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ABSTRACT

As location information of numerous Internet of Thing (IoT) devices can be recognized through IoT sensor
technology, the need for technology to efficiently analyze spatial data is increasing. One of the famous algorithms for
classifying dense data into one cluster is Density-Based Spatial Clustering of Applications with Noise (DBSCAN).
Existing DBSCAN research focuses on efficiently finding clusters in numeric data or categorical data. In this paper,
we propose the novel problem of discovering a set of adjacent clusters among the cluster results derived for each
keyword in the keyword-based DBSCAN algorithm. The existing DBSCAN algorithm has a problem in that it is
necessary to calculate the number of all cases in order to find adjacent clusters among clusters derived as a result
of the algorithm. To solve this problem, we developed the Genetic algorithm-based Keyword Matching DBSCAN
(GKM-DBSCAN) algorithm to which the genetic algorithm was applied to discover the set of adjacent clusters
among the cluster results derived for each keyword. In order to improve the performance of GKM-DBSCAN, we
improved the general genetic algorithm by performing a genetic operation in groups. We conducted extensive
experiments on both real and synthetic datasets to show the effectiveness of GKM-DBSCAN than the brute-force
method. The experimental results show that GKM-DBSCAN outperforms the brute-force method by up to 21
times. GKM-DBSCAN with the index number binarization (INB) is 1.8 times faster than GKM-DBSCAN with the
cluster number binarization (CNB).
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1 Introduction

The spread of mobile devices and the development of network technology have spread IoT
technology to various fields such as communication [1], home appliance [2], transportation [3], and
healthcare [4]. Based on location information acquired through sensing technology, one of the core
IoT technologies, various location-based services are provided in IoT environment [5]. Research to
provide a new location-based service by finding useful information hidden in spatial data periodically
collected from numerous mobile devices is being actively conducted [6].
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Spatial clustering is one of the key technologies for analyzing spatial data, which is rapidly increas-
ing due to the recent expansion of mobile devices and sensors [7]. Spatial clustering is used in the field
of geographic data analysis such as crash & crime hotspots analysis [8,9], cartography [10], geographic
segmentation of customers [11], earthquake area grouping [12], and commercial area analysis [13]. As
the demand for spatial data analysis services increases, various analysis methods (nearest-neighbor
searches on spatial data, nearest group queries, etc.) are being used [14,15]. Among the various spatial
clustering algorithms, DBSCAN is one of the most widely used clustering algorithms [16].

DBSCAN has so far studied spatial data with numeric and categorical properties. However,
spatial data collected in the real world includes textual data composed of natural language as well
as formalized numerical or categorical data. For example, data for commercial area analysis has
textual information (e.g., blog, website, user reviews) as well as location data of stores. The textual
information in the spatial data can be a variety of text descriptions obtained from newspaper articles,
personal blogs, and social networking services. For simplicity, we assume that textual information is
a set of keywords such as tags. The existing clustering algorithms cannot utilize textual information.
It is difficult to use textual information for commercial area analysis using a clustering algorithm.
Therefore, there is a limit to processing various analysis techniques required for commercial area
analysis with the existing clustering algorithms.

In commercial area analysis, it is important to identify areas where similar stores are concentrated
in selecting the location of a new store to open, predicting expected sales of stores, and determining the
convenience of the city. For example, if pharmacies are concentrated near an area where hospitals are
concentrated, it is convenient for people who visit the hospital to go to the pharmacy after receiving
prescriptions at the hospital. To make the example easier to understand, we define a set of data that is
dense in space and has the same keyword in their textual information as a keyword-matching cluster.
Fig. 1 shows the results of DBSCAN based on keywords for ‘hospital’ and ‘pharmacy’ (minPtr = 3).
h1 and h2 are hospital dense areas, and d1 is a pharmacy dense area (data in both h1 and h2 have the
‘hospital’ keyword in their textual information, and data in d1 have the ‘pharmacy’ keyword in their
textual information). However, in commercial area analysis, it can be useful not only to discover the
area where keyword-matching clusters are concentrated but also to discover the keyword-matching
clusters that are closest to each other among all keyword-matching clusters.

hospital
pharmacy
other store

h1

h2

d1

1km

7km

middle
area

Figure 1: An example of results from keyword-matching DBSCAN

The distance between d1 and h1 is 1 km, and the distance between d1 and h2 is 7 km. In this case, the
middle area (green area) between d1 and h1, which is close to both hospital and pharmacy dense areas,
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may be a suitable location for opening a new store that sells items conducive to patient health. In the
commercial area analysis, it is an important task to discover the middle area between the two dense
areas that are closest to each other. In this study, we define the keyword-matching clusters closest to
each other as adjacent keyword-matching clusters. In Fig. 1, d1 and h1 are adjacent keyword-matching
clusters. In spatial data analysis, the task to identify adjacent keyword-matching clusters can be used
not only as a commercial area analysis but also as a measure of urban convenience. For example, the
closer the hospital and pharmacy clusters are the more convenient life of the people who use medical
services. The proximity of the two dense areas can be a criterion for grasping the convenience of the
area. To the best of our knowledge, however, there has been no research on the algorithm for deriving
clusters close to the keyword-based DBSCAN yet. In data analysis through clustering, it is necessary
to set various hyperparameters to obtain an optimal result, and the results of the cluster are different
for each setting.

