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ABSTRACT

In this work, an improved active kriging method based on the AK-IS and truncated importance sampling (TIS)
method is proposed to efficiently evaluate structural reliability. The novel method called AWK-TIS is inspired by
AK-IS and RBF-GA previously published in the literature. The innovation of the AWK-TIS is that TIS is adopted to
lessen the sample pool size significantly, and the whale optimization algorithm (WOA) is employed to acquire the
optimal Kriging model and the most probable point (MPP). To verify the performance of the AWK-TIS method for
structural reliability, four numerical cases which are utilized as benchmarks in literature and one real engineering
problem about a jet van manipulate mechanism are tested. The results indicate the accuracy and efficiency of the
proposed method.
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Nomenclature

AK Active kriging
TIS Truncated importance sampling
WOA Whale optimization algorithm
MPP Most probable point
MCS Monte Carlo simulation
FORM First order reliability method
SORM Second order reliability method
LSF Limit state function
RBF Radial basis function
DOE Design of experiment
ξ Regression coefficient vector
z(x) Stationary Gaussian process
σ 2

z Process variance
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R(xi, xj) Correlation function
θ ∗ Optimal correlation parameter
Pf Failure probability
δPf Coefficient of variation of the failure probability
Ĝ (x) Limit state function constructed by kriging
λ Positive penalty coefficient
ζ Small constant
χ Threshold
x(t)

i i-th search agent in the t-th iteration
x(t)

best The best agent in the t-th iteration
Ai Random value
Bi Random value
Ci Random value
NIS Number of importance sampling
β Reliability index

1 Introduction

Structural reliability analysis is often carried out to quantitatively assess the probability of
structures’ safe or failure state under the impact of uncertain factors in the environmental, structural
and load parameters. Various structural reliability analysis methods, which can be broadly categorized
into three main types: simulation-based methods, analytical methods or approximation methods, and
meta-modeling methods, have been proposed over the past three decades [1,2].

Concerning simulation-based methods, the crude Monte Carlo simulation (MCS) method is the
basic form of this classification, which evaluates the failure probability by dividing the number of
samples falling into the failure domain by all the samples generated from the limit state evaluations.
Although MCS is the most convenient implementation approach, it is extremely time-consuming
when dealing with small failure probability and complex numerical models (e.g., fidelity finite element
models (FEM)). Meanwhile, tremendous variation techniques of the MCS such as subset simulation
[3,4], importance sampling [5,6] and directional sampling [7,8] have been developed to obtain more
accurate results with fewer samplings. However, the main drawback of insufficient still exists in those
methods.

As analytical methods, the traditional first-order and the second-order reliability methods
(FORM and SORM) [9–12] respectively approximate the limit state function (LSF) around the most
probable failure point (MPP) with first-order and incomplete second-order functions. The derivatives
of the LSF with respect to the random variables have thus to be evaluated. Hence, these methods are
not suitable for implicit limit state function and high nonlinearity cases.

Meta-modeling methods have been developed to balance the computational accuracy and effi-
ciency during the structural reliability analysis, such as response surfaces [13–15], polynomial chaos
expansion [16,17], artificial neural networks [18,19], support vector machine [20,21], radial basis
function (RBF) [22,23] and Kriging metamodel [24,25]. In recent years, Kriging metamodel methods
have obtained remarkable attention in the state-of-the-art literature. From the design of experiment
(DOE) aspect of view, the strategy for constructing a Kriging model can broadly be classified into
two sorts, the one is “one-shot” and the other is adaptive sampling or sequential sampling methods
[26]. Literally, “one-shot” means producing enough design points before generating a Kriging model
without supplementing new sample points in succeeding courses. Nevertheless, the adaptive sampling
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methods generate a relatively small number of design points at the initial step, and then add one
or more samples in each course of iteration according to certain regulations [27]. Furthermore, the
exclusive feature of Kriging that it can predict the local uncertainty along with the prediction value
promotes the development of the adaptive Kriging [24,28].

Two typical algorithms, the efficient global reliability analysis (EGRA) [28] and adaptive Kriging
(AK) with MCS (AK-MCS) [29], are generously adopted and depict outstanding characters in
diverse structural reliability problems. The amount of research has then further ameliorated the
performance of active Kriging-based methods in recent years. These ameliorations resort to different
and more efficient learning functions, sampling schemes and stopping criteria. Learning functions
include the expected feasible function (EFF) [28], the learning function U [29], the learning function
H [30], expected risk function (ERF) [31], least improvement function (LIF) [32], reliability-based
expected improvement function (REIF) [33], Folded Normal based Expected Improvement Function
(FNEIF) [34], K-means and weighted K-medoids algorithms-assisted learning process [35], and
PDEM-oriented expected improvement function (PEIF) [36]. With regard to stopping criteria, it
is common to see that when the values of learning functions reach certain thresholds the learning
process stopped. For sampling tactics, importance sampling, subset simulation, line sampling, etc.
have been adopted to evaluate failure probability in active Kriging (AK) reliability analysis, and some
AK-based sampling methods were presented, such as AK-IS [37], AK-SS [38], AK-DS [39], AKOIS
[40], AK-ARBIS [41], AK-SESC [42] and AKSE [43]. By combining these sampling methods with
learning functions, the number of calls of limit state functions has reduced dramatically with acceptable
accuracy of variation coefficient of failure probability. Despite the aforementioned learning functions,
the correlation parameter θ also plays a vital role in constructing an accurate Kriging model. Thus,
the pattern search algorithm is applied in DACE to calculate the optimum of θ [44]. However, as a
local optimization algorithm, pattern search is sensitive to the initial value and may get trapped in
local optimum. Then, various global optimization algorithms, such as genetic algorithm (GA) [33,45],
DIRECT algorithm [46], particle swarm optimization (PSO) [47], and artificial bee colony (ABC) [48],
are adopted to find the optimal value of θ by solving the maximum likelihood equation. Compared
with GA, PSO, and the pattern search, the whale optimization algorithm (WOA) [49] proposed in the
year of 2016 has its own advantages, such as simple principle, easy implementation, high convergence
speed and calculation accuracy.

