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ABSTRACT

In this paper, a stable two-sided matching (TSM) method considering the matching intention of agents under a
hesitant fuzzy environment is proposed. The method uses a hesitant fuzzy element (HFE) as its basis. First, the
HFE preference matrix is transformed into the normalized HFE preference matrix. On this basis, the distance and
the projection of the normalized HFEs on positive and negative ideal solutions are calculated. Then, the normalized
HFEs are transformed into agent satisfactions. Considering the stable matching constraints, a multiobjective
programming model with the objective of maximizing the satisfactions of two-sided agents is constructed. Based
on the agent satisfaction matrix, the matching intention matrix of two-sided agents is built. According to the agent
satisfaction matrix and matching intention matrix, the comprehensive satisfaction matrix is set up. Furthermore,
the multiobjective programming model based on satisfactions is transformed into a multiobjective programming
model based on comprehensive satisfactions. Using the G-S algorithm, the multiobjective programming model
based on comprehensive satisfactions is solved, and then the best TSM scheme is obtained. Finally, a terminal
distribution example is used to verify the feasibility and effectiveness of the proposed method.
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1 Introduction

In the process of two-sided matching decision-making (TSMDM), two-sided agents yield the
preference information according to their own needs and produce a reasonable matching scheme.
The TSMDM problem widely exists in various fields, such as the freight source matching problem
[1], blockchain-based task matching problem [2], cap-trade matching problem in carbon emissions
[3], mentor-mentee matching problem [4], emergency rescue personnel and task matching problem [5]
and so on. Gale et al. [6] first studied TSMDM problems with ordinal preferences. After the initial
study, different types of preference information were used in the TSMDM problems, such as the
linguistic term, ordinal number and interval number. For instance, Tong et al. [7] proposed a two-sided
matching (TSM) model based on the preference information of linguistic terms. Pittel [8] proposed
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a TSM model under strict preference order. Hu et al. [9] presented a stable TSM model with one-
side preference. Antler [10] studied TSMDM problems based on the endogenous preference ordinal
number and proposed a new TSMDM method. Many scholars at home and abroad are devoting
increasing attention to TSMDM because of the important roles of TSMDM theory and methodology
in economic activities.

Currently, the preference information provided by people is often vague or uncertain due to the
subjectivity and fuzziness of human thinking [11]. Thus, preference information based on different
forms of fuzzy sets has been noticed and studied by many scholars, including intuitionistic fuzzy sets,
interval intuitionistic fuzzy sets, and triangular fuzzy numbers [12–14]. These types of fuzzy sets mostly
contain a membership and nonmembership element. However, in some decision-making scenarios, the
decision-maker may not provide a single evaluation value, but rather multiple evaluation values. In
addition, multiple decision-makers may give different evaluation information at the same time, and
they may not convince each other due to conflicting opinions. For instance, in a venture investment
matching problem, five experts in the field of venture capital may assign different evaluation values
with respect to venture capital enterprises, such as 0.5, 0.4, 0.6, 0.8 and 0.7. The traditional fuzzy sets
mentioned above cannot effectively maintain the integrity of decision information. Compared with the
traditional fuzzy sets mentioned above, the hesitant fuzzy set (HFS) proposed by Torra can maximize
the retention of initial decision information due to the multiple membership degrees [15]. In the case
mentioned above, the preference information given by five experts can be described by the hesitant
fuzzy element (HFE) {0.5, 0.4, 0.6, 0.8, 0.7}. Therefore, the TSMDM considering HFS preferences
also has important research value.

Relevant studies on HFS have emerged in different fields. First, the basic theory regarding HFS
has been generalized. For instance, Xu et al. [16] proposed various hesitant ordered weighted distance
measures and corresponding hesitant ordered weighted similarity measures. Following Xu and Xia’s
[17] research, a brand-new distance measure and similarity measure for higher order HFS were given
in Farhadinia’s study. Liang et al. [18] developed a novel utility function for HFS. Liao et al. [19]
proposed brand-new hesitant fuzzy weighted operators, including the hesitant power average operator,
weighted hesitant power average operator, ordered weighted hesitant power average operator and
hybrid weighted hesitant power average operator. Moreover, the application scope of HFS has
expanded. For instance, a novel multiattribute group decision-making model based on the hesitant
fuzzy superiority and inferiority ranking method and the interval-valued hesitant fuzzy superiority and
inferiority ranking method was proposed by Ma et al. [20]. Ullah [21] developed a new multiattribute
group decision-making model based on the fuzzy picture Maclaurin symmetric mean operator.