Cluster results vary depending on the query keyword entered by the data analyst, and the textual
of spatial data may change at any time. The clustering result may be continuously changed due to the
change of the cluster algorithm parameter setting and the randomness of the query keyword by the
data analyst. Therefore, it is impossible to index all cluster results for all cases. It is time-consuming
to compare the results of all clusters to find the nearest cluster whenever the cluster results change.

In this paper, we propose a Genetic-based Keyword-Matching DBSCAN (GKM-DBSCAN)
algorithm that can efficiently discover adjacent clusters in a keyword-based DBSCAN algorithm using
genetic algorithms. For the first time, the brute force method can be considered as a method of finding
the algorithms that are closest to each other. That is, all the distances between clusters derived for
each keyword result set are calculated to find the closest set. The time complexity, in this case, is
O(mq) where q is the number of query keywords by the user and m is the average number of clusters
included in each keyword result set. To avoid the time complexity becoming an exponential function,
we applied a genetic algorithm. To avoid constituting time complexity as an exponential function, we
applied a genetic algorithm. In addition, we proposed an index number binarization (INB) method that
increases the convergence speed by using the feature that chromosomes do not exceed the maximum
cluster number in the genetic algorithm. The contributions of this paper are summarized as follows:

• We proposed the novel problem of discovering a set of adjacent clusters among the cluster results
derived for each keyword in the keyword-based DBSCAN algorithm.

• We developed the GKM-DBSCAN algorithm to which the genetic algorithm was applied to
discover the set of adjacent clusters among the cluster results derived for each keyword.

• To improve the performance of GKM-DBSCAN, we improve the general genetic algorithm
by adopting the index number binarization (INB) instead of the cluster number binarization
(CNB).

• We conducted extensive experiments on both real and synthetic datasets to show the effec-
tiveness of GKM-DBSCAN over the brute-force method. The experimental results show that
GKM-DBSCAN outperforms the brute-force method by up to 21 times. GKM-DBSCAN with
INB is 1.8 times faster than GKM-DBSCAN with CNB.

The rest of this paper is organized as follows. Section 2 reviews work related to spatial clustering
algorithms and keyword-matching clustering. In Section 3, we present the definition of the problem.
In Section 4, we propose the genetic-based KM-DBSCAN algorithm. In Section 5, we present
experimental results and their evaluation. In Section 6, we conclude our work and present some
directions for future research.
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2 Related Works
2.1 Data Collected in the IoT Environment

As IoT technology develops, various types of data are being collected. In the IoT environment,
various sensors can typically collect traffic information [17,18] or obtain biometric information for
healthcare services. Meng et al. [19] proposed a privacy-aware factorization-based hybrid method
for healthcare service recommendation. The IoT is also being actively used in intelligent agricultural
systems. Liu et al. [20] proposed a greenhouse climate prediction model using temperature, humidity,
illuminance, carbon dioxide concentration, soil temperature, and soil humidity data. In the IoT
environment, sensors can utilize the sensor’s location information along with the collected data, so it
can be applied to location-based services. Liu et al. [21,22] proposed deep learning models that predict
and recommend point-of-interests through location data.

2.2 Keyword-Matching DBSCAN
Recently, a vast amount of text data containing useful information is being generated through

social network services or online news [23]. Xiong et al. [24] proposed a TextRank-based semantic
clustering algorithm that extracts news keywords. Since text data is unstructured data, it has inherent
incompleteness. Therefore, when analyzing text data using density-based clustering, it is necessary
to properly handle missing values for the quality of clustering results. Xue et al. [25] proposed a
new density-based clustering approach based on Bayesian theory to overcome the limitations of
incomplete data.

As the scope of research is expanded so that DBSCAN can analyze data that includes textual
data, a technique that can utilize textual data for clustering analysis is needed. To utilize texture data in
clustering, a technique for efficiently retrieving data required for data analysis is preferentially needed.
Generally, an inverted index is used to retrieve from a typical texture data [26]. An inverse index consists
of several inverse lists including the IDs of all documents containing a word and its frequency. When a
query is provided from a search user, the inverse list searches the inverse list for each word in the query
to retrieve documents containing that word.

As the use of texture data increases in clustering that analyzes spatial data, research on an index
structure that combines texture-based data search and spatial data indexing is also being actively
conducted.

Cong et al. [27] and Rocha-Junior et al. [28] proposed an index structure that can process spatial
data and texture data by integrating R-tree and inverse index. Yao et al. [29] proposed MHR-tree based
on min-wise signature and linear hashing technique.