This paper aims to improve the efficiency and accuracy of the AK-IS for structural reliability
analysis. In this paper, AWK-TIS is proposed, which is inspired by AK-IS [34] and RBF-GA [50],
coupling with WOA and Truncated importance sampling (TIS) [51,52], and the WOA in AWK-TIS
is adopted to seek the optimum of correlation parameter θ and the MPP in different phases of each
course of iterations. Moreover, inside of the optimal β-sphere treated as the safe state, the samples are
eliminated by TIS. Therefore, the prediction of Kriging model and the selection of the best next sample
are only implemented through the candidate samples outside the optimal β-sphere, which significantly
reduces the computational time and saves computer memory in comparison with the original AK-IS.

The remainder of the manuscript is organized as follows. Section 2 briefly introduces the Kriging
method, AK-IS method, TIS and WOA. In Section 3, the procedures and the main steps of the AWK-
TIS method are proposed. In Section 4, the applicability of the proposed technique is validated by
four numerical cases and one real engineering problem of jet van manipulation mechanism. Finally,
conclusions are summarized in Section 5.
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2 Backgrounds

Before introducing the proposed AWK-TIS algorithm, some basic theories are briefly recalled,
e.g., the Kriging method, the main steps of the AK-IS algorithm and truncated importance sampling
(TIS) method, and the WOA.

2.1 Basic Theory about Kriging Method
Kriging metamodel, which consists of a parametric linear regression model and a nonparametric

stochastic process, is an interpolation technique based on statistical theory. It needs a DOEs to
determine its stochastic parameters and then predictions of the response can be inferred on any
unknown point. Give a set of initial DOEs X = [x1, x2, . . . , xm], with xiεRn(i = 1, 2, . . . , m) the ith
experiment, and G = [G(x1), G(x2), . . . , G(xm)] is the corresponding response to X. The approximate
relationship between any experiment x and the response G(x) can be denoted as [41,42]:

Ĝ (x) = F (ξ , x) + z (x) = f T
(x) ξ + z (x) (1)

where ξ
T = [ξ1, . . . , ξp] is a regression coefficient vector, f T

(x) = [
f1 (x) , f1 (x) , . . . , fp (x)

]T
is the basic

functions vector which makes a global simulation in design space. In the ordinary Kriging, F(ξ , x) is
a scalar and always taken as F(ξ , x) = ξ ; z (x) is a stationary Gaussian process with zero mean and
covariance between two data points xi and xj is denoted as:

Cov[z(xi), z(xj)] = σ 2
z R(xi, xj) (2)

where σ 2
z is the process variance, and xi, xj are data points from the whole samples X. R

(
xi, xj

)
is the

correlation function about xi and xj with a correlation parameter vector θ that has to be estimated
by pattern search method in DACE. A diversity of models can be adopted to define correlation
function R

(
xi, xj

)
, such as Gaussian correlative model, experimental and linear model, etc. The widely

employed Gaussian model is accepted in the paper and can be defined as:

R
(
xi, xj

) = exp
n∑

k=1

[
−θk

(
xk

i − xk
j

)2
]

θk ≥ 0 (3)

where n is the dimension of the sample, xk
i , xk

j and θ k are the kth components of data sample xi, xj and θ ,
respectively.

Define correlation matrix R=[R(xi, xj)]m×m, F is a m × 1 unit vector, then ξ and σ 2
z are given by:

ξ̂ = (
FTR−1F

)−1
FTR−1G (4)

σ̂ 2
z =

(
G − ξ̂F

)T

R−1
(G − ξ̂F)/m (5)

where R, ξ̂ and σ̂ 2
z are functions of θ .

Then at an unknown point x, the Best Linear Unbiased Predictor (BLUP) of the response Ĝ (x)

is shown to be a Gaussian random variant Ĝ (x) ∼N (μĜ (x) , σĜ (x)), where

μĜ (x) = ξ̂ + r (x) R−1
(

G − ξ̂F
)

(6)

σ 2
Ĝ (x) = σ 2

z (x)
(

1 + vT (x)
(
FTR−1F

)−1
v (x) − rT (x) R−1r (x)

)
(7)

where r(x) = [R(x, x1), R(x, x2), . . . , R(x, xm)], v(x) = FTR−1r(x) − 1. μĜ (x) is usually taken as the
estimated Ĝ (x) at point x. That means Kriging is an exact interpolation method.
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The correlation parameter θ can be obtained through the maximum likelihood estimation (MLE)
[47,48]:

θ = arg minϕ (θ) = arg min
(
m ln σ̂ 2

z + ln |R|) (8)

where |R| is the determinant of R. The optimal Kriging model can be obtained if the optimal
correlation parameter θ

∗ is guaranteed. The Eq. (8) can be solved by pattern search method, genetic
algorithm, PSO, etc. It should be noted that since the introduction of WOA, this algorithm has been
used in many fields and showed its superiority over many other metaheuristic algorithms such as PSO,
ABC, GA, etc. As a result, WOA is adopted to search θ

∗ in this study.