In addition, according to the aforementioned literature, there have been many studies on the
application of HFS in the TSMDM problem. For instance, Zhang et al. [22] established a stable
TSM model considering multi-granular hesitant fuzzy linguistic term information and proposed an
example for the matching of green building technology supply and demand to verify the effectiveness
of this model. Li et al. [23] studied the complex product manufacturing problem and proposed a
TSMDM method considering dual-hesitant fuzzy information. Yue et al. [24] developed a new HFS
score function and constructed the corresponding TSMDM model. Zhang et al. [25] proposed a two-
sided matching method considering regret aversion psychological behavior and matching aspiration to
solve TSM problems with intuitionistic fuzzy preference information. Xiang et al. [26] constructed a
novel TSM model considering hesitancy and ambiguity and proposed a novel Pareto refining method,
which can be applied in high-end equipment cloud manufacturing platform matching problems.
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Although a considerable number of scholars have explored the TSMDM problem under HFS
preferences from a variety of perspectives and have achieved some promising results, there are some
deficiencies in the existing research.

First, in the TSMDM with HFS preference information, it is vital for decision-makers to find a
reasonable tool to transform HFS preferences into exact values. In most of the existing studies, the
TOPSIS method based on the distance measure or biprojection technology has been widely used in
the TSMDM problem with HFS preference information. However, the above methods may still result
in the loss of decision-making information in some cases. Hence, it would be meaningful to create an
effective method to compute agent satisfaction.

Second, the matching intention coefficient, which reflects the matching intention of two-sided
agents, plays an important role in the TSMDM problem. For some TSMDM problems, the matching
intention coefficient may affect the final TSM result. However, it seems that the matching intention
coefficient has been neglected in the aforementioned TSMDM model. Therefore, it would be prac-
ticable to develop a method to obtain the matching intention coefficient of two-sided agents in the
TSMDM problem with HFS preference information.

Third, stability is of great significance for two-sided agents to achieve a reasonable and satisfactory
matching result. However, this topic has not been fully discussed by many existing studies on the
TSMDM problem in HFS preference environments. Thus, it is necessary to consider the stability of
the TSMDM problem based on HFS preference information.

To overcome these deficiencies, this paper aims to develop a reasonable and effective method to
cope with the TSMDM problem considering HFS preferences. Moreover, a TSMDM model with HFS
preferences considering the matching intention coefficient is constructed. The key contributions of
this work are as follows. First, we create an effective method to compute the agent satisfaction, which
uses the distance measure and bi-projection technology. Second, we develop an effective method for
calculating the matching intention coefficient of two-sided agents. Finally, a TSMDM model with HFS
preference information considering stable matching constraints and matching intention is constructed.

The remaining structure of this paper is as follows: In Section 2, some relevant concepts of
the TSM, HFS and HFE, and stable matching are presented. The stable TSM problem with HFS
preference information considering matching intention is described in Section 3. Section 4 describes
the TSMDM method with HFSs using TOPSIS technology. In Section 5, a TSM case is applied to
verify the effectiveness and feasibility of the proposed method. Section 6 summarizes this paper.

2 Basic Concepts

In this section, we first introduce the basic concepts of the TSM, HFS and HFE. Then, the stable
matching based on satisfaction is briefly described.

2.1 Two-Sided Matching
There are two agent sets in the TSM problem, namely, U = {U1, U2, . . . , Um} and V =

{V1, V2, . . . , Vn}. Assume 2 ≤ m ≤ n and suppose i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Definition 1. [22] Let θ : U ∪ V → U ∪ V be a mapping; if ∀Ui ∈ U , ∀Vj ∈ V , θ satisfies three
constraints: 1) θ(Ui) ∈ V ; 2) θ(Vj) ∈ U ∪ {Vj}; 3) θ(Ui) = Vj if θ(Vj) = Ui; then, θ : U ∪ V → U ∪ V
is called a TSM. Here, (Ui, Vj) represents that Ui and Vj match successfully in TSM θ ; (Ui, Ui) and
(Vj, Vj) represent that Ui and Vj fail to match successfully in TSM θ .
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2.2 Hesitant Fuzzy Set and Hesitant Fuzzy Element
Definition 2. [24] Assume X = {x1, x2, . . . , xn} is a fixed set; then, the HFS P in X can be denoted

as P = {< x, p(x) > |x ∈ X}, where p(x) = {pσ(1)(x), pσ(2)(x), . . . , pσ(lp(x))(x)}(x = x1, x2, . . . , xn) is a
finite set of membership degrees within interval [0, 1], and lp(x) represents the number of elements in
HFE p(x). For convenience, note HFE p = {pσ(1), pσ(2), . . . , pσ(lp)}.

