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ABSTRACT

A new three-parameter discrete distribution called the zero-inflated cosine geometric (ZICG) distribution is
proposed for the first time herein. It can be used to analyze over-dispersed count data with excess zeros. The basic
statistical properties of the new distribution, such as the moment generating function, mean, and variance are
presented. Furthermore, confidence intervals are constructed by using the Wald, Bayesian, and highest posterior
density (HPD) methods to estimate the true confidence intervals for the parameters of the ZICG distribution.
Their efficacies were investigated by using both simulation and real-world data comprising the number of daily
COVID-19 positive cases at the Olympic Games in Tokyo 2020. The results show that the HPD interval performed
better than the other methods in terms of coverage probability and average length in most cases studied.
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1 Introduction

Over-dispersed count data with excess zeros occur in various situations, such as the number of
torrential rainfall incidences at the Daegu and the Busan rain gauge stations in South Korea [1],
the DMFT (decayed, missing, and filled teeth) index in dentistry [2], and the number of falls in a
study on Parkinson’s disease [3]. Classical models such as Poisson, geometric, and negative binomial
(NB) distributions may not be suitable for analyzing these data, so two classes of modified count
models (zero-inflated (ZI) and hurdle) are used instead. Both can be viewed as finite mixture models
comprising two components: for the zero part, a degenerate probability mass function is used in both,
while for the non-zero part, a zero-truncated probability mass function is used in hurdle models and
an untruncated probability mass function is used in ZI models. Poisson and geometric hurdle models
were proposed and used by [4] to analyze data on the daily consumption of various beverages; in
the intercept-only case (no regressors appear in either part of the model), the ZI model is equivalent
to the hurdle model, with the estimation yielding the same log-likelihood and fitted probabilities.
Furthermore, several comparisons with classical models have been reported in the literature. The
efficacies of ZI and hurdle models have been explored by comparing least-squares regression with
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transformed outcomes (LST), Poisson regression, NB regression, ZI Poisson (ZIP), ZINB, zero-altered
Poisson (ZAP) (or Poisson hurdle), and zero-altered NB (ZANB) (or NB hurdle) models [5]; the
results from using both simulated and real data on health surveys show that the ZANB and ZINB
models performed better than the others when the data had excess zeros and were over-dispersed.
Recently, Feng [6] reviewed ZI and hurdle models and highlighted their differences in terms of their
data-generating process; they conducted simulation studies to evaluate the performances of both types
of models, which were found to be dependent on the percentage of zero-deflated data points in the data
and discrepancies between structural and sampling zeros in the data-generating process.

The main idea of a ZI model is to add a proportion of zeros to the baseline distribution [7,8],
for which various classical count models (e.g., ZIP, ZINB, and ZI geometric (ZIG)), are available.
These have been studied in several fields and many statistical tools have been used to analyze them.
The ZIP distribution originally proposed by [9] has been studied by various researchers. For instance,
Ridout et al. [10] considered the number of roots produced by 270 shoots of Trajan apple cultivars (the
number of shoots entries provided excess zeros in the data), and analyzed the data by using Poisson,
NB, ZIP, and ZINB models; the fits of these models were compared by using the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC), the results of which show that ZINB
performed well. Yusuf et al. [11] applied the ZIP and ZINB regression models to data on the number
of falls by elderly individuals; the results show that the ZINB model attained the best fit and was the
best model for predicting the number of falls due to the presence of excess zeros and over-dispersion in
the data. Iwunor [12] studied the number of male rural migrants from households by using an inflated
geometric distribution and estimated the parameters of the latter; the results show that the maximum
likelihood estimates were not too different from the method of moments values. Kusuma et al. [13]
showed that a ZIP regression model is more suitable than an ordinary Poisson regression model for
modeling the frequency of health insurance claims.

The cosine geometric (CG) distribution, a newly reported two-parameter discrete distribution
belonging to the family of weighted geometric distributions [14], is useful for analyzing over-dispersed
data and has outperformed some well-known models such as Poisson, geometric, NB, and weighted
NB. In the present study, the CG distribution was applied as the baseline and then a proportion of zeros
was added to it, resulting in a novel three-parameter discrete distribution called the ZICG distribution.

Statistical tools such as confidence intervals provide more information than point estimation and
p-values for statistical inference [15]. Hence, they have often been applied to analyze ZI count data.
For example, Wald confidence intervals for the parameters in the Bernoulli component of ZIP and
ZAP models were constructed by [16], while Waguespack et al. [17] provided a Wald-based confidence
interval for the ZIP mean. Moreover, Srisuradetchai et al. [18] proposed the profile-likelihood-based
confidence interval for the geometric parameter of a ZIG distribution. Junnumtuam et al. [19]
constructed Wald confidence intervals for the parameters of a ZIP model; in an analysis of the number
of daily COVID-19 deaths in Thailand using six models: Poisson, NB, geometric, Gaussian, ZIP,
and ZINB, they found that the Wald confidence intervals for the ZIP model were the most suitable.
Furthermore, Srisuradetchai et al. [20] proposed three confidence intervals: a Wald confidence interval
and score confidence intervals using the profile and the expected or observed Fisher information for
the Poisson parameter in a ZIP distribution; the latter two outperformed the Wald confidence interval
in terms of coverage probability, average length, and the coverage per unit length.

Besides the principal method involving maximum likelihood estimation widely used to estimate
parameters in ZI count models, Bayesian analysis is also popular. For example, Cancho et al. [21]
provided a Bayesian analysis for the ZI hyper-Poisson model by using the Markov chain Monte Carlo
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(MCMC) method; they used some noninformative priors in the Bayesian procedure and compared
the Bayesian estimators with maximum likelihood estimates obtained by using the Newton-Raphson
method and found that all of the estimates were close to the real values of the parameters as the sample
size was increased, which means that their biases and mean-squared errors (MSEs) approached zero
under this circumstance. Recently, Workie et al. [22] applied the Bayesian analytic approach by using
MCMC simulation and Gibbs’ sampling algorithm for modeling the Bayesian ZI regression model
determinants to analyze under-five child mortality.

Motivated by these previous studies, we herein propose Wald confidence intervals based on
maximum likelihood estimation, Bayesian credible intervals, and highest posterior density (HPD)
intervals for the three parameters of a ZICG distribution. Both simulated data and real-world data
were used to compare the efficacies of the proposed methods for constructing confidence intervals via
their coverage probabilities and average lengths.

2 Methodology
2.1 The ZICG Distribution

The CG distribution is a two-parameter discrete distribution belonging to the family of weighted
geometric distributions [14]. The probability mass function (PMF) for a CG distribution is given by

P(Y = y) = Cp,θpy[cos(yθ)]2, y ∈ N, (1)

where θ ∈ [
0, π

2

]
and

Cp,θ = 2(1 − p)(1 − 2p cos(2θ) + p2)

2 + p((p − 3) cos(2θ) + p − 1)
.

If θ = 0, then we can obtain Cp,θ = 1 − p and Y is a standard geometric distribution. Let X be a
random variable following a ZICG distribution with parameters ω ∈ (0, 1), p ∈ (0, 1), and θ ∈ [

0, π

2

]
.

Subsequently, we can construct a new three-parameter discrete distribution with CG as the baseline
distribution, and so the pmf of X is given by

P (X = x) =
{

ω + (1 − ω)Cp,θ x = 0
(1 − ω)Cp,θpx[cos(xθ)]2 x = 1, 2, 3, . . .