2.2 AK-IS Algorithm
AK-IS mainly consists of two steps. The first step is the FORM approximation, which is utilized

to find the MPP that is not accurate enough to evaluate the probability. The second step is to establish
an AK model with a special learning function and stopping criteria to reduce the calls of original limit
state function. In this step, IS method is adopted to calculate the failure probability and its coefficient
of variation.

IS requires the definition of a joint PDF ϕn that is taken as a standard Gausssian one centered at
the MPP found in the first step for the new sampling. The failure probability is estimated as [37]:

Pf =
∫
Rn

IF (u)
φn(u)

ϕn(u)
ϕn (u) du1 · · · dun (9)

where IF (u) is indicator function, IF (u)) = {0 if G (u) > 0 and 1 if G (u) ≤ 0}.
A number of NIS samples denoted {̃u(i), i = 1, . . . , N IS} are generated according to importance

sampling density function ϕn. The integral is then expressed by:

Pf ≈ P̂f ,IS = 1
NIS

NIS∑
i=1

IF

(̃
u(i)

) φn

(̃
u(i)

)
ϕn

(̃
u(i)

) (10)

The variance of the failure probability estimator is given as:

Var
[
P̂f ,IS

]
= 1

NIS

⎛⎝ 1
NIS

NIS∑
i=1

⎛⎝IF

(̃
u(i)

) (
φn

(̃
u(i)

)
ϕn

(̃
u(i)

))2
⎞⎠ − P̂2

f ,IS

⎞⎠ (11)

The coefficient of variation δIS of the failure probability estimator is then:

δIS =

√√√√Var
[
P̂f ,IS

]
P̂f ,IS

(12)

Besides, the learning function U proposed in AK-MCS is still used in AK-IS:

U (x) = |μĜ (x)|
σĜ (x)

(13)

where μĜ (x) and σĜ (x) are Kriging mean and standard deviation, respectively. Moreover, the sample
that has the minimum of U(x) is called the best next sample and it is iteratively enriched the DOE to
update the Kriging model. The learning process stops if the minimum of the learning function U is
larger than its threshold. Besides, the active procedure continues and NIS new samples are enlarged
until the coefficient of variation δIS is smaller than a limit value which is set to 0.05 in AK-IS.
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2.3 Truncated Importance Sampling
Truncated importance sampling (TIS) method is developed by introducing a hypersphere with the

radial, which is indicated by β shown in Fig. 1, equals to the minimum distance from the origin to the
limit state surface in u-space [51,52].

u1

u2 Failure domain

Safe domain

β
O

Figure 1: Sketch of TIS

The red point in Fig. 1 indicates the MPP.

The indicator function of the outer of the β-sphere is defined as follows:

Iβ

(̃
u(i)

) =
{

0 if
∣∣∣∣̃u(i)

∣∣∣∣2 ≤ β2

1 if
∣∣∣∣̃u(i)

∣∣∣∣2
> β2

(14)

where the inner of the β-sphere contains part of the safe domain or even all of the district, while other
domains including all the failure domain and part of the safe domain are out of the β-sphere. It can
be seen that the indicator function IF of the samples located in the β-sphere is IF (̃u) = 0, and there is
unnecessary to call the true model to evaluate whether safe or not. The integral is then estimated by:

Pf ≈ P̂f ,TIS = 1
NIS

NIS∑
i=1

IF

(̃
u(i)

)
Iβ

(̃
u(i)

)
φn

(̃
u(i)

)
ϕn

(̃
u(i)

) (15)

The variance of the failure probability estimator is estimated as:

Var
[
P̂f ,TIS

]
= 1

NIS − 1

⎛⎝ 1
NIS

NIS∑
i=1

⎛⎝IF

(̃
u(i)

)
Iβ

(̃
u(i)

) (
φn

(̃
u(i)

)
ϕn

(̃
u(i)

))2
⎞⎠ − P̂2

f ,TIS

⎞⎠ (16)

The coefficient of variation (C.O.V) δTIS of the failure probability estimator is then:

δTIS =

√√√√Var
[
P̂f ,TIS

]
P̂f ,TIS

(17)

2.4 Whale Optimization Algorithm
The Whale Optimization Algorithm (WOA) is a novel nature-inspired population-based meta-

heuristic algorithm, presented by Seyedali Mirjalili and Andrew Lewis from Griffith University in
2016 [49]. It was abstracted from the special hunting behavior of humpback whales. This foraging
behavior is named bubble-net feeding method.
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Two approaches namely, shrinking encircling mechanism and spiral updating position, are
designed to mathematically model the exploitation phase of the WOA. The first approach is formulated
as follows:

x(t+1)

i = x(t)
best − Ai ·

∣∣Ci · x(t)
best − x(t)

i

∣∣ (18)

where t indicates the current iteration, Ai and Ci are coefficients. x(t)
i and x(t)

best represent i-th search agent
and the best agent in the t-th iteration, respectively.