IR2-tree is a data structure improved to efficiently process texture data in R-tree that deal with
spatial data. For this reason, IR2-tree is widely used in recent keyword search-based data mining that
deals with spatial data and texture data at the same time [30]. Jang et al. [31] have demonstrated
that IR2-tree is efficient for spatial data analysis including texture data using DBSCAN. We were
also inspired by this solution and applied IR2-tree to DBSCAN and proposed a novel keyword-
matching DBSCAN algorithm called KM-DBSCAN [31], which deals with textual information as
well as numerical or categorical data.

KM-DBSCAN utilizes the IR2-tree as an index structure. To find keyword-matching objects
in large datasets, it performs the nearest neighbor search in a branch and bound method. While
traversing an IR2-tree, KM-DBSCAN effectively prunes unqualified nodes using both spatial and
textual information of nodes. However, KM-DBSCAN only derives the results of all clusters that
are dense with each keyword. Through the example in Table 1, we explain the operation method of
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KM-DBSCAN. If DBSCAN is performed with the data shown in Table 1, it can be divided into G1

and G2 according to the density of objects in Fig. 2.

Table 1: Example of database

Id x Y Keywords

O1 9 9 {coffee, ice cream}
O2 10 8 {coffee, milk}
O3 7 4 {coffee, pasta}
O4 5 3 {coffee, steak}
O5 12 10 {book, pencil}
O6 13 9 {book, eraser}
O7 15 5 {book, CD}
O8 14 3 {book, newspaper}
O9 16 8 {coffee, pasta}
O10 6 7 {book, pencil}

o1{coffee, ice cream}

{coffee, milk}

{book, pencil}

{book, eraser}

{book, CD}

{book, news paper}

{coffee, pasta}

{coffee, steak}

o2

o3

o4

o5

o6

o7

o8

C2

C1 C3

C4

G1 G2

{coffee, pasta}o9

o10{book, pencil}

�

Figure 2: An example of a keyword-matching tuple

Let D be an entire dataset consisting of tuples. A tuple is represented as <V , W>, V is a
spatial data vector and W is a set of keywords. In Fig. 2, ε-neighborhood of o3 is {o4, o10} = {∀o∈D
| dist(o3, o) ≤ ε }. The distance dist(oi, oj) between two tuples is calculated as the Euclidean distance
between the tuple’s spatial data vectors. For example, o2.V = (10, 8) and o5.V = (12, 10). dist(o2, o5)
=

√
(10 − 12)

2 + (8 − 10)
2 = 2

√
2. A keyword-matching ε-neighborhood of a tuple means the tuple that

has the query keyword in a keyword set of the tuple in the ε-neighborhood of a tuple. A keyword-
matching ε-neighborhood of o3 for keyword ‘coffee’ is {o4}. For example, given Q = {coffee, book} and
minPts = 2, KM-DBSCAN derives C1 = {o1, o2}, C2 = {o3, o4}, C3 = {o5, o6} and C4 = {o7, o8} as a result.
Fig. 2 shows the result of performing the KM-DBSCAN with ‘coffee’ and ‘book’ keywords.

2.3 DBSCAN Using Genetic Algorithm

A genetic algorithm is a search method that finds an optimal solution by mimicking the evolution
of an organism while adapting to its environment.
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Guan et al. [32] proposed a Particle swarm Optimized Density-based Clustering and Classification
(PODCC) designed to offset the drawbacks of DBSCAN. Particle Swarm Optimization (PSO), a
widely used Evolutionary and Swarm Algorithm, has been applied to optimization problems in
different research domains including data analytics. In PODCC, a variant of PSO, SPSO-2011, is
used to search the parameter space to identify the best parameters for density-based clustering
and classification. PODCC can function in terms of both supervised and unsupervised learnings by
applying the appropriate fitness functions proposed.

Mu et al. [33] proposed a parameter-free algorithm to perform DBSCAN with different density-
level parameters. The results show that the proposed algorithm is capable of efficiently and effectively
detecting clusters automatically with variable density levels. Compared with the original DBSCAN,
the proposed algorithm can discover more noise points and its execution accuracy is higher.

Alajmi et al. [34] proposed the genetic algorithm and its alternative operator to find the most
appropriate genetic algorithm set that obtains the optimum, or near optimum, solutions in a rea-
sonable computational time. Twelve control parameter sets of binary encoded genetic algorithms are
tested to solve unconstrained building optimization problems. The results show that population size
is the most significant control parameter and that the crossover probability and mutation rate have
insignificant effects on the genetic algorithm performance.

A genetic algorithm that finds an optimal solution is one of the meta-heuristic methodologies.
However, most of the studies that applied the genetic algorithm to DBSCAN are studies that optimize
the parameter value of the DBSCAN algorithm. To the best of our knowledge, there are no studies
that search for the closest cluster among the clusters for each keyword. In this paper, we develop
the Genetic algorithm-based Keyword Matching DBSCAN (GKM-DBSCAN) to which the genetic
algorithm was applied to discover the set of adjacent clusters among the cluster results derived for
each keyword.

3 Problem Definition

In this section, we provide some definitions and the problem to be solved in this study.