, (2)

where ω is the probability of zeros and 0 ≤ ω ≤ 1. Moreover, one can easily prove
∑∞

x=0P (X = x) = 1.
Fig. 1 provides pmf plots for the ZICG distribution for different parameter combinations. It can be
seen that even though the proportion of zeros (ω) is small (i.e., ω = 0.1), the probability of zeros is
still high; e.g., ω = 0.1, p = 0.5, and θ = 1 provides P(X = 0) > 0.5. Moreover, when p is large, the
dispersion is high. Overall, the ZICG distribution, which is suitable for data that are over-dispersed
with excess zeros, can be used to analyze ZI count data.

2.2 Statistical Properties
This section provides the cumulative distribution function (CDF), moment generating function

(MGF), mean, and variance of a ZICG distribution, which are derived from the CG distribution [14].
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Figure 1: Pmf plots of the ZICG distribution for different values of the parameters ω, p, and θ

Proposition 2.1. The cdf of a ZICG distribution with parameters ω, p, and θ is given by

F (m) = P (X ≤ m) =
∑m

k=0
P (X = k) = ω +

∑m

k=0
(1 − ω) Cp,θpk [cos (kθ)]2

= ω + (1 − ω) Cp,θ

∑m

k=0
pk [cos (kθ)]2

= ω + (1 − ω) Cp,θ

∑m

k=0
pk

(
1 + cos(2kθ)

2

)
= ω + (1 − ω)

Cp,θ

2

[∑m

k=0
pk + Re

(∑m

k=0

(
pei2θ

)k
)]

= ω + (1 − ω)
Cp,θ

2

[
1 − pm+1

1 − p
+ Re

[
1 − pm+1ei2(m+1)θ

1 − pei2θ

]]
= ω + (1 − ω)

Cp,θ

2

[
1 − pm+1

1 − p
+ 1 − pm+1 cos(2(m + 1)θ) − p cos(2θ) + pm+2 cos(2mθ)

1 − 2p cos(2θ) + p2

]
. (3)
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Proposition 2.2. The mgf of the ZICG distribution with parameters ω, p, and θ is given by

MX (t) = E
(
etX

) =
∑∞

k=0
etkP (X = k)

= e0
(
ω + (1 − ω) Cp,θ

) +
∑∞

k=1
etk (1 − ω) Cp,θpk [cos (kθ)]2

= ω + (1 − ω) Cp,θ + (1 − ω) Cp,θ

∑∞

k=1

(
pet

)k
[cos (kθ)]2

= ω + (1 − ω) Cp,θ

∑∞

k=0

(
pet

)k
[cos (kθ)]2

= ω + (1 − ω) Cp,θ

∑∞

k=0

(
pet

)k
(

1 + cos(2kθ)

2

)
= ω + (1 − ω)

Cp,θ

2

[∑∞

k=0

(
pet

)k + Re
(∑∞

k=0

(
petei2θ

)k
)]

= ω + (1 − ω)
Cp,θ

2

[
1

1 − pet
+ 1 − pet cos(2θ)

1 − 2pet cos(2θ) + (pet)2

]
. (4)

Since the explicit expression for the moment using equality is μ′
r = E(X r) = M (r)(t) |t=0, then the

first two moments respectively become

M ′
X (t) = (1 − ω) pet Cp,θ

2

[
1

(1 − pet)2
+ cos(2θ)(1 + p2e2t) − 2pet

(1 − 2pet cos(2θ) + (pet)2)2

]
, (5)

M ′′
X (t) = (1 − ω) pet Cp,θ

2

[(
1 + pet

(1 − pet)3

)
− cos(2θ)((pet)4 − 1) + (pet)3(cos(4θ − 3))

(1 − 2pet cos(2θ) + (pet)2)3

+ pet(3 − cos(4θ))

(1 − 2pet cos(2θ) + (pet)2)3

]
. (6)

Since M ′
X(t = 0) = E(X), then

E (X) = (1 − ω) p
Cp,θ

2

[
1

(1 − p)2
+ cos(2θ)(1 + p2) − 2p

(1 − 2p cos(2θ) + p2)2

]
, (7)

and M ′′
X(t = 0) = E(X 2), then

E
(

X2
)

= (1 − ω) p
Cp,θ

2

[
1 + p

(1 − p)3 − cos(2θ)(p4 − 1) + p3(cos(4θ − 3))

(1 − 2p cos(2θ) + p2)3 + p(3 − cos(4θ))

(1 − 2p cos(2θ) + p2)3

]
. (8)

Since V(X) = E(X 2) − (E(X))2, then

V (X) = (1 − ω) p
Cp,θ

2

[
1 + p

(1 − p)3
− cos(2θ)(p4 − 1) + p3(cos(4θ − 3)) + p(3 − cos(4θ))

(1 − 2p cos(2θ) + p2)3

]
−

[
(1 − ω) p

Cp,θ

2

[
1

(1 − p)2
+ cos(2θ)(1 + p2) − 2p

(1 − 2p cos(2θ) + p2)2

]]2

. (9)

The index of dispersion (D), a measure of dispersion, is defined as the ratio of the variance to the
mean

D = V(X)

E(X)
. (10)
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The values of D for selected values of the parameters ω, p, and θ are provided in Table 1. When
the value of parameter p increases, the index of dispersion also increases, and so the value of p affects
D much more than parameters ω and θ .

Table 1: Index of dispersion of the ZICG distribution for different values of parameters

ω p = 0.1 p = 0.5 p = 0.9

θ = 1 θ = 3 θ = 5 θ = 1 θ = 3 θ = 5 θ = 1 θ = 3 θ = 5

0.1 1.2456 1.1078 1.7272 2.7955 1.7121 2.7514 11.4168 13.8715 11.3870
0.2 1.2491 1.1185 1.7296 2.8589 1.7963 2.8172 12.2676 14.5714 12.2392
0.3 1.2525 1.1293 1.7319 2.9222 1.8804 2.8831 13.1184 15.2713 13.0915
0.4 1.2560 1.1401 1.7343 2.9855 1.9645 2.9490 13.9691 15.9712 13.9437
0.5 1.2595 1.1508 1.7367 3.0489 2.0487 3.0149 14.8199 16.6711 14.7960
0.6 1.2629 1.1616 1.7390 3.1122 2.1328 3.0808 15.6707 17.3710 15.6482
0.7 1.2664 1.1724 1.7414 3.1756 2.2169 3.1466 16.5215 18.0708 16.5004
0.8 1.2699 1.1831 1.7437 3.2389 2.3010 3.2125 17.3723 18.7707 17.3527
0.9 1.2733 1.1939 1.7461 3.3023 2.3852 3.2784 18.2231 19.4706 18.2049

2.3 Maximum Likelihood Estimation for the ZICG Model with No Covariates
The likelihood function of the ZICG distribution is

L (ω, p, θ) =
∏n

i=1

[
ωi + (1 − ωi) Cpi ,θ

]I
(xi=0)

∏n

i=1

[
(1 − ωi) Cpi ,θp

xi [cos (xiθ)]2]I
(xi>0) , (11)

while the log-likelihood function of the ZICG distribution can be expressed as

l =
∑n

i=1
log

[
ωi + (1 − ωi) Cpi ,θ

]I(xi=0) +
∑n

i=1
log

[
(1 − ωi) Cpi ,θp

xi (cos (xiθ))
2
]I(xi>0) . (12)

In the case of a single homogeneous sample (p, θ , and ω are constant or have no covariates), the
log-likelihood function can be written as

l = n0 log
(
ω + (1 − ω) Cp,θ

) +
∑J

j=1
nj log

[
(1 − ω) Cp,θpj (cos (jθ))

2
]

, (13)

where J is the largest observed count value; nj is the frequency of each possible count value; j = x =
0, 1, 2, . . . , J; n0 is the number of observed zeros; and

∑J

j=0nj = n is the total number of observations
or the sample size. Based on log-likelihood function (13), maximum likelihood estimates ω̂, p̂, and �̂

are the roots of equations ∂l
∂ω

= 0, ∂l
∂p

= 0, and ∂l
∂θ

= 0, respectively.