Ai = 2q · ri1 − q (19)

Ci = 2ri2 (20)

where q is linearly reduced from 2 to 0 over the course of iterations, ri1, ri2 are random numbers in
[0, 1]. Ai is a random value in the interval [−2q, 2q]. When the random value of Ai is in [−1, 1], the
next position of a search agent can be in any position of the agent and the position of the current best
agent. The parameter Ci is a random value in [0, 2]. This component provides random weights for
prey in order to stochastically emphasize (Ci > 1) or deemphasize (Ci < 1) the effect of prey in defining
the distance between the search agent and the current best agent. Besides, the second approach, the
process of spiral updating position, is expressed as follows:

x(t+1)

i = x(t)
best +

∣∣x(t)
best − x(t)

i

∣∣ · ebl · cos(2π l) (21)

where b is a constant for defining the ‘9’-shaped path of distinctive bubbles created by the humpback
whales, l is a random number in [−1, 1].

The humpback whales hunt the prey by using the shrinking circle mechanism and spiral updating
method simultaneously, and the two approaches have the same possibility to be chosen, so the model
of the exploitation phase is as follows:

x(t+1)

i =
{

x(t)
best − Ai ·

∣∣Ci · x(t)
best − x(t)

i

∣∣ if ri3 < 0.5
x(t)

best +
∣∣x(t)

best − x(t)
i

∣∣ · ebl · cos (2π l) if ri3 ≥ 0.5
(22)

where ri3 are random numbers in [0, 1] to switch the different mathematical model of exploitation.

However, the process of search for prey is defined as the exploration phase, and the model of this
phase is described as follows:

x(t+1)

i = x(t)
j − Ai ·

∣∣Ci · x(t)
j − x(t)

i

∣∣ (23)

where x(t)
j is the j-th random search agent which is different from the x(t)

i , and Ai is also defined by
Eq. (19), but it is absolute value, |Ai|, is greater than 1 to emphasize exploration and let the WOA to
search the whole search space.

3 AWK-TIS Algorithm

In this section, the main steps of the proposed method are introduced. Firstly, the WOA-Kriging
model is constructed based on the basic Kriging model. Secondly, the AWK-TIS method is developed.

3.1 WOA-Kriging Model
In the proposed WOA-Kriging model, the optimal value of correlation parameter θ ∗ is calculated

by integrating WOA into the basic Kriging model. The pattern search method is adopted to seek θ ∗

in DACE. However, the pattern search method is a local optimization algorithm that needs an initial
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solution to search the optimal and it is easy to get trapped in the local optimum. Alternatively, while
seeking θ ∗, as an efficient global optimization algorithm not depend on the initial solution. WOA
is embedded in the DACE toolbox to solve Eq. (8), instead of pattern search algorithm. Then, in
our implementations the fitness function for the MLE according to the correlation parameter θ is to
minimize the function below [45]:

Minimize: φ (θ) = |R|1/m
σ̂ 2

z

Subject to: θ k > 0, k = 1, 2, . . . , n
(24)

Given the fitness function above, the finding process of θ ∗ becomes a typical minimization
problem. Thus, the population (whale positions) is firstly initialized in a n-dimensional search space,
and the population size is set to 25 in this study. Each position corresponds to a correlation parameter
vector. Next, a set of mathematical rules in WOA such as encircling prey, spiral bubble-net feeding and
search for prey are repeatedly conducted at each iteration. Then, the fitness values of every population
are obtained, the fittest solution is ascertained. Finally, the global optimal correlation parameter is
acquired until the satisfaction of the stopping criteria that is the maximum number of iterations equals
to 100. The main WOA parameters are unchanged during the optimization procedure. Consequently,
the WOA-Kriging model is constructed by the optimal correlation parameter θ ∗.

3.2 The AWK-TIS Algorithm
In this subsection, the AWK-TIS algorithm is introduced in detail. In AWK-TIS, the real limit

state function is substituted by a WOA-Kriging model; the failure probability and its coefficient of
variation are computed by TIS method in an active learning way. AWK-TIS mainly consists of three
components. Firstly, a WOA-Kriging model is constructed according to the optimal parameter θ ∗

searched by WOA and the DOE generated through Latin Hypercube Sampling method in the entire
design space. Secondly, MPP is evaluated by WOA and the evaluation process is treated as solving a
constrained optimization. Thirdly, the active learning method and TIS are adopted together to conduct
the selection of the best next sample and the evaluation of the probability. At this stage, the WOA-
Kriging model is updated according to the enriched DOE. The general sketch of the AWK-TIS is
shown in Fig. 2, and the detailed procedure is proposed as follows:

Step 1: Generation of the initial DOE. Latin Hypercube Sampling (LHS) method is employed to
generate the initial samples in the whole design space. Then, the structural response or the real limit
state function of every initial sample is evaluated. Thus, the initial DOE is composed of the initial
samples and their corresponding responses. The number of the initial samples has an effect on the
accuracy of the WOA-Kriging model; however, there are no certain rules to certificate this number.