Definition 1 (keyword result set) R(k) is the set of keyword-matching clusters for the k-th keyword
among given Q (1 ≤ k ≤ m). If n clusters are found as a result of KM-DBSCAN for the k-th keyword,
it can be expressed as follows, R(k) = {C1, C2, . . . , Cn}. In our example, R(‘coffee’) = {C1, C2} and R(‘book’)

= {C3, C4}.
Definition 2 (cluster minimum distance) The distance between the two elements with the shortest

Euclidean distance among all pairs of elements is created by selecting one from each cluster for two
clusters.

min D
(
Ci, Cj

) = min D (oa, ob) , ∀oa ∈ Ci, ∀ob ∈ Cj (1)

where D(oa, ob) is the Euclidean distance of the two objects oa and ob.

Definition 3 (cluster group) For all keyword result sets, a set containing as an element one cluster
is selected from each keyword result set.

G = {(C1, C2, . . . , Cm) | ∀C1 ∈ R1, ∀C2 ∈ R2, . . . , ∀Cm ∈ Rm} (2)

In our example, the cluster group set G = {(C1, C3), (C1, C4), (C2, C3), (C2, C4)} is generated for 4
clusters (C1, C2, C3 and C4).
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Definition 4 (inner distance of cluster group) The inner distance of clusters group is defined as the
sum of the cluster minimum distances (minD) for all ordered pairs of elements in one cluster group,
denoted by innerD(g), g ∈ G. In Fig. 3, if g = (C1, C2, C3), innerD(g) can be obtained as follows.
innderD(g) = minD(C1, C2) + minD(C2, C3) + minD(C1, C3).

C1 C2

C3

C4

C5

minD(C1, C2)

minD(C2, C3)minD(C1, C3)

Figure 3: An example of the adjacent cluster

Definition 5 (adjacent cluster) Given the search keyword set Q, the adjacent cluster is defined as
the cluster group with the shortest inner distance among the cluster group set G.

Problem. The purpose of this study is to find adjacent clusters among the keyword-matching
clusters resulting from KM-DBSCAN.

Since several keyword-matching clusters can be derived for each keyword and the elements of the
cluster group are composed of a combination of each keyword cluster, the number of elements in the
cluster group may increase exponentially. The problem of finding an adjacent cluster can be viewed as
finding an optimal solution among multiple solutions.

4 The Proposed Genetic Algorithm

Before explaining the genetic algorithm proposed, we introduce an overall research framework.
Our solution is to find the adjacent clusters from the keyword result set obtained from the result of
KM-DBSCAN. (1) First, KB-DBSCAN is performed on spatial data with texture information to
obtain a keyword result set. (2) In this study, we proposed a method to obtain adjacent keyword-
matching clusters by applying two types of genetic algorithms (INB, CNB) to the keyword result set,
which is the result of KB-DBSCAN. Fig. 4 shows an overall research framework.

4.1 Chromosome Structure
In the genetic algorithm, the search is performed by applying selection, crossover, and mutation to

the encoded individual through the encoding process that converts the possible solution of the problem
into the form of a chromosome. The key point for finding an optimal solution by successfully using a
genetic algorithm is how to construct a fitness function and how to encode a solution (chromosome).
In genetic algorithms, the search is performed by applying selection, crossover, and mutation to the
coded individual through the encoding process that converts the possible solution of the problem into
the form of a chromosome. Depending on how a given problem is coded, the shape of the solution
space changes, the applicable crossover or mutation method is different, and the search region created
by the crossover or mutation method is also different. Therefore, for an efficient search, a solution
expression method is important.
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Spatial data with texture 
information

Keywordsx y

o1{coffee, ice cream}

{coffee, milk}

{book, pencil}

{book, eraser}

{book, CD}

{book, news paper}
{coffee, pasta}

{coffee, steak}

o2

o3

o4

o5

o6

o7

o8

C2

C1
C3

C4

G1 G2

Keyword -matching clusters

Id

{coffee, ice cream}9 9O1

{coffee, milk}10 8O2

{coffee, pasta}7 4O3

{coffee, steak}5 3O4

{book, pencil}12 10O5

{book, eraser}13 9O6

{book, CD}15 5O7

{book, newspaper}14 3O8

{coffee, pasta}16 8O9

{book, pencil}6 7O10

(1) KB-DBSCAN

�

Genetic algorithm

o1

o2

o5

o6C1
C3

Adjacent keyword-matching clusters

CNB INB

Brute-force

(2) Get adjacent keyword-matching clusters

Figure 4: An overall research framework

In general, in the case of genetic algorithms, the chromosome uses a one-dimensional array and
the chromosome’s genetic factors are expressed in binary numbers. We constructed chromosomes with
keyword-matching clusters included within cluster groups. The cluster number is converted to binary.
The size of the chromosome is proportional to the number of search keywords Q.

Assume that three keywords are given and the cluster group is configured as g = (C2, C4, C8). In
Fig. 5, the cluster numbers are converted to binary numbers, and the converted binary numbers are
concatenated in sequence. Algorithm 1 presents a method for generating an initial chromosome in a
general genetic algorithm.