Here, we have

∂l
∂ω

= n0

(
1 − Cp,θ

)
ω + (1 − ω) Cp,θ

+
∑J

j=1

nj

(−Cp,θpj (cos (jθ))
2
)

(1 − ω) Cp,θpj (cos (jθ))
2

= n0

(
1 − Cp,θ

)
ω + (1 − ω) Cp,θ

−
∑J

j=1

nj

(1 − ω)
, (14)
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∂l
∂p

= n0 (1 − ω) C(p)

p,θ

ω + (1 − ω) Cp,θ

+
∑J

j=1

nj (1 − ω) (cos (jθ))
2
(
Cp,θ jpj−1 + pjC(p)

p,θ

)
(1 − ω) Cp,θpj (cos (jθ))

2

= n0 (1 − ω) C(p)

p,θ

ω + (1 − ω) Cp,θ

+
∑J

j=1

nj × j
p

+
∑J

j=1

njC
(p)

p,θ

Cp,θ

, (15)

∂l
∂θ

= n0 (1 − ω) C(θ)

p,θ

ω + (1 − ω) Cp,θ

+
∑J

j=1
nj

[
Cp,θ

(θ)

Cp,θ

− 2j
sin (jθ)

cos (jθ)

]
= n0 (1 − ω) C(θ)

p,θ

ω + (1 − ω) Cp,θ

+
∑J

j=1
nj

[
Cp,θ

(θ)

Cp,θ

− 2j tan (jθ)

]
. (16)

Algorithm 1: Obtaining the maximum likelihood estimates of ω, p, and θ .
1. Fit a geometric model to obtain initial value p(0) for p of the CG model.
2. Fit a CG model to obtain initial values p(1) for p and θ (1) for θ of the ZICG model.
3. Iterate the schemes for p̂ and �̂ until convergence by using stopping rule | p̂(m+1) − p̂(m) |< ε,

where
p̂(m) and p̂(m+1) are estimates of p at the (m)

th and (m + 1)
th iterations, respectively.

4. Obtain ω̂ by substituting p̂ and �̂ for p and θ .

This provides the closed-form expression for ω̂, and so iteration is not required. However, since
there are no closed-form expressions for p̂ and �̂, they are solved by using an educated version of trial-
and-error. The general idea is to start with an initial educated guess of the parameter value, calculate
the log-likelihood for that value, and then iteratively find parameter values with larger and larger
log-likelihoods until no further improvement can be achieved. There are a variety of fast and reliable
computational algorithms for carrying out these procedures, one of the most widely implemented
being the Newton-Raphson algorithm [23]. In this study, the maximum likelihood estimates of p̂, ω̂,
and �̂ can be obtained by solving the resulting equations simultaneously by using the nlm function
in [24].

2.4 The Wald Confidence Intervals for the ZICG Parameters
In this study, we assume that there is more than one unknown parameter. Meanwhile, the assumed

parameter vector is β̃ = (β1, . . . , βk)
T and the maximum likelihood estimator for it is β̂i; i = 1, 2, . . . , k,

where k is the number of parameters. Thus,

β̂i − βi

se
(
β̂i

) ∼ N (0, 1) , (17)

where standard error se
(
β̂i

) =
√[

I−1
(
β̂i

)]
ii

and
[
I−1

(
β̂i

)]
ii

is the inverse of the expected Fisher
information matrix for parameter order i. When n is large enough, the observed information converges
in probability to the expected information according to the law of large numbers, at which point the
expected Fisher information matrix is replaced by the observed Fisher information matrix. Since the
ZICG distribution has three parameters (i.e., β1 = ω, β2 = p, and β3 = θ ), then the elements of
observed Fisher information matrix J(β1,β2,β3) = J(ω,p,θ) are given by
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J(ω,p,θ) = −
⎡⎣Jωω Jωp Jωθ

Jpω Jpp Jpθ

Jθω Jθp Jθθ

⎤⎦ , (18)

where

Jωω = ∂2l
∂ω2

, Jωp = Jpω = ∂2l
∂ω∂p

, Jωθ = Jθω = ∂2l
∂ω∂θ

Jpp = ∂2l
∂p2

, Jpθ = Jθp = ∂2l
∂p∂θ

, Jθθ = ∂2l
∂θ 2

,

∂2l
∂ω2

= − n0(1 − Cp,θ )
2

(ω + (1 − ω)Cp,θ )2
−

∑J

j=1nj

(1 − ω)2
, (19)

∂2l
∂p2

= (ω + (1 − ω)Cp,θ )n0(1 − ω)(C(p)

p,θ )
(p)

(ω + (1 − ω)Cp,θ )2
− (n0(1 − ω)C(p)

p,θ )((1 − ω)C(p)

p,θ )

(ω + (1 − ω)Cp,θ )2

−
∑J

j=1nj × j

p2
+

∑J

j=1
nj

Cp,θ (C
(p)

p,θ )
(p) − (C(p)

p,θ )
2

(Cp,θ )2
, (20)

where C(p)

p,θ = ∂Cp,θ

∂p
, and

(
C(p)

p,θ

)(p) = ∂C(p)
p,θ

∂p
.

∂2l
∂θ 2

= (ω + (1 − ω)Cp,θ )n0(1 − ω)(C(θ)

p,θ )
(θ)

(ω + (1 − ω)Cp,θ )2
− (n0(1 − ω)C(θ)

p,θ )((1 − ω)C(θ)

p,θ )

(ω + (1 − ω)Cp,θ )2

+
∑J

j=1
nj

[
Cp,θ (C

(θ)

p,θ )
(θ) − (C(θ)

p,θ )
2

(Cp,θ )2
− 2j2 sec2 (jθ)

]
, (21)

where C(θ)

p,θ = ∂Cp,θ

∂θ
, and

(
C(θ)

p,θ

)(θ) = ∂C(θ)
p,θ

∂θ
.

∂2l
∂ω∂p

= (ω + (1 − ω)Cp,θ )(−n0C
(p)

p,θ ) − (n0(1 − Cp,θ ))((1 − ω)C(p)

p,θ )

(ω + (1 − ω)Cp,θ )2
, (22)

∂2l
∂ω∂θ

= (ω + (1 − ω)Cp,θ )(−n0C
(θ)

p,θ ) − (n0(1 − Cp,θ ))((1 − ω)C(θ)

p,θ )

(ω + (1 − ω)Cp,θ )2
, (23)

∂2l
∂p∂θ

= (ω + (1 − ω)Cp,θ )n0(1 − ω)(C(p)

p,θ )
(θ) − (n0(1 − ω)C(p)

p,θ )((1 − ω)C(θ)

p,θ )

(ω + (1 − ω)Cp,θ )2

+
∑J

j=1
nj

Cp,θ (C
(p)

p,θ )
(θ) − C(p)

p,θ C
(θ)

p,θ

(Cp,θ )2
. (24)

Hence, the (1 − α) 100% Wald confidence interval can be constructed as

β̂i ± z1− α
2

√[
J−1

(
β̂i

)]
ii
, (25)

where z1− α
2

is the
(
1 − α

2

)
100th percentile of a standard normal distribution. The maximum likelihood

estimators and their standard errors for ZICG can be obtained by using the nlm function, which
minimizes them by using a Newton-type algorithm [24]. Thus, the simplified algorithm for the Wald
confidence intervals for the ZICG parameters becomes
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Algorithm 2: Establishing the Wald confidence intervals for the ZICG parameters.
1. Fit a geometric model to obtain initial value p(0) for p of the CG model.
2. Fit a CG model by using the nlm function to obtain initial values p(1) for p and θ (1) for θ , and

then plug in p(1) and θ (1) to obtain ω(1).
3. Fit the ZICG model by using the initial values from Step 2 to obtain ω̂, p̂, and �̂ and their

standard errors.
4. Calculate the Wald confidence intervals for the parameters of the ZICG distribution by

substituting in the estimates from Step 3.