Step 2: Construction of the WOA-Kriging model. Construct the WOA-Kriging based on initial
DOE by embedding WOA to DACE toolbox to find the optimal parameter θ ∗. Calculating θ ∗ will
spend a little more computing time, but it is worth since the time consumed for finding accurate
parameters could be ignored compared with that for time-consuming simulations. The initial value
of θ is unnecessary in this metamodel construction, and the correlation function is chosen to be the
Gaussian function.

Step 3: Evaluation of the MPP. The WOA is utilized to calculate the MPP. The notion of reliability
index β, is the minimum distance from the origin to the limit state surface in the standard normal space.
The reliability index can be therefore calculated as the following constrained optimization problem
[9,47,48]:
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Minimize: β = min

√
n∑

i=1

(
x∗

i

)2 = min

√
n∑

i=1

[
(xi − μxi)/σxi

]2

Subject to: Ĝ (x) = 0

(25)

where x denotes the vector of random variants, which is x = (x1, x2, . . . , xn); x∗
i denotes the standard

normal variants; μxi and σxi represent the mean and standard deviation of the random variant xi,
respectively. Ĝ (x) is the limit state function constructed by WOA-Kriging model.

Generation of the initial DOE by LHS

Construction of the WOAKriging
model according to θ* and DOE

Evaluation of MPP by WOA

Generation of NTIS samples according to IS PDF

Evaluation of the WOAKriging prediction

minU(xi)>2

Select the best next
sample x*=minU(xi), and
add it to DOE to update

WOAKriging model

No

threshold
TIS TISδ δ

End

Yes

Yes

No

Evaluation of the learning function U

Enrich NTIS

samples

Caculation and δTIS by TIS with WOAKrigingˆ
fP

Start

<

Figure 2: General sketch of the AWK-TIS algorithm

The problem in Eq. (25) is a constrained nonlinear optimization problem. The aim of constraint
optimization is to search for feasible solutions with better objective values. However, constrained
optimization problems are difficult to solve than unconstrained optimization problems due to the
presence of constraints and their interrelationship between the objective functions. As a result, the
main assignment while solving the constrained optimization problem is to deal with the constraints.

Step 3.1: Construction of unconstrained function

To avoid the violation of constraints, unfeasible solutions should be adapted to feasible solutions.
In the meta-heuristic community, the most common technique is to take advantage of penalty
functions to handle these constraints. Thus, a penalty function is employed to convert the constrained
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optimization problem in Eq. (25) to the unconstrained one in Eq. (26) [21]:

β = min
√

F (x∗) = min

√√√√ n∑
i=1

(
x∗

i

)2 + λĜ (x)
2 (26)

where, λ is the positive penalty coefficient, and its initial value is set to 103 in this paper.

Step 3.2: Calculation of reliability index by WOA

The WOA is adopted to solve the unconstrained function. The inner loop is to find the optimal
solution of the Eq. (26) by WOA, while the outer loop is to make sure that the reliability index β

is accurate enough. Thus, two stop criteria should be satisfied simultaneously as follows. First, the
relative error between the reliability indices in two subsequent outer loop iterations is acceptable [47]:∣∣βk+1 − βk

∣∣ /βk < ζ (27)

where k and k + 1 indicate the k-th and k + 1-th iteration in the outer loop, respectively, and relative
error ζ is a small constant (e.g., 0.01).

Second, it is required that the value of the WOA-Kriging model at the “potential” MPP should
be relatively small which means that the “potential” MPP is rather close to the LSF [48]:

λĜ (x)
2 ≤ χ (28)

where χ is the threshold which is also a small constant (e.g., 0.0001).

If the two criteria above are met simultaneously, the MPP is acquired; otherwise, let λ = 10λ and
go back to Step 3.1. It is noted that in this step the parameters in WOA are remain the same as its
original version.

Step 4: Generation of NIS samples. NIS samples are generated according to importance sampling
density function centered on the MPP found by Step 3. The response of those samples will be evaluated
by WOA-Kriging if the active learning procedure requires it.

Step 5: Conduction of the active learning procedure. Add {xu, G(xu)} into the DOE set to rebuild the
WOA-Kriging model, and evaluate the learning function U among NIS samples. The learning process
continues until the stop criterion, i.e., min(U(xi)) > 2 is satisfied, which means that the probability of
making wrong sign estimation should not exceed 2.3%.

Step 6: Evaluation of the failure probability and the coefficient of variation δTIS. After the WOA-
Kriging metamodel is constructed by the active learning method, the next step is to adopt TIS to
analyze the reliability. The failure probability and the coefficient of variation are estimated δTIS by
Eqs. (15) and (17), respectively, and make sure that the δTIS satisfies the predefined threshold. If δTIS

does not satisfy the threshold, a set of new NIS samples are generated to enrich the original NIS samples.
In this paper, the threshold of the δTIS is taken as 0.05.

Step 7: Output the unbiased estimation of the failure probability. If δTIS satisfies the threshold, i.e.,
δTIS ≤ 0.05 then AWK-TIS terminates, and the failure probability is acquired.

4 Validation Cases

In this section, the efficiency of AWK-TIS is illustrated by four numerical cases and one
engineering case. Each of the cases in this study has only a single failure region, which means only
one MPP in each case. All the case results are averaged over 10 different runs. The accuracy and
efficiency of different algorithms is compared according to the number of calls to the LSF (Ncall),
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δPf (the coefficient of variation of failure probability) and εPf (the relative percentage error of failure
probability in comparison with the reference value).

