2021

Block number range genesis– genesis– 9,200,000–
around 4,646,800 around 6,944,150 13,000,000

Total contrat 38,757 2,194,650 195,247

(Continued)

1https://etherscan.io/address/0x52f93c5d9f23cc4ff86ada600d0d36bee86d99e4.

https://etherscan.io/address/0x52f93c5d9f23cc4ff86ada600d0d36bee86d99e4.

CMES, 2023, vol.135, no.2 1641

Table 2 (continued)

teEther [15] ETHBMC [17] Our work

Steal-Ether contract 547 (1.4%) 2,708 (0.1%) 31 (0.02%)
Code-Injection contract 10 (<0.01%) 97 (<0.01%) 7 (<0.01%)
Suicidal contract 298 (0.77%) 1,924 (0.09%) 1 (<0.01%)
potential victim contract - - 28,786 (14.7%)

For any Interruption subgraph, before the vulnerable contracts are self-destructed, their Ether, as
well as that of all potential victimized contracts should be transferred to avoid Locked Ether attacks.

5.5 Case Studies
In an effort to show these security violations in more detail, we manually reviewed all the instances

of them and took those instances with Solidity source code as case studies in this section. Finally, we
do not publish addresses of vulnerable contracts and potential victim contracts except for these cases
to avoid malicious exploits.

TokenBuildInGenesis Bug. This instance corresponds to the subgraph(3,0) (from left to right, top
to bottom) in Fig. 7. The only vulnerable contract marked in red is TokenBuildInGenesis contract,
which can cause a Steal-Ether vulnerability by a sequence consisting of two transactions. The same
vulnerability can be further repeated in the contract marked in yellow that depend on it with the help
of DELEGATECALL to the same buggy code. Details about the contract code and the input data of
several transactions are given in Appendix A.

AuthenticatedProxy Bug. According to the subgraph(0,0) in Fig. 8, the analysis report shows that
the vulnerable contract, AuthenticatedProxy, has an erroneous visibility for its important initialization
functions which may lead to its owner being changed without permission, resulting in the loss of
necessary access controls when making proxy requests. The unexpected behavior can further spread to
the only contract that relies on it. However, the unmarked contract in the subgraph will not be affected
in any way, due to lack of similar dependencies. The relationship between them and the sequence of
transactions that trigger the vulnerability are given in Appendix B.

DeleteContract Bug. There is only one instance of the Interruption Subgraph, which has one
vulnerable contract without Solidity source code in etherscan.io, but does not have any potential
victim contract. We manually reviewed on-chain data of the vulnerable one and found it is a library
contract with a balance of 0. An attacker can exploit its Suicidal vulnerability through a sequence of
two transactions, where the first transaction calls the function a91ee0dc to replace the owner of the
smart contract, the second transaction calls the function 41c0e1b5 containing the SELFDESTRUCT
instruction, causing the contract to self-destruct and transfer the balance to new “owner”. We do not
give the complete input data of two transactions, considering this contract has not been self-destructed
as for now.

5.6 Current Vulnerability Landscape
We collected the results of large-scale analyses on Ethereum contracts in recent years, and

presented a comparison of relevant data in Table 2. We note that ETHBMC runs an additional
Ethereum archive node to verify the vulnerabilities’ exploitability and obtain the storage states of
contracts it analyzed. Therefore, the data it provided is more convincing. Although our large-scale

1642 CMES, 2023, vol.135, no.2

analysis is based on the ETHBMC tool, we took the same approach as teEther to initialize the storage
state of the contract with an empty value, which may lead to false positives or false negatives to some
extent, instead of relying on an Ethereum archive node. Different from previous works, we took the
contracts active in the latest block as targets, marked the potential victim contracts other than the
vulnerable ones, and found that they occupy a non-negligible proportion.