2.5 Bayesian Analysis for the Confidence Intervals for the ZICG Parameters
Suppose X = x1, x2, . . . , xn is a sample from ZICG(ω, p, θ), then the likelihood function for the

observed data is given by

L (data | ω, p, θ) =
∏n

i=1

[
ωi + (1 − ωi) Cpi ,θi

]I
(xi=0)

∏n

i=1

[
(1 − ωi) Cpi ,θi p

xi [cos (xiθi)]
2]I

(xi>0) . (26)

Let A = xi : xi = 0, i = 1, . . . , n and m be the numbers in set A, then the likelihood function for
ZICG can be written as

L [ω, p, θ ] = [
ω + (1 − ω) Cp,θ

]m
(1 − ω)

n−m
∏
xi /∈A

Cp,θpxi [cos (xiθ)]2 . (27)

Since the elements in set A can be generated from two different parts: (1) the real zeros part and
(2) the CG distribution, after which the an unobserved latent allocation variable can be defined as

Ii =
{

1; p(ω, p, θ)

0; 1 − p(ω, p, θ)
, (28)

where i = 1, . . . , m and

p (ω, p, θ) = ω

ω + (1 − ω) p (0 | p, θ)
. (29)

Thus, the likelihood function based on augmented data D = {X , I}, where I = (I1, . . . , Im) [25]
becomes

L [ω, p, θ | D] = L [ω, p, θ ]
∏m

i=1
p (ω, p, θ)

Ii (1 − p (ω, p, θ))
1−Ii

= ωS (1 − ω)
n−S p (0 | p, θ)

m−S
∏
xi /∈A

p (xi | p, θ) , (30)

where S = ∑m

i=1Ii ∼ Bin [m, p (ω, p, θ)]. Thus, the likelihood function for ZICG based on the
augmented data becomes

L [ω, p, θ | D] ∝ ωS (1 − ω)
n−S

∏
xi /∈A

Cp,θpxi [cos (xiθ)]2 , (31)

and

p (ω, p, θ) = ω

ω + (1 − ω) Cp,θ

. (32)

Since there is no prior information from historic data or previous experiments, we use the
noninformative prior for all of the parameters. The prior distributions for ω and p are assumed to
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be beta distributions while that of θ is assumed to be a gamma distribution. Thus, the joint prior
distribution for ZICG is

π (ω, p, θ) = ωa−1(1 − ω)b−1

B(a, b)
× pc−1(1 − p)d−1

B(c, d)
× 1

βα
(α)
θα−1e

−θ
β , (33)

where B(a, b) = 
(a)
(b)


(a+b)
and B(c, d) = 
(c)
(d)


(c+d)
. In this study all of the parameters are assumed to have

prior specifications, which are ω ∼ Beta(1.5, 1.5), p ∼ Beta(2, 5), and θ ∼ Gamma(2, 1/3). Since the
posterior distributions for the parameters can be formed as [7]

posterior ∝ likelihood × prior, (34)

the joint posterior distribution for parameters ω, p, and θ can be written as

P (ω, p, θ) ∝ ωS (1 − ω)
n−S

∏
xi /∈A

Cp,θpxi [cos (xiθ)]2 × ωa−1 (1 − ω)
b−1

B (a, b)
× pc−1(1 − p)d−1

B(c, d)
× 1

βα
(α)
θα−1e

−θ
β .

(35)

Since the joint posterior distribution in (35) is analytically intractable for calculating the Bayes
estimates similarly to using the posterior distribution method, MCMC simulation can be applied
to generate the parameters [26,27]. The Metropolis-Hastings algorithm is an MCMC method for
obtaining a sequence of random samples from a probability distribution from which direct sampling
is difficult. Subsequently, the obtained sequence can be used to approximate the desired distribution.
Moreover, the Gibbs’ sampler, which is an alternative to the Metropolis-Hastings algorithm for
sampling from the posterior distribution of the model parameters, can be used. Hence, the Gibbs’
sampler can be applied to generate samples from the joint posterior distribution in (35). Clearly, the
marginal posterior distribution of ω given p and θ is

P (ω | p, θ) ∝ ωS+a−1 (1 − ω)
n−S+b−1 . (36)

Thus, the marginal posterior distribution of ω is Beta(S+a, n−S+b), and the marginal posterior
distribution of p given ω and θ is

P (p | ω, θ) ∝
∏
xi /∈A

Cp,θpxi [cos (xiθ)]2 pc−1(1 − p)d−1

B(c, d)
, (37)

and the marginal posterior distribution of θ given ω and p is

P (θ | ω, p) ∝
∏
xi /∈A

Cp,θpxi [cos (xiθ)]2 1
βα
(α)

θα−1e
−θ
β . (38)

Here, we applied the random-walk Metropolis (RWM) algorithm to generate p and θ . RWM is
defined by using transition probability p(x → y) for one value x to y so that the distribution of
points converges to π(x). Since RWM is a special case of the Metropolis-Hastings algorithm with
p(x, y) = p(y, x) (symmetric) [28], then the acceptance probability can be calculated as

α
(
Xj−1, Yj

) = min
(

π(y)

π(x)
, 1

)
. (39)

The process proceeds as follows:

1. Choose trial position Yj = Xj−1 + εj, where εj is a random perturbation with distribution g that
is symmetric (e.g., a normal distribution).
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2. Calculate r = π(y)

π(x)
.

3. Generate Uj from Uniform[0, 1].

4. If Uj ≤ α(Xj−1, Yj), then accept the change and let Xj = Yj, else let Xj = Xj−1.

The Gibbs’ sampling steps are as follows:

Algorithm 3: Establishing the Bayesian credible intervals.
1. Take the initial values of ω, p, and θ (ω0, p0 and θ0, respectively).
2. Take the values ωi, pi and θi for ω, p and θ at the ith step, then

(a) Calculate p(ω0, p0, θ0) = ω0
ω0+(1−ω0)C(p0,θ0)

.

(b) Generate Si from Bin(m, p(ωi−1, pi−1, θi−1)).

(c) Generate ωi from Beta(Si + a, n − St + b) and obtain ωi+1.

(d) Generate pi+1 by using the RWM algorithm.

(e) Generate θi+1 by using the RWM algorithm.
3. Repeat Step 2, N times.
4. Posterior analysis:

(a) Calculate the Bayesian estimators of g(ω, p, θ) by using 1
N−M

∑N

i=M+1g(ωi, pi, θi), where M is
the number of burn-in samples.

(b) Calculate the 100(1−α)% confidence interval as (g(α/2), g(1−α/2)), where g(α/2) is the α

2
-th

quantile of g(ωi, pi, θi), and g(1−α/2) is the 1 − α

2
-th quantile of g(ωi, pi, θi), i = M + 1, . . . , N.