Algorithm 1: Generate Chromosome CNB
Input: R: keyword result set, k: the number of query keywords, m: total number of clusters
Output: chromosome[len_bits ∗ k]
1. len_bits = b that satisfies 2b−1 ≤ m ≤ 2b − 1
2. Array chromosome[len_bits ∗ k] = null
3. for i = 1 to |k| do
4. r = Rand(0, m)
5. bit_r = binarize(r)
6. start_index = len_bits∗(i − 1)
7. end_index = len_bits∗(i − 1) + len_bits
8. chromosome[start_index, end_index] = bit_r
9. return chromosome
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0 0 1 0 0 1 0 0 1 0 0 0

2 4 8

Figure 5: Structure of chromosome

4.2 Genetic Operations
In this study, we use the crossover and mutation operators as genetic operators. The traditionally

used crossover operator creates a new combination of clusters using a two-point crossover for two
chromosomes. In conventional mutation, it performs an operation by arbitrarily determining an
arbitrary point in the chromosome and then converting the selected value to 1 if it is 0 and 0 if it is
1. In this way, the mutation operation enables the creation of various individuals by forcibly changing
the value of a gene. Through these operations, it is expected that individuals with a better solution will
be generated.

In our study, a problem arises in that offspring are generated inefficiently in crossover and
mutation operations since the bits of the chromosome are constituted by the cluster number. For
example, assume that the keyword result set is obtained as follows for two keywords. R1 = {C1, C4, C6,
C10, C15} and R2 = {C3, C7, C8}. The largest cluster number in R1 is 15, and the largest cluster number in
R2 is 8. At least 4 bits can represent 8 and 15. Since a chromosome is composed of two keyword results,
the maximum length of a chromosome is 8 bits. An initial chromosome is constructed by randomly
selecting one cluster from each keyword result. Fig. 6 shows the configuration of chromosomes
(0001|0011) by selecting C1 from R1 and C3 from R2.

0 0 0 1 0 0 1 1

1 3

1 0 0 0 0 0 1 1

0 0 0 1 0 0 1 1

1 3

0 0 0 1 0 0 0 1

8 13 1

(a) crossover (b) mutation

Figure 6: Inefficient offspring generation (a) crossover (b) mutation

Fig. 6 shows that the offspring generated through the crossover operation and the mutation
operation is inefficient when chromosomes are constructed by cluster numbers. In Fig. 6a, the 1st and
4th genes are selected through the crossover operation and exchanged, and a new offspring (1000|0011)
is generated. The group set (C8, C3) is obtained by converting offspring to cluster numbers for fitness
evaluation. According to Definition 11, only the cluster included in R1 can be included in the first
element of the groupset. Since C8 is not included in R1, the newly generated offspring does not need
to calculate the fitness. The inclusion of chromosomes that do not require fitness calculations in the
next generation increases time costs by generating unnecessary fitness evaluation calculations. This
problem also appears in mutation operations. In Fig. 6b, the 7th gene is selected and changed from 0
to 1 through mutation operation, and a new offspring (0001|0001) is generated. The group set (C1, C1)
is obtained by converting offspring to cluster numbers for fitness evaluation. According to Definition
11, only the cluster included in R2 can be included in the second element of the groupset. Since C1 is
not included in R2, the newly generated offspring does not need to calculate the fitness.
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In this paper, instead of the cluster number binarization (CNB), we propose an index number
binarization (INB) for configuring chromosomes by assigning an index to each cluster included in
the cluster group and binarizing the index value. Algorithm 2 presents a method for generating early
chromosomes in a genetic algorithm using CNB.

Algorithm 2: Generate Chromosome INB
Input: R: keyword result set, k: the number of query keywords, m: total number of clusters
Output: chromosome[len_bits ∗ k]
1. for i = 1 to |k| do
2. max_num[i] = Max(R(i)) // Returns the largest cluster number in the keyword result set
3. len_bits[i] = b that satisfies 2b−1 ≤ max_num[i] ≤ 2b − 1
4. len_total += len_bits[i]
5. Array chromosome[len_total] = null
6. len_cur = 0
7. for i = 1 to |k| do
8. r = Rand(0, max_num[i])
9. bit_r = binarize(r)
10. start_index = len_cur
11. end_index = len_bits[i] – 1
12. len_cur += len_bits[i]
13. chromosome [start_index, end_index] = bit_r
14. return chromosome

Index number binarization is performed in the following way. First, a list is created as many as
the number of elements in the keyword result set. In our example, two keyword results (R1, and R2)
are included in the keyword result set. The list stores the address of the index table. The index table
contains clusters and index numbers included in one keyword set. In Fig. 7, the list of length 2 is
created. An index table is created for each keyword result. For R1 = {C1, C4, C6, C10, C15}, each cluster
in R1 is sequentially included in the index table along with the index value. Index values are sequentially
assigned to the cluster from 0 and increasing by 1.