Furthermore, considering the time evolution of several large-scale analyses in Table 2, we can draw
the following four conclusions about the current Ethereum smart contract vulnerabilities landscape.
First, vulnerable contracts do not account for a high proportion of the entire Ethereum contract
ecosystem. Second, the impact of different types of vulnerabilities on the latest blocks of Ethereum has
changed, and contracts in earlier blocks have more vulnerabilities than those in the latest blocks. Third,
the absence of vulnerabilities in the bytecode of a contract itself does not mean that it is protected from
attacks, more contracts may be warned if considering other contracts on which it depends in Ethereum.
Fourth, contract homogeneity is still obvious in the latest block (a contract is repeated 25,232 times in
our analysis, see Appendix B), and to some degree can extend the impact of one vulnerability.

6 Conclusion

An increasing number of complex decentralized applications require more than one contract
to work together, and these contracts often use DELEGATECALL-type internal transactions to
communicate, which make the caller contract depend on the callee contract at a bytecode or a storage
level. However, little is known about how these inter-contract dependencies affect smart contract vul-
nerability analysis, specifically, which contracts are affected and how the inter-contract dependencies
affect them. This paper presents a vulnerability analysis scheme for Ethereum smart contracts based
on inter-contract dependencies is presented to solve these problems. Specifically, we first present the
definition of contract dependency graph (CDG) to capture inter-contract dependencies in Ethereum,
and then define three categories of security violations against CDG, namely Deviation, Interruption
and Betrayal, based on the location and characteristics of different vulnerable contracts. To identify
both vulnerable and potential victim contracts that could be affected by the above three security
violations, a large-scale analysis that focuses on three specific known vulnerabilities is designed and
implemented on the latest Ethereum. Our large-scale analysis successfully finds 38 vulnerable contracts
along with 28,786 potential victim contracts in total when considering the Ethereum smart contract
homogeneity. These potential victims either suffer from out of service, are injected by malicious
contracts, or invoke bug codes in their own context. Our scheme can be extended to more types
of known vulnerabilities than the three specific known vulnerabilities above and further used for
generating smart contract blacklists for Ethereum. In contrast, the exploitability of marked potential
victim contracts and management of blacklists remains to be explored in the future.

Funding Statement: This work was supported by the Key R and D Programs of Zhejiang Province
under Grant No. 2022C01018 and the Natural Science Foundation of Zhejiang Province under Grant
No. LQ20F020019.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

CMES, 2023, vol.135, no.2 1643

References
1. Wang, Z., Jin, H., Dai, W., Choo, K. K. R., Zou, D. (2021). Ethereum smart contract security

research: Survey and future research opportunities. Frontiers of Computer Science, 15(2), 1–18. DOI
10.1007/s11704-020-9284-9.

2. Vogelsteller, F., Buterin, V. (2015). Eip-20: Token standard. https://eips.ethereum.org/EIPS/eip-20.
3. Entriken, W., Shirley, D., E., J., Sachs, N. (2018). Eip-721: Non-fungible token standard. https://

eips.ethereum.org/EIPS/eip-721.
4. Radomski, W., Cooke, A., Castonguay, P., Therien, J., Binet, E. (2018). Eip-1155: Multi token standard.

https://eips.ethereum.org/EIPS/eip-1155.
5. Hasan, H. R., Salah, K. (2018). Proof of delivery of digital assets using blockchain and smart contracts.

IEEE Access, 6, 65439–65448. DOI 10.1109/ACCESS.2018.2876971.
6. Luu, L., Chu, D. H., Olickel, H., Saxena, P., Hobor, A. (2016). Making smart contracts smarter. Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 254–269. Vienna.
7. Day, A., Medvedev, E. (2018). Ethereum in bigquery: A public dataset for smart contract analytics.

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-
analytics.

8. He, N., Wu, L., Wang, H., Guo, Y., Jiang, X. (2020). Characterizing code clones in the ethereum smart
contract ecosystem. International Conference on Financial Cryptography and Data Security, pp. 654–675.
Malaysia.