2.6 The Bayesian-Based HPD Interval
The HPD interval is the shortest Bayesian credible interval containing 100 (1 − α) % of the

posterior probability such that the density within the interval has a higher probability than outside
of it. The two main properties of the HPD interval are as follows [29]:

1. The density for each point inside the interval is greater than that for each point outside of it.

2. For a given probability (say 1 − α), the HPD interval has the shortest length.

Bayesian credible intervals can be obtained by using the MCMC method [30]. Hence, we used it
to construct HPD intervals for the parameters of a ZICG distribution. This approach only requires
MCMC samples generated from the marginal posterior distributions of the three parameters: ω, p,
and θ . In the simulation and computation, the HPD intervals were computed by using the HDInterval
package version 0.2.2 [31] from the R statistics program.

Algorithm 4: Establishing the HPD intervals by using the MCMC algorithm.
1. Take the initial values of ω, p, and θ (ω0, p0, and θ0, respectively).
2. Take the values ωi, pi, and θi for ω, p, and θ at the ith step, then

(a) Calculate p (ω0, p0, θ0) = ω0
ω0+(1−ω0)C(p0,θ0)

.

(b) Generate Si from Bin (m, p (ωi−1, pi−1, θi−1)).

(c) Generate ωi from Beta(Si + a, n − St + b) and obtain ωi+1.

(d) Generate pi+1 by using the RWM algorithm.

(e) Generate θi+1 by using the RWM algorithm.
(Continued)
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Algorithm 4: (Continued)
3. Repeat Step 2, N times.
4. Posterior analysis:

(a) Calculate the Bayesian estimators of g(ω, p, θ) by using 1
N−M

∑N

i=M+1g (ωi, pi, θi), where M is
the number of burn-in samples.

(b) Calculate the 100(1 − α% HPD intervals for the parameters by using the HDInterval
package in R program.

2.7 The Efficacy Comparison Criteria
Coverage probabilities and average lengths were used to compare the efficacies of the confidence

intervals. Suppose the nominal confidence level is 1−α, then confidence intervals that provide coverage
probabilities of 1 − α or better are selected. In addition, the shortest average length identifies the best
confidence interval under the provided conditions. Let C(s) = 1 if the parameter values fall within the
confidence interval range, else C(s) = 0. The coverage probability is computed by

CP = 1
M

∑M

s=1
C(s), (40)

and the average length is computed by

AL = U(s) − L(s)

M
, (41)

where U(s) and L(s) are the upper and lower bounds of the confidence interval for loop s, respectively.

3 Results and Discussion
3.1 Simulation Study

Sample size n = 50 or 100; proportion of zeros ω = 0.1, 0.5, or 0.9; p = 0.5 or 0.9; and θ = 1
or 3 were the parameter values used in the simulation study. The simulation data were generated by
using the inverse transform method [32], with the number of replications set as 1,000 and the nominal
confidence level as 0.95. A flowchart of the simulation study is presented in Fig. 2, while the coverage
probabilities and average lengths of the methods are reported in Table 2.

For sample size n = 50 or 100, the Bayesian credible intervals and the HPD intervals performed
better than the Wald confidence intervals because they provided coverage probabilities close to the
nominal confidence level (0.95) and obtained the shorter average lengths for almost all of the cases.
However, when the proportion of zeros was high (i.e., ω = 0.9), none of the methods performed well.
In addition, the average lengths of all of the methods decreased for n = 100 compared to n = 50.
Overall, the Wald confidence intervals did not perform well, which might have been caused by poor
optimization that can sometimes occur. Thus, the optimization was not a good choice in this case.
Similarly, Srisuradetchai et al. [20] found that when the Poisson parameter has a low value and the
sample size is small, the Wald confidence interval for the Poisson parameter of a ZIP distribution was
inferior to the other two intervals tested. Moreover, for a small sample size, the coverage probabilities
of the Wald confidence intervals tended to decrease as the proportion of zeros was increased. Likewise,
Daidoji et al. [33] showed that the Wald-type confidence interval for the Poisson parameter of a zero-
truncated Poisson distribution performed unsatisfactorily because its coverage probability was below
the nominal value when the Poisson mean and/or sample size was small. Hence, in the present study,
estimations by using the Bayesian credible intervals and the HPD intervals were more accurate than
the Wald confidence interval for all of the test settings.
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Figure 2: A flowchart of the simulation study

Table 2: The coverage probabilities and average lengths of the 95% confidence interval for parameters
of the ZICG distribution

n p θ ω Method CPs ALs
ω p θ ω p θ

50 0.5 1 0.1 Wald 0.527 0.809 0.026 114.231 47.931 2.743
Bayesian 0.989 0.732 0.874 0.562 0.177 4.043
HPD 0.985 0.748 0.946 0.508 0.168 3.928

(Continued)
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Table 2 (continued)

n p θ ω Method CPs ALs
ω p θ ω p θ

0.5 Wald 0.5812 0.882 0.096 143.937 85.863 26.715
Bayesian 0.983 0.875 0.866 0.752 0.283 4.020
HPD 0.941 0.819 0.946 0.706 0.267 3.908

0.9 Wald 0.754 0.925 0.637 82.840 59.022 9.714
Bayesian 0.921 0.844 0.864 0.886 0.512 3.985
HPD 0.855 0.65 0.897 0.843 0.469 3.836

50 0.9 1 0.1 Wald 0.544 0.556 0.031 15865.933 512.228 0.011
Bayesian 0.986 0.999 0.878 0.2507 0.111 3.878
HPD 0.965 0.999 0.976 0.226 0.111 3.722

0.5 Wald 0.402 0.400 0.007 5550.402 483.188 0.019
Bayesian 0.973 0.997 0.906 0.375 0.149 3.962
HPD 0.970 0.993 0.981 0.371 0.148 3.863

0.9 Wald 0.722 0.722 0.027 790.778 544.465 0.136
Bayesian 0.960 0.971 0.886 0.291 0.289 3.951
HPD 0.976 0.948 0.956 0.267 0.280 3.823

50 0.5 3 0.1 Wald 0.872 0.819 0.004 174.914 65.643 0.871
Bayesian 0.999 0.673 0.999 0.369 0.163 4.646
HPD 0.999 0.652 0.999 0.323 0.160 4.460

0.5 Wald 0.956 0.911 0.024 59.560 20.094 1.538
Bayesian 0.804 0.896 0.999 0.592 0.204 4.447
HPD 0.645 0.850 0.999 0.537 0.195 4.300

0.9 Wald 0.952 0.954 0.631 97.290 28.399 69.825
Bayesian 0.634 0.642 0.999 0.889 0.385 4.075
HPD 0.528 0.452 0.999 0.851 0.351 3.947

50 0.9 3 0.1 Wald 0.487 0.393 0.000 13654.005 502.619 0.014
Bayesian 0.985 0.997 0.999 0.240 0.116 4.720
HPD 0.955 0.998 0.999 0.215 0.115 4.525

0.5 Wald 0.438 0.364 0.002 4698.163 463.454 0.027
Bayesian 0.937 0.963 0.999 0.390 0.158 4.694
HPD 0.921 0.961 0.999 0.383 0.157 4.518

0.9 Wald 0.775 0.712 0.013 628.775 428.654 0.242
Bayesian 0.889 0.815 0.999 0.411 0.318 4.060
HPD 0.892 0.783 0.999 0.383 0.308 3.939