Figure 7: Index number binarization
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In Fig. 7, the highest number of indices allocated to the cluster included in R1 is 4. Because a
positive integer m has b bits when 2b−1 ≤ m ≤ 2b − 1, the minimum number of bits required to represent
4 with 2 bits is 3. The minimum number of bits in R2 is 2. An initial chromosome is constructed by
randomly selecting one cluster from each keyword result. For initial chromosomal construction, C6

was selected in R1 and C7 was selected in R2. Index value 2 of C6 and index value 1 of C7 are binarized
to form chromosomes (010|01). INB does not have an empty number in the middle because the index
value increases sequentially from 0 to the maximum value. Therefore, the probability of generating an
invalid offspring is low (see Fig. 8).

0 1 0 0 1

2 1

0 1 1 0 0

03

0 1 0 0 1

2 1

g=(C10, C3)

g=(C6, C7) g=(C6, C7)

0 1 0 0 1

10

g=(C1, C7)

(a) crossover (b) mutation

Figure 8: Genetic operation (a) crossover (b) mutation

However, this does not mean that invalid offspring is not generated even in INB. Up to 2b − 1 can
be expressed with b bits. For example, 000, 001, 010, 011, 100, 101, 110, 111 can be expressed with 3
bits. However, since the maximum index is 4 (100), if a chromosome is composed of a bit (101, 110,
111) greater than the maximum index value, the chromosome becomes an invalid chromosome (see
Fig. 9). Even in this case, it is a chromosome that does not need to calculate fitness.

Figure 9: Example of an eliminated chromosome in INB

We utilize the maximum value of the cluster index to avoid calculating the fitness for invalid
chromosomes. Since the maximum index value for each cluster group is known, if the value generated
by the genetic operation is greater than the maximum value, the chromosome is eliminated without
calculating the fitness. In Fig. 9, since the maximum index value of R1 is 4 (100), if the value generated
by the mutation is 6 (110), this chromosome does not perform a fitness calculation. Although INB
also generates invalid offspring, we prove that CNB is approximately twice as likely to generate invalid
offspring as INB in Appendix A.
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4.3 Objective Function
The objective function is a criterion for judging how close the current generation is to the solution,

and it determines the overall performance of the genetic algorithm. In this study, the objective function
is to measure the shortest inner distance of the cluster group such as Eq. (3).

fit (g) = innerD (g) (3)

where g is a cluster group. The innerD function is presented in Definition 4.

4.4 Design of Genetic Algorithm
The process of the genetic algorithm is shown in Fig. 10. Given data D and a query keyword Q, we

first obtain keyword result sets for each keyword by performing KM-DBSCAN. Our genetic algorithm
begins with the initial population. Chromosomes of the initial population are generated by combining
randomly selected clusters from each keyword result set. The fitness is evaluated for the chromosomes
constituting the initial population. In this study, we use a ranking selection strategy. Chromosomes in
a list are sorted according to their fitness. The position of the chromosome in the list means a ranking.
By selecting the top-ranking k, the genetic algorithm is applied and the next generation is generated.

Generate initial population

t = 1

Return optimal chromosome

Start

End

Select top k chromosomes
According to ranking selection

Genetic operation
(mutation, crossover)

Generate new population
with M chromosomes

t � tmax

Evaluate chromosomes
t = t+1

Figure 10: Flowchart of genetic algorithm

The crossover operation is an operation that enables the generation of various individuals that
do not exist in the population by exchanging information possessed by individuals. Therefore, it
is expected that the chromosome with a better solution will be generated through the crossover
operation. In general, a crossover operation is performed by exchanging a portion of a gene between
chromosomes, and various crossover operations can be defined depending on the type of the encoded
chromosome. We adopted a simple crossover that randomly determines one crossover point for a pair
of individuals and exchanges each other around the crossover point.

As the population progresses from generation to generation, the child chromosomes become more
similar to the population. Therefore, even if the cross operation is performed, it may not be possible to
generate a new chromosome. The mutation operation is performed to compensate for the limitations
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of the crossover operation. A mutation operation is performed by determining an arbitrary point in
the chromosome and changing the selected value to 1 if it is 0 and to 0 if it is 1. Mutation operation
enables the generation of various chromosomes by forcibly changing the value of a gene. However,
if the ratio of mutation operation is too large, the probability of the mutation in the direction of low
fitness will also increase, and the solution will be difficult to obtain.

4.5 Computational Complexity Analysis
Given q keywords from the user, a q keyword result set is obtained. Assume that the total number

of clusters is m. To find a solution using the brute-force approach without using a genetic algorithm,
the inner distances of all cluster groups must be calculated. In the brute-force approach, if the average
number of clusters in each keyword set is m/q, the number of cluster combinations to be calculated to
find adjacent clusters is (m/q)q.

The computational complexity of the proposed genetic algorithm includes encoding and calculat-
ing fitness. A chromosome is generated by selecting one cluster from the q keyword result sets, and the
number of chromosomes in one generation is the population size, p. If the number of trials to find the
optimal solution is t, the time complexity of the proposed genetic algorithm is O(p∗q∗t).