9. Kiffer, L., Levin, D., Mislove, A. (2018). Analyzing ethereum’s contract topology. Proceedings of the Internet
Measurement Conference 2018, pp. 494–499. Boston.

10. Chen, T., Li, Z., Zhu, Y., Chen, J., Luo, X. et al. (2020). Understanding ethereum via graph analysis. ACM
Transactions on Internet Technology, 20(2), 1–32. DOI 10.1145/3381036.

11. Parity, T. (2017). The multi-sig hack: A postmortem. https://www.parity.io/blog/the-multi-sig-hack-a-
postmortem.

12. Parity, T. (2017). A postmortem on the parity multi-sig library self-destruct. https://www.io/blog/a-
postmortem-on-the-parity-multi-sig-library-self-destruct/.

13. Parity, T. (2017). Security alert. https://www.parity.io/blog/security-alert-2/.
14. Etherscan (2017). Parity walletlibrary. https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91

a907b4#code.
15. Krupp, J., Rossow, C. (2018). Teether: gnawing at ethereum to automatically exploit smart contracts.

Proceedings of the 27th USENIX Security Symposium, pp. 1317–1333. Baltimore.
16. Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A. (2018). Finding the greedy, prodigal, and suicidal

contracts at scale. Proceedings of the 34th Annual Computer Security Applications Conference, pp. 653–663.
San Juan.

17. Frank, J., Aschermann, C., Holz, T. (2020). {ETHBMC}: A bounded model checker for smart contracts.
Proceedings of the 29th USENIX Security Symposium, pp. 2757–2774. Berkeley.

18. Chen, J., Xia, X., Lo, D., Grundy, J., Luo, X. et al. (2021). Defectchecker: Automated smart contract
defect detection by analyzing evm bytecode. IEEE Transactions on Software Engineering, 5589, 1–19. DOI
10.1109/TSE.32.

19. Atzei, N., Bartoletti, M., Cimoli, T. (2017). A survey of attacks on ethereum smart contracts (SoK).
International Conference on Principles of Security and Trust, Springer.

20. Saini, V. (2020). Writing upgradable smart contracts. https://hackernoon.com/smart-contract-versioning-
mr5 dB x32db.

21. Murray, P., Welch, N., Messerman, J. (2018). Eip-1167: Minimal proxy contract. https://eips.ethereum.
org/EIPS/eip-1167.

https://doi.org/10.1007/s11704-020-9284-9
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-1155
https://doi.org/10.1109/ACCESS.2018.2876971
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://doi.org/10.1145/3381036
https://www.parity.io/blog/the-multi-sig-hack-a-postmortem
https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/blog/security-alert-2/
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4#code
https://doi.org/10.1109/TSE.32
https://hackernoon.com/smart-contract-versioning-mr5 dB x32db
https://eips.ethereum.org/EIPS/eip-1167

1644 CMES, 2023, vol.135, no.2

22. Yang, X., Liu, J., Li, X. (2020). Implementation smart contract with finite state machines. Proceedings of the
2020 International Conference on Aviation Safety and Information Technology, pp. 404–408. Weihai, China.

23. Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow
Paper, 151, 1–32.

24. Ethervm (2021). Ethereum virtual machine opcodes. https://ethervm.io/#3A.
25. So, S., Hong, S., Oh, H. (2021). Smartest: Effectively hunting vulnerable transaction sequences in smart

contracts through language model-guided symbolic execution. Proceedings of the 30th USENIX Security
Symposium, pp. 1361–1378. Vancouver.

26. Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G. et al. (2019). Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts. 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 1186–1189. San Diego.

27. Mueller, B. (2018). Smashing ethereum smart contracts for fun and real profit. HITB SECCONF Amster-
dam, vol. 9, pp. 54.

28. jdourlens (2020). Using safe math library to prevent from overflows. https://ethereumdev.io/using-
safe-math-library-to-prevent-from-overflows/.