100 0.5 1 0.1 Wald 0.480 0.694 0.005 116.671 55.914 0.211
Bayesian 0.989 0.765 0.807 0.465 0.134 3.935
HPD 0.984 0.773 0.903 0.418 0.128 3.774

0.5 Wald 0.485 0.778 0.016 90.840 67.565 1.003
Bayesian 0.936 0.846 0.810 0.666 0.230 3.966

(Continued)
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Table 2 (continued)

n p θ ω Method CPs ALs
ω p θ ω p θ

HPD 0.873 0.801 0.898 0.625 0.221 3.841
0.9 Wald 0.707 0.767 0.397 351.284 6417.277 15.518

Bayesian 0.926 0.821 0.841 0.756 0.484 3.991
HPD 0.877 0.688 0.909 0.700 0.454 3.856

100 0.9 1 0.1 Wald 0.480 0.483 0.011 13083.192 408.086 0.006
Bayesian 0.965 0.998 0.899 0.202 0.082 3.855
HPD 0.927 0.998 0.992 0.187 0.082 3.679

0.5 Wald 0.380 0.387 0.007 4091.424 341.966 0.011
Bayesian 0.952 0.999 0.867 0.263 0.111 3.876
HPD 0.951 0.999 0.979 0.260 0.111 3.716

0.9 Wald 0.640 0.665 0.019 700.136 561.476 0.059
Bayesian 0.947 0.986 0.908 0.159 0.216 3.985
HPD 0.960 0.985 0.955 0.152 0.214 3.888

100 0.5 3 0.1 Wald 0.725 0.720 0.006 88.315 31.167 0.325
Bayesian 0.999 0.885 0.999 0.286 0.152 4.706
HPD 0.996 0.866 0.999 0.250 0.149 4.510

0.5 Wald 0.895 0.830 0.008 52.324 19.127 1.030
Bayesian 0.786 0.908 0.999 0.570 0.206 4.579
HPD 0.643 0.865 0.999 0.526 0.199 4.404

0.9 Wald 0.927 0.889 0.301 116.852 50.701 14.860
Bayesian 0.568 0.525 0.999 0.848 0.349 4.130
HPD 0.456 0.404 0.999 0.811 0.327 4.020

100 0.9 3 0.1 Wald 0.401 0.276 0.000 10599.191 376.330 0.008
Bayesian 0.959 0.999 0.999 0.190 0.088 4.717
HPD 0.908 0.999 0.999 0.175 0.087 4.513

0.5 Wald 0.380 0.298 0.001 3484.650 334.218 0.012
Bayesian 0.956 0.999 0.999 0.252 0.116 4.718
HPD 0.955 0.999 0.999 0.250 0.115 4.519

0.9 Wald 0.755 0.700 0.005 489.154 330.362 0.089
Bayesian 0.927 0.901 0.999 0.207 0.237 4.346
HPD 0.938 0.894 0.999 0.196 0.235 4.235

3.2 Applicability of the Methods When Using Real COVID-19 Data
Data for new daily COVID-19 cases during the Tokyo 2020 Olympic Games from 01 July 2021 to

12 August 2021 were used for this demonstration. The data are reported by the Tokyo Organizing
Committee on the Government website (https://olympics.com/en/olympic-games/tokyo-2020) and
they are shown in Table 3, with a histogram of the data provided in Fig. 3.

https://olympics.com/en/olympic-games/tokyo-2020
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Table 3: The number of daily COVID-19-positive cases during the olympic games in Tokyo 2020

The number of COVID-19 positive case 0 1 2 3 4 6 7 8 9 10 12 15 16 17 18 19 21 22 24 26 27 28 29 31

Frequency 9 2 4 2 1 2 1 1 1 2 1 2 2 1 2 1 1 1 1 1 1 1 2 1

Figure 3: A histogram of the number of COVID-19-positive case during the olympic games in Tokyo
2020

3.2.1 Analysis of the COVID-19 Data

The information in Table 4 shows that the data are over-dispersed with an index of dispersion of
9.7149. The suitability of fitting the data to ZICG, ZIG, ZIP, ZINB, CG, geometric, Poisson, NB,

and Gaussian distributions was assessed by using the AIC computed as AIC = 2k − 2l
(
�̂

)
and the

corrected AIC (AICc) computed as AICc =AIC +2k(k + 1)/(n − k − 1) based on the log-likelihood

function
(

l
(
�̂

))
, where k is the number of parameters to fit. As can be seen in Table 5, the AIC and

AICc values for ZICG were very similar (290.1166 and 290.7320) and the lowest recorded, thereby
inferring that it provided the best fit for the data.

Table 4: Descriptive statistics

N Mean Variance SD Skewness Kurtosis ID

43 10.6744 103.7010 10.1834 0.5478 1.9347 9.7149

Table 5: Log-likelihood (l), AIC, and AICc values

Distribution ZICG ZIG ZIP ZINB CG Geometric Poisson NB Gaussian
-l 142.0583 143.2602 217.0000 142.8000 146.3532 146.7716 302.7065 145.1130 160.3010
AIC 290.1166 290.5204 437.9509 291.6952 296.7065 295.5432 607.4131 294.2259 324.6019
AICc 290.7320 290.8204 438.2509 292.3106 297.0065 295.6408 607.5107 294.5259 324.9019
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The 95% confidence intervals for the parameters of a ZICG distribution constructed by using the
three estimation methods are provided in Table 6. The maximum likelihood estimates for parameters
ω, p, and θ were 0.0743, 0.9238, and 0.4967, respectively. From the simulation results in Table 2 for
n = 50, ω = 0.1, p = 0.9, and θ = 1, the HPD intervals provided a coverage probability greater than
0.95 for all of the parameters. Hence the HPD intervals are recommended for constructing the 95%
confidence intervals for the parameters in this scenario.

Table 6: Estimation of the number of daily COVID-19-positive cases during the olympic games in
Tokyo 2020

Method ω estimation p estimation θ estimation

95% CI Length of CI 95% CI Length of CI 95% CI Length of CI

Wald CI (−0.0760, 0.3007) 0.2247 (0.8994, 0.9483) 0.0489 (0.4938, 0.4996) 0.0058
Bayesian CI (0.0004, 0.2413) 0.2409 (0.8683, 0.9689) 0.1006 (0.0217, 4.8781) 4.8564
HPD interval (0, 0.2111) 0.2111 (0.8667, 0.9667) 0.1000 (0.0153, 4.7192) 4.7038

4 Conclusions

We proposed a new mixture distribution called ZICG and presented its properties, namely the
mgf, mean, variance, and Fisher information. According to the empirical study results, the ZICG
distribution is suitable for over-dispersed count data containing excess zeros, such as occurred in the
number of daily COVID-19-positive cases at the Tokyo 2020 Olympic Games. Confidence intervals
for the three parameters of the ZICG distribution were constructed by using the Wald confidence
interval, the Bayesian credible interval, and the HPD interval. Since the maximum likelihood estimates
of the ZICG model parameters have no closed form, the Newton-Raphson method was applied to
estimate the parameters and construct the Wald confidence intervals. Furthermore, Gibbs’ sampling
with the RWM algorithm was utilized in the Bayesian computation to approximate the parameters and
construct the Bayesian credible intervals and the HPD intervals. Their performances were compared
in terms of coverage probabilities and average lengths. According to the simulation results, the index of
dispersion plays an important role: when it was small (e.g., p = 0.5), the Bayesian credible intervals and
HPD intervals provided coverage probabilities greater than the nominal confidence level (0.95) in some
cases whereas the Wald confidence interval did not perform at all well except for one case. Therefore,
the Wald confidence interval approach is not recommended for constructing the confidence intervals
for the ZICG parameters. Overall, the HPD interval approach is recommended for constructing
the 95% confidence intervals for the parameters of a ZICG distribution since it provided coverage
probabilities close to the nominal confidence level and the smallest average lengths in most cases.
However, there are some cases where none of the methods performed well and so, in future research,
other methods for estimating the parameters of a ZICG distribution will be investigated. For example,
the prior part of the Bayesian computation should be further investigated to improve the efficiency of
the Bayesian analysis. Furthermore, count data with more than one inflated value such as zeros-and-
ones can occur, and so the zero-and-one inflated CG distribution could be interesting in this case.
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Appendix A. R code for simulation study

rCGD<−function(n, p, theta){
X = rep(0, n)

for (j in 1:n) {
i = 0

#step 1: Generated Uniform(0, 1)