5 Evaluations
5.1 Experiment Setting

Algorithm. In this study, we defined a new problem to find adjacent clusters in the keyword result
set. Therefore, there is still no existing algorithm that can directly solve this problem. Therefore, first
of all, we set the brute force approach as the baseline, which is the most basic approach to finding the
optimal solution. Therefore, first of all, we set the brute force approach as the baseline, which is the
most basic approach to finding the optimal solution. Next, a general genetic algorithm was applied to
show that the genetic algorithm can solve our problem efficiently. It was shown that the CNB method
proposed in this study is more suitable for solving our problem than the INB method used in the
general genetic algorithm.

In this section, we compared our GKM-DBSCAN algorithm with not only the original genetic
algorithm but also the brute-force approach by varying several parameters. Our GKM-DBSCAN
algorithm finds the adjacent cluster with a genetic algorithm using INB and the original genetic
algorithm (General) finds the adjacent cluster with a genetic algorithm using CNB based on the
keyword result sets obtained by KM-DBSCAN. The brute-force (BF) approach finds the adjacent
cluster by calculating all combinations of cluster groups without using a genetic algorithm.

Datasets. We used real and synthetic datasets for experiments. Real datasets are collected from
data.world (https://data.world/datasets/geospatial). Each tuple in real datasets has longitude and
latitude coordinates as spatial data. We need not only spatial data for each tuple but also purchase
item data for experiments. Purchase item data was arbitrarily added to the real data with spatial data.
To eliminate the problem of bias in spatial data, we normalized spatial data into the space (0, 0) × (10,
10 K).

To evaluate the effects of various parameters, we additionally generated a synthetic dataset with
Gaussian distribution in the space. The synthetic dataset has various cardinalities N in the range [10,
200 k]. To get the keyword result sets with KM-DBSCAN, we set ε to 30 and minPtr to 3, which
are required parameters in DBSCAN. Table 2 presents the algorithm parameters we used in our
experiments, and default values are shown in boldface. All experiments were repeated 10 times and
the average value was measured.

https://data.world/datasets/geospatial
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Table 2: System parameters

Notation Description

Cardinality of tuples (N) 10, 50, 100, 150, 200 k
Number of query keywords (k) 2, 4, 6, 8
Population size (p) 50, 100, 150, 200, 250, 300, 350, 400, 450, 500
Number of clusters (m) [100, 8000]

We implemented all algorithms using Java. Experiments were conducted on a Windows 7 platform
using 32 GB of memory, 3.50 GHz, and Intel Core i7. When performing KM-DBSCAN, IR2-tree was
used for data indexing. The page size of a node on the IR2-tree was 4096 bytes.

5.2 Effect of Data Size and Number of Keywords
In this section, we evaluate the scalability concerning the cardinality N of the dataset and

the number of keywords. We conduct experiments with various cardinalities N[10, 200 k] and
k[2, 8]. Fig. 11 shows the experiments for varying N. As shown in Fig. 11, GKM-DBSCAN generally
outperforms the BF method and General method in all datasets. The performance difference increases
as the cardinality increases. This shows that GKM-DBSCAN algorithm performs effectively for a
large dataset. As the number of keywords increases, it can be seen that the difference between BF
and the others (GKM-DBSCAN and General) becomes wider. As shown in Figs. 11a and 11d, we
can see the difference in time cost between BF and the others with the number of keywords, 2 and
8, in the case of a data size of 200 k. The difference in time cost is about 1.2 times in the number of
keywords 2, whereas the difference in time cost is 21 times in the number of keywords 8. As shown
in the computational complexity analysis, the brute-force method, which is not based on a genetic
algorithm, has the number of keywords as an exponent in the time complexity. Thus, as the number
of keywords increases, time complexity increases exponentially.

5.3 Effect of the Population Size
In this section, we compare a genetic algorithm based on two algorithms, GKM-DBSCAN and

General to evaluate the performance according to the genetic algorithm parameters. The size of the
population affects the convergence speed and time cost. We evaluate the effect of the population size.
We conduct experiments with various population sizes p[50, 100, 150, 200, 250, 300, 350, 400, 450,
500]. Fig. 12 shows the experiments for varying p. GKM-DBSCAN generally outperform General in
all datasets. In our experiments, the time cost decreases until the population size is 400, and increases
slightly from 400. In general, as the population increases, the amount of genetic operations increases
accordingly, so the number of operations performed in one generation increases. However, as the
population size increases, the probability of finding an optimal solution increases, and the speed of
convergence increases. When the population is between 50 and 400, the convergence speed increases
faster than the increase in the amount of computation in one generation, and the total time cost
decreases. However, as the population size becomes more than 400, the amount of computation in
one generation is greater than the convergence speed, increasing the total time cost.
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Figure 11: Effects of data size and the number of keywords

Figure 12: Effect of population size (a) in the synthetic dataset (b) real data
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5.4 Convergence Speed
In this section, we evaluate the convergence speed. Fig. 13 presents the graph comparing the

degree of fitness change by generation in GAs. GKM-DBSCAN converges to a certain value when
the generation value reaches 50 if the fitness value rapidly decreases initially as generations increase.
In contrast, the reduction rate of general is slow and the generation value reaches 70. This means that
INB is shown to improve the convergence speed to find the optimal solution.