29. NccGroup (2018). Decentralized application security project top 10 of 2018. https://eips.ethereum.
org/EIPS/eip-1167.

30. Perez, D., Livshits, B. (2021). Smart contract vulnerabilities: vulnerable does not imply exploited. Proceed-
ings of the 30th USENIX Security Symposium, pp. 1325–1341. Vancouver.

31. Dutertre, B. (2014). Yices 2.2. International Conference on Computer Aided Verification, pp. 737–744.
Vienna, Austria.

32. Frank, J. (2020). Openethereum. https://github.com/Joool/openethereum.
33. Chen, T., Li, X., Wang, Y., Chen, J., Li, Z. et al. (2017). An adaptive gas cost mechanism for ethereum to

defend against under-priced dos attacks. Information Security Practice and Experience (ISPEC), pp. 3–24.
Melbourne, Australia.

Appendix A. TokenBuildInGenesis Bug

Code 1. TokenBuildInGenesis contract

contract TokenBuildInGenesis is DSAuth, SettingIds {
ISettingsRegistry public registry;

bool public paused = false;

bool private singletonLock = false;

modifier singletonLockCall () {
require (!singletonLock, “Only_can_call_once”);

_;

singletonLock = true;

}
function initializeContract (address _registry, bool _status)

public singletonLockCall{
registry = ISettingsRegistry (_registry);

paused = _status;

https://ethervm.io/#3A
https://ethereumdev.io/using-safe-math-library-to-prevent-from-overflows/
https://eips.ethereum.org/EIPS/eip-1167
https://github.com/Joool/openethereum

CMES, 2023, vol.135, no.2 1645

owner = msg . sender;

}
function claimTokens (address _token) public auth {

if (_token == 0x0) {
owner . transfer (address (this) . balance);

return;

}
ERC20 token = ERC20 (_token);

uint balance = token . balanceOf (address (this));

token . transfer (owner, balance);

emit ClaimedTokens (_token, owner, balance);

}
}

When analyzing a Betrayal subgraph composed of two bytecode-unique contracts A(0x9620bfdce
7184d246bf793207d27a99f75981c1e2), and B(0x7550aab5dfda37f646b1a826f27e9d604d8d15793).

a Steal-Ether vulnerability is detected in contract A, and EthBMC successfully generated the an
exploit consisting of two transactions in 78 s (see Transactions 1, 2).

Transaction 1

data: 8b3a f1f1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Transaction 2

data: df8d e3e7 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2https://etherscan.io/address/0x9620bfdce7184d246bf793207d27a99f75981c1e.
3https://etherscan.io/address/0x7550aab5dfda37f646b1a826f27e9d604d8d1579.

https://etherscan.io/address/0x9620bfdce7184d246bf793207d27a99f75981c1e.
https://etherscan.io/address/0x7550aab5dfda37f646b1a826f27e9d604d8d1579.

1646 CMES, 2023, vol.135, no.2

Code 1 above is taken verbatim from part of the verified original source code of TokenBuildInGen-
esis contract(i.e., contract A). Combined with the ABI of it, we briefly explain the process of exploiting
the vulnerability: the first transaction of this exploit calls function initializeContract(address,bool)
(8b3af1f1) to set attacker-controlled address(“000000000000000000000000000000 0080000000” in this
case) as owner, then the second transaction calls claimTokens(address) (df8de3e7) which transfer all
balance of contract A to its owner when parameter is set to 0.

Therefore, contract A is marked as a vulnerable contract, and according to the definition of
the Betrayal-type security violation, while the only contract B that depends on it is marked as a
potential victim one. By DELEGATECALL to the claimTokens(address) in contract A after a simple
transformation of Transaction 2, the same vulnerability will be repeated on contract B.