U = runif(1, 0, 1)
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#step 2: Computed F(k ∗ − 1) and F(k ∗ )

cdf<−(2 ∗ (1 − p) ∗ (1 − 2 ∗ p ∗ cos(2 ∗ theta) + p∧2))

/(2 + p ∗ ((p − 3) ∗ cos(2 ∗ theta) + p − 1))

while(U >= cdf)

{i = i + 1;

cdf = cdf + f(i, p, theta) }
X[j] = i;

}
return(X)

}
C<−function(p, theta) {
(2 ∗ (1 − p) ∗ (1 − 2 ∗ p ∗ cos(2 ∗ theta) + p∧2))/(2 + p ∗ ((p − 3) ∗ cos(2 ∗ theta) + p − 1))}
#Calculating log likelihood of CG

loglikeCG<−function(x, y) {
p<−x[1]

theta<−x[2]

loglike<− n ∗ log(2) + n ∗ log(1 − p)+
n ∗ log(1 − 2 ∗ p ∗ cos(2 ∗ theta) + p∧2)−
n ∗ log(2 + p ∗ ((p − 3) ∗ cos(2 ∗ theta) + p − 1))+
log(p) ∗ sum(y) + 2 ∗ sum(log(cos(y ∗ theta)))

# note use of sum

loglike<− −loglike

}
#Calculating the log-likelihood for ZICG

loglikeZICG<−function(x, y) {
w<−x[1]

p<−x[2]

theta<−x[3]

n0<−length(y[which(y == 0)])

ypos<−y[which(y != 0)] #y > 0

loglike<− n0 ∗ log(w + (1 − w) ∗ C(p, theta))

+ sum(log((1 − w) ∗ C(p, theta) ∗
(p∧ypos) ∗ cos(ypos ∗ theta)∧2))

loglike<− −loglike

}
# Bayesian Confidence Interval



CMES, 2023, vol.135, no.2 1249

gibbs<−function(y = y, sample.size, n, p, theta, w){
nonzero_values = y[which(y != 0)]

m<−n−length(nonzero_values)

ypos = y[which(y != 0)]

prob.temp = numeric()

S.temp = numeric()

theta.temp = numeric(sample.size)

w.temp = numeric(sample.size)

p.temp = numeric(sample.size)

p.temp[1]<−0.5 #initial p value

theta.temp[1]<−0.5 #initial theta

w.temp[1]<−0.5 #initial w value

prob.temp[1]<−w.temp[1]/(w.temp[1] + (1−w.temp[1]) ∗ (2 ∗ (1 − p.temp[1])

∗ 1 − 2 ∗ p.temp[1] ∗ cos(2 ∗ theta.temp[1]) + p.temp[1]∧2))/(2 + p.temp[1] ∗ ((p.temp[1] − 3)

∗ cos(2 ∗ theta.temp[1]) + p.temp[1] − 1)))

S.temp[1]<−rbinom(1, m, prob.temp[1])

w.temp[1]<−rbeta(1,S.temp[1] + 0.5, n−S.temp[1] + 0.5)

p.samp<−GenerateMCMC.p(y = y, N = 1000, n = n, m = m, w = w.temp[1], theta = theta.temp[1],

sigma = 1)

p.temp[1]<−mean(p.samp[501:1000])

theta.samp<−GenerateMCMCsample(ypos = ypos,N = 1000, n = n, m = m, w = w.temp[1], p = p.temp[1],

sigma = 1)

theta.temp[1]<−mean(theta.samp[501:1000])

for(i in 2:(sample.size)){
prob.temp[i]<−w.temp[i − 1]/(w.temp[i − 1] + (1−w.temp[i − 1]) ∗ C(p.temp[i − 1],

theta.temp[i − 1]))

S.temp[i]<−rbinom(1, m, prob.temp[i])

w.temp[i]<−rbeta(1,S.temp[i] + 0.5

, n−S.temp[i] + 0.5)

p.samp<−GenerateMCMC.p(y = y, N = 1000, n = n, m = m, w = w.temp[i],

theta = theta.temp[i − 1], sigma = 1)

p.temp[i]<−mean(p.samp[501:1000])

theta.samp<−GenerateMCMCsample(ypos = ypos,N = 1000, n = n, m = m, w = w.temp[i],

p = p.temp[i], sigma = 1)

theta.temp[i]<−mean(theta.samp[501:1000])}
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return(cbind(w.temp, p.temp, theta.temp))}
#random walk Metropolis for sample theta

GenerateMCMCsample<−function(ypos,N, n, m, w, p, sigma){
prior <− function(x) dgamma(x, shape = 2, rate = 1/3)

theta.samp <− numeric(length = N)

theta.samp[1] <− runif(n = 1, min = 0, max = 5)

for (j in 2:N) {
Yj<−theta.samp[j − 1] + rnorm(n = 1, mean = 0, sigma)

if(0< = Yj&&Yj< = pi/2){
alpha.cri <−((w + (1 − w) ∗ C(p,Yj))∧m ∗ ((1 − w) ∗ (2 ∗ (1 − p) ∗ (1 − 2 ∗ p ∗ cos(2 ∗ Yj) + p∧2))/

(2 + p ∗ ((p − 3) ∗ cos(2 ∗ Yj) + p − 1)))∧(n − m) ∗ prod((cos(ypos ∗ Yj))∧2) ∗ prior(Yj))/

((w + (1 − w) ∗ C(p, theta.samp[j − 1]))∧m ∗ ((1 − w) ∗ (2 ∗ (1 − p) ∗
(1 − 2 ∗ p ∗ cos(2 ∗ theta.samp[j − 1]) + p∧2))/

(2 + p ∗ ((p − 3) ∗ cos(2 ∗ theta.samp[j − 1]) + p − 1)))∧(n − m) ∗
prod((cos(ypos ∗ theta.samp[j − 1]))∧2) ∗ prior(theta.samp[j − 1]))

}else{alpha.cri<− 0}
U <− runif(1)

if(is.na(alpha.cri)){theta.samp[j]<− theta.samp[j − 1]} else {
if (U < min(alpha.cri, 1))

{theta.samp[j]<− Yj

}else theta.samp[j]<− theta.samp[j − 1]}
} return(theta.samp)}
##Random Walk Metropolis sampler for p

GenerateMCMC.p <− function(y,N, n, m, w, theta, sigma){
prior<−function(x)dbeta(x, shape1 = 2,

shape2 = 5)

p.samp <− numeric(length = N)

p.samp[1] <− runif(n = 1, min = 0, max = 1)

for (j in 2:N) {
Yj<−p.samp[j − 1] + rnorm(n = 1, mean = 0, sigma)

if(0< = Yj&&Yj< = 1){
alpha.cri <−((w + (1 − w) ∗ C(Yj, theta))∧m ∗ ((1 − w) ∗ C(Yj, theta))∧(n − m) ∗ Yj∧(sum(y)))