4.1 Case 1: 2D Application
A 2D numerical case, which has two independent random variables with standard normal

distribution, is chosen to illustrate the process of the proposed method. The limit state function reads

G (u) = 0.5 (u1 − 2)
2 − 1.5 (u2 − 5)

3 − 3 (29)

In the proposed method, an initial Kriging model is constructed based on 12 samples within the
domain of [±6] in u space. The results of different methods are summarized in Table 1. The proposed
method AWK-TIS is compared with AK-IS, MetaAK-IS2, AK-SS. The reference value evaluated by
MCS with 5 × 107 samples is taken from [37], and the value is 2.85 × 10−5. In order to test the robustness
of AWK-TIS, 10 different runs are performed with NIS = 1 × 105 initial samples centered on the MPP
confirmed by WOA. According to Ncall, i.e., the number of calls to the LSF, the proposed AWK-TIS
outperforms the majority of active learning Kriging-based methods except for AK-SS; however, the
δPf, i.e., the coefficient of variation of failure probability of AK-SS is higher than that of AWK-TIS.

Table 1: Results of the 2D application: Case 1

Method Ncall Pf δPf (%) εPf (%)

MCS [37] 5 × 107 2.85 × 10−5 2.64 —
AK-IS [37] 19 + 7 2.86 × 10−5 2.39 0.351
AK-SS [38] 12 + 7 2.85 × 10−5 9.76 0
MetaAK-IS2 [53] 24 + 4 2.87 × 10−5 2.39 0.702
AWK-TIS 12 + 9 2.854 × 10−5 0.78 0.140

Furtherly, the approximation process of the limit state function is schematically illustrated in
Fig. 3, including LSF (green line), Kriging model (red dotted line), initial samples (black fork dots),
added samples (pink circle) and MPP (blue hexagon). Moreover, the MPP searched by WOA is located
almost in the same position after 5 iterations while the enriched DOE are updated sequentially by U
learning function. The convergence process of failure probability Pf and the C.O.V of Pf for AWK-TIS
are presented in Fig. 4.

It can be seen from Figs. 3 and 4 that these newly computed samples are located in the vicinity
of the limit state function and are used to improve the accuracy of Kriging metamodel. Moreover,
AWK-TIS requires much less performance function computations than AK-IS. Indeed, AWK-TIS
needs 9 computations of real limit state function after the construction of Kriging model by ini-
tial DOE.

As described in Section 2.4, the WOA is adopted to acquire the correlation parameter θ . The
number of search agents is 25, the number of iterations is set to 100, and other parameters in WOA are
remaining as the original form. Fig. 5 depicts the convergence of the Kriging correlation parameter
θ shown in Eq. (8) when the update process of the WOA-Kriging model is stopped. Moreover, Fig. 5
shows that the maximum likelihood estimation of θ convergence to the minimum value of 6.49 × 10−6

at the 16th iteration, and the optimum θ is found at this point. Compared with PSO and GA, the WOA
shows its high convergence speed and calculation accuracy.
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Figure 3: The approximation process of the LSF for case 1
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4.2 Case 2: A Cantilever Beam Example
This case has been widely used in literature [38]. The cantilever beam, which has a rectangular

cross-section, is subjected to a distributed uniform load. The limit state function which is defined by
the maximum vertical displacement of the beam is given as

G (x) = 0.01846154 − 74.76923x1/x3
2 (30)

where x1 and x2 are assumed to be independent random variables following normal distribution. The
statistical properties of the above two variables are shown in Table 2. The results obtained by the
proposed AWK-TIS, MSC, AK-MCS, and AK-SS are listed in Table 3.
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Table 2: Statistical properties of the variables for case 2

Variable Mean Variation coefficient Distribution

x1 1000 Mpa 0.2 Normal
x2 250 mm 0.15 Normal

Table 3: Results of case 2

Method Ncall Pf δPf (%) εPf (%)

MCS [38] 1 × 106 9.51 × 10−3 1.02 —
AK-MCS [38] 33 9.52 × 10−3 4.63 0.105
AK-SS [38] 28 9.51 × 10−3 4.92 0
AWK-TIS 12 + 16 9.525 × 10−3 0.58 0.157

From Table 3, it can be seen that the Ncall of the proposed AWK-TIS is the same as that of AK-SS,
but it is less than the number of samples applied in AK-MCS. Besides, the one can see that all the Pf

calculated by the different methods have high accuracy comparing with the MCS solution. However,
the coefficient of variation of failure probability of AWK-TIS is the smallest in the four methods.

Similarly to Figs. 3 and 4, Fig. 6 shows the final approximation of AWK-TIS and Fig. 7 shows the
convergence process of failure probability and the C.O.V of failure probability. As shown in Fig. 6, the
added samples are almost in the vicinity of the real LSF, and the LSF constructed by Kriging can be
accurately approximated in the domain of the sampling region. On the contrary, the Kriging model
shows inexact outside the sampling region. Nevertheless, it should be indicated that the region outside
the sampling area has little influence on the failure probability calculation due to the MPP is far away
from this area. From Fig. 7, the proposed method has converged to the final results at about 12 added
samples, which indicates the efficiency and accuracy of the AWK-TIS.
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Figure 6: The approximation of the LSF for case 2
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Figure 7: Convergence process of Pf and C.O.V of Pf for case 2

4.3 Case 3: A Non-Linear Oscillator
A non-linear undamped single degree of freedom system depicted in Fig. 8 is analyzed in this case.