Appendix B. AuthenticatedProxy Bug

Code 2. AuthenticatedProxy contract

contract AuthenticatedProxy is TokenRecipient, OwnedUpgradeabilityStorage {
bool initialized = false;

address public user;

ProxyRegistry public registry;

function initialize (address addrUser, ProxyRegistry addrRegistry) public{
require (!initialized);

initialized = true;

user = addrUser;

registry = addrRegistry;

}
function proxy (address dest, HowToCall howToCall, bytes calldata)

public returns (bool result) {
require (msg . sender == user ||

(!revoked && registry . contracts (msg . sender))

);

if (howToCall == HowToCall.Call) {
result = dest . call (calldata);

} else if (howToCall == HowToCall . DelegateCall) {
result = dest . delegatecall (calldata);

}
return result;

}
}

CMES, 2023, vol.135, no.2 1647

When analyzing a Deviation subgraph composed of three bytecode-unique contracts A
(0x70e1e07d64 d4c0476ff45382a21a0b02058854894), B (0xc99f70bfd82fb7c8f8191fdfbfb735606b15e5
c55), and C (0xf9 e266af4bca5890e2781812cc6a6e89495a79f26), whose adjacency matrix is as follows:

A B C
A
B
C

⎛
⎝

0 1 1
0 0 0
0 0 0

⎞
⎠

a Code-Injection vulnerability is detected in contract C, and EthBMC successfully generated the
an exploit consisting of two transactions in 147 s (see Transactions 3, 4).

Transaction 3

data: 485c c955 0000 0000 0000 0000 0000 0000 0dfa 72de 72f9 6cf5 b127 b070 e90d 68ec
9710 797c 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Transaction 4

data: 1b0f 7ba9 0000 0000 0000 0000 0000 0000 f9c3 1051 1569 5a35 c255 88d4 e768 c6c2
e573 338d 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0001 8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Code 2 above is taken verbatim from part of the verified original source code of Authenticat-
edProxy contract (i.e., contract C). Combined with the ABI of it, we briefly explain the process of
exploiting the vulnerability: the first transaction of this exploit calls function initialize(address,address)
(485cc955) to re-initialize the contract’s owner information, then the second transaction calls
proxy(address,uint8,bytes) (1b0f7ba9) which sends DELEGATECALL-type message call to user-
control destination address(0xf9c . . . 38d).

Therefore, contract C is marked as a vulnerable contract, and according to the definition of the
Deviation-type security violation, contract A is marked as a potential victim one. Besides, there are
at least 25,232 contracts with the same bytecode as contract A, whose address can be viewed in the
internal transaction history7 of contract C.

4https://etherscan.io/address/0x70e1e07d64d4c0476ff45382a21a0b0205885489.
5https://etherscan.io/address/0xc99f70bfd82fb7c8f8191fdfbfb735606b15e5c5.
6https://etherscan.io/address/0xf9e266af4bca5890e2781812cc6a6e89495a79f2.
7https://etherscan.io/txsinternal?ps=100&zero=false&a=0xf9e266af4bca5890e2781812cc6a6e89495a79f2&valid=all&m=advanced.

https://etherscan.io/address/0x70e1e07d64d4c0476ff45382a21a0b0205885489.
https://etherscan.io/address/0xc99f70bfd82fb7c8f8191fdfbfb735606b15e5c5
https://etherscan.io/address/0xf9e266af4bca5890e2781812cc6a6e89495a79f2
https://etherscan.io/txsinternal?ps=100&zero=false&a=0xf9e266af4bca5890e2781812cc6a6e89495a79f2&valid=all&m=advanced

	Analyzing Ethereum Smart Contract Vulnerabilities at Scale Based on Inter-Contract Dependency
	1 Introduction
	2 Preliminary and Related Work
	3 Contract Dependency Graph
	4 Large-Scale Analysis Based on CDG
	5 Ethereum Smart Contract Vulnerabilities Landscape
	6 Conclusion
	Appendix A. TokenBuildInGenesis Bug
	Appendix B. AuthenticatedProxy Bug