∗ prior(Yj)/((w + (1 − w) ∗ C(p.samp[j − 1], theta))∧m ∗
((1 − w) ∗ C(p.samp[j − 1], theta))∧(n − m) ∗ p.samp[j − 1]∧(sum(y))) ∗ prior(p.samp[j − 1])

}else{alpha.cri<− 0 }
U <− runif(1)
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if(is.na(alpha.cri)){
p.samp[j]<− p.samp[j − 1]}
else {if (U < min(alpha.cri, 1)) {
p.samp[j]<− Yj

}else p.samp[j]<− p.samp[j − 1]} }
return(p.samp)

}
i = 0

while(i<M){
suscept<−rbinom(n, size = 1, prob = 1 − w)

count<−rCGD(n , p, theta)

y = suscept ∗ count

if(max(y) == 0){
next

}i = i + 1

p_hat<−egeom(y, method = “mle”)

p0 = p_hat$parameters;theta0 = 0.5;

# store starting values

intvalues1 = c(p0, theta0)

resultCG<−nlm(loglikeCG, intvalues1 , y, hessian = TRUE, print.level = 1)

mleCG<−resultCG$estimate

mleCG.p <− c(mleCG[1])

mleCG.theta<−c(mleCG[2])

#formula for estimating w (omega)

n0<−length(y[which(y == 0)])

p1 = mleCG.p ; theta1 = mleCG.theta;

c_hat<−C(p1, theta1)

w1<−(n0 − n ∗ c_hat)/(n ∗ (1 − c_hat))

intvalues2 = c(w1, p1, theta1)

resultZICG<−nlm(loglikeZICG, intvalues2, y, hessian=TRUE, print.level = 1)

mleZICG<−resultZICG$estimate

hess<−resultZICG$hessian

cov<−solve(hess, tol = NULL)

stderr<−sqrt(diag(cov))

mle.w <− c(mleZICG[1])

mle.p <− c(mleZICG[2])
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mle.theta<−c(mleZICG[3])

sd.w <− stderr[1]

sd.p <− stderr[2]

sd.theta <−stderr[3]

#Wald confidence interval for w

#lower bound of Wald CI for w

Wald.w.L[i]<−mle.w − qnorm(1 − alpha/2) ∗ sd.w

#Upper bound of Wald CI for w

Wald.w.U[i]<−mle.w + qnorm(1 − alpha/2) ∗ sd.w

Wald.CI.w = rbind(c(Wald.w.L[i],Wald.w.U[i]))

Wald.CP.w[i] = ifelse(Wald.w.L[i]<w&&w<Wald.w.U[i], 1, 0)

Wald.Length.w[i] = Wald.w.U[i] − Wald.w.L[i]

#Wald confidence interval for p

#lower bound of Wald CI for p

Wald.p.L[i]<−mle.p − qnorm(1 − alpha/2) ∗ sd.p

#Upper bound of Wald CI for p

Wald.p.U[i]<−mle.p + qnorm(1 − alpha/2) ∗ sd.p

Wald.CI.p = rbind(c(Wald.p.L[i],Wald.p.U[i]))

Wald.CP.p[i] = ifelse(Wald.p.L[i]<p&&<Wald.p.U[i], 1, 0)

Wald.Length.p[i] = Wald.p.U[i] − Wald.p.L[i]

#Wald confidence interval for theta

#lower bound of Wald CI for theta

Wald.theta.L[i]<−mle.theta − qnorm(1 − alpha/2) ∗ sd.theta

#Upper bound of Wald CI for theta

Wald.theta.U[i]<−mle.theta + qnorm(1 − alpha/2) ∗ sd.theta

Wald.CI.theta = rbind(c( Wald.theta.L[i],Wald.theta.U[i]))

Wald.CP.theta[i] = ifelse(Wald.theta.L[i]<theta&&theta<Wald.theta.U[i], 1, 0)

Wald.Length.theta[i] = Wald.theta.U[i] − Wald.theta.L[i]

#########End Wald CI#############

test<−gibbs(y = y, sample.size = sample.size,

n = n, p = p, theta = theta, w = w)

#burn-in w estimator

w.mcmc<−test[, 1][1001:3000]

#estimator of w

w.bayes<−mean(w.mcmc)

#burn-in p estimator
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p.mcmc<−test[, 2][1001:3000]

#estimator of p

p.bayes<−mean(p.mcmc)

#burn-in theta estimator

theta.mcmc<−test[, 3][1001:3000]

#estimator of theta

theta.bayes<−mean(theta.mcmc)

#########Construct Bayesian confidence interval########

L.w[i] = quantile(w.mcmc, alpha/2, na.rm = TRUE)

U.w[i] = quantile(w.mcmc,(1 − alpha/2), na.rm = TRUE)

CIr1 = rbind(c(L.w[i],U.w[i]))

Bayes.CP.w[i] = ifelse(L.w[i]<w&&w<U.w[i], 1, 0)

Bayes.Length.w[i] = U.w[i] − L.w[i]

L.p[i] = quantile(p.mcmc, alpha/2, na.rm = TRUE)

U.p[i] = quantile(p.mcmc,(1 − alpha/2), na.rm = TRUE)

CIr2 = rbind(c(L.p[i],U.p[i]))

Bayes.CP.p[i] = ifelse(L.p[i]<p&&<U.p[i], 1, 0)

Bayes.Length.p[i] = U.p[i] − L.p[i]

L.the[i] = quantile(theta.mcmc, alpha/2, na.rm = TRUE)

U.the[i] = quantile(theta.mcmc,(1 − alpha/2), na.rm = TRUE)

CIr3 = rbind(c(L.the[i],U.the[i]))

Bayes.CP.the[i] = ifelse(L.the[i]<theta&&theta<U.the[i], 1, 0)

Bayes.Length.the[i] = U.the[i] − L.the[i]

#########Construct HPD interval########

w.hpd = hdi(w.mcmc, 0.95)

L.w.hpd[i] = w.hpd[1]

U.w.hpd[i] = w.hpd[2]

CIr4 = rbind(c(L.w.hpd[i],U.w.hpd[i]))

CP.w.hpd[i] = ifelse(L.w.hpd[i]<w&&w<U.w.hpd[i], 1, 0)

Length.w.hpd[i] = U.w.hpd[i] − L.w.hpd[i]

p.hpd = hdi(p.mcmc, 0.95)

L.p.hpd[i] = p.hpd[1]

U.p.hpd[i] = p.hpd[2]

CIr5 = rbind(c(L.p.hpd[i],U.p.hpd[i]))

CP.p.hpd[i] = ifelse(L.p.hpd[i]<p&&<U.p.hpd[i], 1, 0)

Length.p.hpd[i] = U.p.hpd[i] − L.p.hpd[i]
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theta.hpd = hdi(theta.mcmc, 0.95)

L.the.hpd[i] = theta.hpd[1]

U.the.hpd[i] = theta.hpd[2]

CIr6 = rbind(c(L.the.hpd[i],U.the.hpd[i]))

CP.the.hpd[i] = ifelse(L.the.hpd[i]<theta&&theta<U.the.hpd[i], 1, 0)

Length.the.hpd[i] = U.the.hpd[i] − L.the.hpd[i]

}
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