Definition 3. [16] Let pA and pB be two HFEs; then, the distance measures between pA and pB can
be denoted as:

d (pA, pB) = 1
lp

lp∑
i=1

∣∣pA
σ(j) − pB

σ(j)
∣∣ (1)

where pA
σ(j) represents the jth element of HFE pA, j = 1, 2, . . . , lpA

, and pB
σ(j) represents the jth element

of HFE pB, lpA
and lpB

are the length of HFEs pA and pB, and suppose lp = max{lpA
, lpB

}.

2.3 Stable Matching Based on Satisfaction
In the real TSMDM scenario, we assume that fij is the satisfaction from Ui to Vj and zij is the

satisfaction from Vj to Ui. The definition of stable matching can be defined as follows.

Definition 4. [22] If neither of the following conditions occurs in a TSM θ :

(i) ∃Ui, Ul ∈ U , Vi, Vk ∈ V , s.t. θ(Ui) = Vk, θ(Ul) = Vj, where fij > fik and zij > zlj;

(ii) ∃Ui, Ul ∈ U , Vi, Vk ∈ V , s.t. θ(Ui) = Vk, θ(Ui) = Ui, where fij > fik;

then θ is called a stable TSM.

3 Stable Two-Sided Matching Problem Considering Matching Intention

In this section, we introduce the TSMDM problem based on HFE preference information
considering the matching intention.

In the TSMDM problem, two-sided agents usually hesitate to assign their own preferences
among multiple membership degrees. Therefore, to show the hesitancy and fuzziness of the evaluation
information in TSMDM activities, we assume that two-sided agents provide hesitant fuzzy preference
information. Furthermore, assume U = {U1, U2, . . . , Um} and V = {V1, V2, . . . , Vn} are two sets of

TSM agents. Suppose C̃ = [
c̃ij

]
m×n

is the HFE matrix from U to V , where c̃ij =
{

c̃μ(1)

ij , c̃μ(2)

ij , . . . , c̃
μ

(
lc̃ij

)
ij

}

signifies the HFE information from U to V . Assume D̃ =
[
d̃ij

]
m×n

is the HFE matrix from V to U ,

where d̃ij =
⎧⎨
⎩d̃μ(1)

ij , d̃μ(2)

ij , . . . , d̃
μ

(
l
d̃ij

)

ij

⎫⎬
⎭ signifies the HFE information from V to U .

The problem studied in this paper is as follows: how to construct a TSM model considering the
matching intention and stable matching conditions according to the HFE preference matrices C̃ =[
c̃ij

]
m×n

and D̃ =
[
d̃ij

]
m×n

given by two-sided agents.

4 Two-Sided Matching Decision-Making Based on Hesitant Fuzzy Elements

In this section, the TSMDM method based on HFE considering matching intention is presented.
First, the HFE matrices are transformed into standardized HFE matrices. Then, the agent satisfaction
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matrices are calculated by using the TOPSIS and biprojection technology-based methods. Third, the
TSM model considering the matching intention and stability is constructed by using the multiobject
planning method. Finally, the optimal TSM scheme is obtained through the G-S algorithm.

4.1 Standardized Hesitant Fuzzy Element Matrix
According to Definition 2, we know that l signifies the number of elements in the HFE. However,

the number of elements in the two HFEs is not the same in many decision scenarios. Therefore, the
HFE is normalized based on the method proposed in the reference [23]. Assuming two HFEs p1 and
p2, their lengths can be expressed as l1 and l2. Under the condition of risk preference, the element with
the maximum value is added to the HFE with the small value l, so that l = l1 = l2; under the condition
of risk aversion, the elements with minimum value are added to the HFE with the small value l so that
l = l1 = l2. At the same time, the elements in the HFE need to be sorted in descending order.

The normalized HFE matrices Ẽ = [
ẽij

]
m×n

and F̃ =
[
f̃ij

]
m×n

can be obtained by normalizing

the HFE elements in matrices C̃ = [
c̃ij

]
m×n

and D̃ =
[
d̃ij

]
m×n

. According to Definition 2, the length

lej , ∀i = 1, 2, . . . , m of HFE ẽij in matrix Ẽ = [
ẽij

]
m×n

can be represented as follows:

Ẽ =

⎡
⎢⎢⎣

ẽ11 ẽ12 · · · ẽ1n

ẽ21 ẽ22 · · · ẽ2n

...
...

. . .
...

ẽm1 ẽm2 · · · ẽmn

⎤
⎥⎥⎦

le1
le2

· · · len

Therefore, the length lfi , ∀j = 1, 2, . . . , n of HFE f̃ij in matrix F̃ =
[
f̃ij

]
m×n

can be represented as

follows:

F̃ =

⎡
⎢⎢⎢⎣

f̃11 f̃12 · · · f̃1n

f̃21 f̃22 · · · f̃2n

...
...