Figure 13: Convergence speed (a) in the synthetic dataset (b) real data

5.5 Length of Chromosome
In this section, we evaluate the length of chromosomes concerning the number of clusters. We

conduct experiments with various cardinalities m[100, 8000]. Fig. 14 shows the experiments for varying
m. As the number of clusters m increases, the maximum cluster number that each cluster group can
have increased. Therefore, as the number of clusters increases, the length of the chromosome increases.
Of course, the clusters included in the cluster group may vary depending on the data to be analyzed.
It can be seen that the chromosome length of INB is shorter than that of CNB. Our experiments show
that the length of the chromosome in INB is average 1.625 bits shorter than in CNB.

Figure 14: Length of chromosome (a) in the synthetic dataset (b) real data
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5.6 Ratio of Invalid Chromosomes
In this section, we evaluate the ratio of invalid chromosome generation respect to the number

of clusters. We conduct experiments with various cardinalities m[100, 8000]. Fig. 15 shows the
experiments for varying m. We set the number of chromosomes constituting one generation to 400
(population size). 400 chromosomes are newly generated by genetic operation, and the ratio of invalid
chromosomes was measured as the number of invalid chromosomes among them. In Fig. 15, as
the number of clusters increases, the length of the chromosome increases, and as the length of the
chromosome increases, the probability of generating an invalid chromosome increases. However, as the
number of clusters increases, it can be seen that the increased amount of probability in CNB is larger
than in INB. In Fig. 15, the ratio is measured as the probability in CNB divided by the probability
in INB. As seen in Lemma 1, it can be seen that this ratio converges to 2 as the number of clusters
increases.

Figure 15: Ratio of invalid chromosomes (a) in synthetic dataset (b) real data

6 Conclusion

This paper defines the novel problem of discovering a set of adjacent clusters among the cluster
results derived for each keyword in the KM-DBSCAN algorithm. To solve this problem, we first
proposed the GKM-DBSCAN algorithm, to which the genetic algorithm was applied to discover
the set of adjacent clusters among the cluster results derived for each keyword. To improve the
performance of GKM-DBSCAN, we adopted the index number binarization instead of the cluster
number binarization. We conducted extensive experiments on both real and synthetic datasets to show
the effectiveness of GKM-DBSCAN over the brute-force method. The experimental results show that
GKM-DBSCAN outperforms the brute-force method by up to 21 times. GKM-DBSCAN with the
index number binarization is 1.8 times faster than GKM-DBSCAN with the cluster number binariza-
tion. In our experimental data, the data were evenly distributed. However, when the distribution of
data is skewed, the disadvantage is that the difference between CNB and INB may be similar. This
is because chromosomes become similar in size when each keyword result set has a large number
of cluster numbers. In future work, we plan to extend our proposal to deal with not only uniform
and Gaussian distribution but also skewed data distribution and to consider an optimized keyword-
matching DBSCAN algorithm in a parallel processing environment.
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Appendix A.

Lemma 1. Assuming that the number of clusters is m, the probability of generating an invalid
offspring in CNB is approximately twice that of INB.

Proof. We look at the worst case for both INB and CNB. When the number of clusters is m, the
maximum number of clusters is also m. A positive integer m has b bits when 2b−1 ≤ m ≤ 2b − 1. In INB,
there is no missing number between 0 and m because the index value increases sequentially from 0 to
the maximum value m. In order to maximize the number of invalid offspring within a given bit size, m
is 1 greater than 2b−1. Therefore, m can be expressed up to 2b − 1, so that (2b − 1) − 2b−1 can be invalid
offspring. We can obtain

2b − 1 − 2b−1 = 2b − 1 − 2b 1
2

= 2b

(
1 − 1

2

)
− 1 = 2b

(
1
2

)
− 1 = 2b−1 − 1. (4)

The probability that the offspring generated through genetic operation becomes an invalid
chromosome is as follows:
2b−1 − 1
2b − 1

(5)

In the worst case, CNB includes at least two clusters in one cluster group. Assume that the cluster
m with the largest number and an arbitrary cluster are included in one cluster group. Because a positive
integer m has b bits when 0 ≤ m ≤ 2b − 1, (2b − 1) − 2 can be invalid offspring. We can obtain (2b − 1) –
2 = 2b − 3. The probability that the offspring generated through genetic operation becomes an invalid
chromosome is as follows:
2b − 3
2b − 1

(6)

Since the denominators of both probabilities are the same, comparing the ratio of the two
probabilities with the value of the numerator is as follows:

2b − 3
2b−1 − 1

= 2
(
2b − 3

)
2 (2b−1 − 1)

= 2
(
2b − 2

) − 2

(2b − 2)
= 2 − 2

(2b − 2)
= 2 − 1

(2b−1 − 1)
. (7)

As the value of b increases, it converges to 2. Thus, the probability of generating an invalid
offspring in CNB is approximately twice that of INB.
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