The limit state function is given as [54]

G (C1, C2, M, R, T1, F1) = 3R −
∣∣∣∣ 2F1

Mω2
0

sin
(

ω0T1

2

)∣∣∣∣ (31)

where ω0 = √
(C1 + C2) /M. Six random input variables including C1, C2, M, R, T 1, and F 1 are listed

in Table 4. The initial number of DOE is set as 20. The AWK-TIS is compared with several other
existing methods (MCS, AK-MCS, PAK-Bn [54]) and their results are listed in Table 5. Same as the
two cases above, the reference values to compare the reliability analysis results are the Pf ,, C.O.V of Pf ,

δPf, εPf, estimated by MCS.

z(t)

F(t)

F(t)

F1

T1 t

C1

C2

Figure 8: A non-linear oscillator

Table 4: Statistical properties of the variables for case 3

Variable Mean Standard deviation Distribution

M 1 0.05 Normal
C1 1 0.1 Normal
C2 0.1 0.1 Normal
R 0.5 0.1 Normal

(Continued)



1472 CMES, 2023, vol.135, no.2

Table 4 (continued)

Variable Mean Standard deviation Distribution

T 1 1 0.2 Normal
F 1 0.6 0.2 Normal

Table 5: Results of case 3

Method Ncall Pf δPf (%) εPf (%)

MCS [54] 1.0 × 106 5.46 × 10−4 4.28 —
AK-MCS [54] >300 5.49 × 10−4 4.81 0.549
PAK-Bn [54] 20 + 106 5.50 × 10−4 4.78 0.732
AWK-TIS 20 + 59 5.36 × 10−4 0.071 1.832

It can be seen from Table 5 that although the relative error of failure probability obtained by
the proposed method is slightly larger than that of AK-MCS and PAK-Bn, the Ncall of AWK-TIS is
significantly reduced contrasted with that of the two methods above. Additionally, the C.O.V of failure
probability is rather small compared with the other three methods. Hence, it indicates that AWK-TIS
could solve the problem of small failure probability with a moderate number of random variables.

Equally, Fig. 9 presents the convergence process of failure probability and C.O.V of failure
probability of this case. From Fig. 9, one can see that the failure probability has converged with almost
50 added samples, which means that the proposed AWK-TIS is suitable for the calculation of the small
failure probability.
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Figure 9: Convergence process of Pf and C.O.V of Pf for case 3

4.4 Case 4: A Roof Truss Structure
A roof truss structure, which is selected to verify the proposed method, is shown in Fig. 10.

The roof truss undertaking the uniformly distributed load q that can be converted to the nodal load
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P = ql/4. The response of the roof truss is the perpendicular deflection �C of node C is denoted as [55]:

�C = ql2

2

(
3.81

ACEC

+ 1.13
ASES

)
(32)

where AC, AS, EC, ES respectively are sectional area, elastic modulus concrete and steel bars, l is the
length of the structure. The mean and variation coefficient of the six independent normal distribution
random variables are reported in Table 6. The threshold of �C should not be larger than 0.03 m, and
the LSF of this case is thus defined as

G (x) = 0.03 − �C (33)
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Figure 10: The schematic diagram of a roof truss

Table 6: Statistical properties of the variables for case 3

Variable Mean Variation coefficient Unit

q 2 × 104 0.07 N/m
l 12 0.01 m
AS 9.82 × 10−4 0.06 m2

AC 0.04 0.12 m2

ES 1 × 1011 0.06 N/m2

EC 2 × 1010 0.06 N/m2

The AWK-TIS is compared with other existing methods (MCS, AK-MCS, KAIS, RBF) and
the results are summarized in Table 7. The results by MCS calculations with 1.06 × 106 samples are
regarded as reference values in this case.

Table 7: Results of case 4

Method Ncall Pf δPf εPf (%)

MCS [55] 1.06 × 106 9.395 × 10−3 0.01 —
AK-MCS [55] 12 + 255 9.460 × 10−3 0.05 0.692
KAIS [55] 28 + 72 + 115 9.365 × 10−3 0.05 0.319

(Continued)
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Table 7 (continued)

Method Ncall Pf δPf εPf (%)

RBF [25] 12 + 143 9.736 × 10−3 / 3.629
AWK-TIS 20 + 79 9.357 × 10−3 0.01 0.404

It can be seen from Table 7 that AWK-TIS needs only 99 Ncall to acquire a satisfactory result while
the other three approaches demand more than 150 Ncall. The small Ncall has highlighted the numerical
efficiency of the proposed approach in estimating the roof truss structure. Furthermore, the AWK-TIS
has the second relative error of 0.404% comparing with the reference value of Pf evaluated by MCS,
followed by AK-MCS and RBF.

By investigating the convergence process of Pf and C.O.V of Pf presented in Fig. 11, we can see that
both of the curves converged at about 25 added samples, which means that the proposed AWK-TIS
is suitable for dealing with small failure probabilities and relatively large number of random variables.
Additionally, the convergence threshold can be advisably loosed to further improve computational
efficiency.
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Figure 11: Convergence process of Pf and C.O.V of Pf for case 4

4.5 Case 5: A Jet Vane Manipulation Mechanism
Vertical launch missile is widely used on land air defense and sea air defense. The performance

of a jet vane system is extremely vital to the flying control of vertical launch missile. As a significant
component of the jet van system, the manipulation mechanism drives the rudder rotating in the engine
gas flow that generates pitch moment to control the orientation of the missile, which is shown in
Fig. 12a. The manipulate mechanism convers the linear motion of the servo motor to the rotation of
the jet van, and the schematic of this mechanism is shown in Fig. 12b.
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Figure 12: A jet van manipulation mechanism

In Fig. 12b, A and B represent the positions of the two ends of the linkage respectively, and C is
the center of the shaft. L1 and L2 are the length of linkage and rocker respectively. L3 is the distance
between A and C along the X -axial. a is the distance between A and C. S is the maximum displacement
of A along the negative direction of X -axial, and Al, Bl are the left limit position of the linkage. θ 2 is
the angle between the BC and the X -axial, and it is the function of L1, L2, L3, a and S, which is shown
in Eq. (34)

θ2 = π − arctan
(

a − L1 sin θ1

L3 − S − L1 cos θ1

)
(34)

where θ 1 is the angle between the linkage and the X-axial.

In this case, the linkage length L1, the length of the rocker L2, the distance between A and C along
the X-axial L3, and the maximum displacement of linear servo system S are taken as random variables.
Table 8 lists the details of random variables. To assure the normal operation of the manipulation
mechanism, the maximum angle of the rudder shaft should not exceed a given threshold. Therefore,
the limit state function is defined as

G (X) = θm − θ2 (X) (35)

where θm is the threshold of the maximum angle of the rudder shaft which is taken as 118.2°, θ 2(X)
is the maximum angle of the rudder shaft which is calculated by solving Eq. (34), the X represents all
the random variables.

Table 8: Statistical properties of the variables for case 5

Variable Mean Standard deviation Unit

L1 82 0.017 mm
L2 42 0.033 mm
L3 80.5 0.033 mm
S 21 0.033 mm
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The results of the different methods are shown in Table 9, in which results estimated by the AK-
MCS and AK-IS methods are also provided for the sake of comparison. Besides, the calculation times
or CPU-time of different AK-based algorithm are also exhibited in this table. The sample pool of the
MCS, AK-MCS and AK-IS are 5 × 107, 5 × 106 and 4 × 106, respectively.

Table 9: Results of the case 5

Method Ncall Pf δPf (%) εPf (%) CPU-time (s)

MCS 5 × 107 8.384 × 10−5 1.543 — /
AK-MCS 45 8.580 × 10−5 4.828 2.337 70.311
AK-IS 8 + 34 8.799 × 10−5 4.933 4.949 84.258
AWK-TIS 12 + 24 8.325 × 10−5 0.585 0.704 80.624

Table 9 shows that the predictive accuracy of the AWK-TIS notably outperforms the other two
AK methods considering the relative error of failure probability. Besides, the Ncall is less than that of
AK-MCS and AK-IS, which indicates that the proposed AWK-TIS can solve real engineering problem
efficiently. From the CPU-time results, it is concluded that although the process of optimizing Kriging
model by WOA algorithm additionally increases the computational time, the utilization of the TIS
method reduces the calculation time.

The convergence of failure probability and coefficient of variation of failure probability is
presented in Fig. 13. From Fig. 13, the Pf and C.O.V of Pf have converged to the final results at about
the 10 added samples. Thus, the computational performance of the AWK-TIS when dealing with this
case can be improved with a loose stopping criterion.
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Figure 13: Convergence process of Pf and C.O.V of Pf for case 5

5 Conclusions

The AWK-TIS method is proposed as a novel reliability method to deal with structural reliability
problems, in which the WOA is performed to seek the optimum correlation parameter of Kriging
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model and the MPP, and then the added samples generated by U learning function are enriched to
DOE to refine the Kriging model. The MPP is calculated by WOA through solving the constrained
nonlinear optimization problem until certain two thresholds are satisfied simultaneously. Afterward,
the TIS method is applied to calculate the failure probability and coefficient of variation of the failure
probability. In AWK-TIS, the sample pool is much smaller than that of AK-IS, which significantly
expedites the learning efficiency. Five test cases including four numerical cases and one engineering
case are adopted to verify the performance of the AWK-TIS method. Results prove that the proposed
method can achieve high computational accuracy and efficiency.

AWK-TIS method has two main drawbacks: (1) AWK-TIS, like AK-IS, is dependent on the MPP
to ensure the next best point; however, the solitary sampling center has confined its employment in
dealing with multi-MPP problems, (2) the process of acquiring the MPP is transformed to solve the
constrained nonlinear optimization problem, which may affect the efficiency of the proposed method,
(3) due to the restriction of IS-based algorithm, the proposed algorithm does have some defects in
dealing with high-dimensional problems. Future works will focus on three aspects: (1) adopt other
efficient sampling methods in lieu of TIS to solve multi-MPP problems, (2) improve the efficiency of
WOA by hybridising other optimizers or employing other more effective optimization algorithms to
solve the constrained optimization problem to obtain the MPP, (3) alternative modeling and analysis
methods need to be incorporated for effective validation of AWK-TIS to high-dimensional problems.
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