. . .
...

f̃m1 f̃m2 · · · f̃mn

⎤
⎥⎥⎥⎦

lf1

lf2
...
lfm

4.2 Construction of the Agent Satisfaction Matrix
The normalized HFE matrix is processed according to TOPSIS technology, and the following

definitions are given with reference to the reference [24] and Definition 3.

Definition 5. [23] Given a normalized HFE matrix Ẽ = [
ẽij

]
m×n

, the vectors of positive solution ẽ+

and negative solution ẽ− in Ẽ = [
ẽij

]
m×n

are denoted as follows:

ẽ+ = {
maxi ẽσ(1)

ij , maxi ẽσ(2)

ij , . . . , maxi ẽσ(n)

ij

}
(2)

ẽ− = {
mini ẽσ(1)

ij , mini ẽσ(2)

ij , . . . , mini ẽσ(n)

ij

}
(3)

Definition 6. Let the normalized HFE, the positive ideal solution HFE and negative ideal solution
HFE be ẽij, ẽ+, ẽ−, respectively; then, D

(
ẽij, ẽ+

i

)
and D

(
ẽij, ẽ−

i

)
are called the standard Hamming distance

of the positive ideal solution HFE ẽ+ and the normalized HFE ẽij, and the standard Hamming distance
of the negative ideal solution HFE ẽ− and the normalized HFE ẽij, where D

(
ẽij, ẽ+

i

)
and D

(
ẽij, ẽ−

i

)
are

computed by:
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D
(
ẽij, ẽ+

i

) = 1
lej

lej∑
k=1

∣∣ẽσ(k)

ij − ẽ+σ(k)

i

∣∣ (4)

D
(
ẽij, ẽ−

i

) = 1
lej

lej∑
k=1

∣∣ẽσ(k)

ij − ẽ−σ(k)

i

∣∣ (5)

where ẽ+σ(k) represents the kth element of the positive ideal solution HFE ẽ+, and ẽ−σ(k) represents the
kth element of the negative ideal solution HFE ẽ−.

Definition 7. [23] Let the normalized HFE, the positive ideal solution HFE and negative ideal
solution HFE be ẽij, ẽ+, ẽ−, respectively; then, Prẽ− ẽ+

(
ẽ−ẽij

)
and Prẽ+ ẽij

(
ẽ−ẽ+) are called the projection

of the vector formed by HFE ẽij and the negative ideal solution ẽ− on the positive ideal points ẽ+ and
negative ideal points ẽ−, and the projection of the vector formed by the positive ideal solution ẽ+ and
negative ideal solution ẽ− on positive ideal points ẽ+ and HFE ẽij, where Prẽ− ẽ+

(
ẽ−ẽij

)
and Prẽ+ ẽij

(
ẽ−ẽ+)

are computed by:

Pr
ẽ− ẽ+

(
ẽ−ẽij

) =

lej∑
k=1

(
ẽ+σ(k) − ẽ−σ(k)

) (
ẽσ(k)

ij − ẽ−σ(k)
)

√
lej∑

k=1

|ẽ+σ(k) − ẽ−σ(k)|2

(6)

Pr
ẽ+ ẽij

(
ẽ−ẽ+) =

lej∑
k=1

(
ẽ+σ(k) − ẽ−σ(k)

) (
ẽ+σ(k) − ẽσ(k)

ij

)
√

lej∑
k=1

|ẽ+σ(k) − ẽσ(k)

ij |2

(7)

According to Definition 6 and Definition 7 and the calculation theory of closeness in reference
[24], the definitions of combined closeness are given below.

Definition 8. Let ãẽij be the combined closeness between the HFE ẽij and the positive and negative
ideal solution ẽ+, ẽ−; then, ãẽij can be computed as:

ãeij = WD

(
D
(
ẽij, ẽ−

i

)
D
(
ẽij, ẽ+

i

) + D
(
ẽij, ẽ−

i

)
)

+ WPr

(
Prẽ− ẽ+

(
ẽ−ẽij

)
Prẽ− ẽ+

(
ẽ−ẽij

) + Prẽij ẽ+
(
ẽ−ẽ+

)
)

(8)

where WD and WPr signify the weights of the distance measure and projection, respectively.

In Eq. (8), the larger the combined closeness ãẽij is, the closer ẽij is to the positive ideal solution
ẽ+, and the more distant ẽij is from the negative ideal solution ẽ−: namely, the greater the satisfaction.
Hence, the satisfaction matrix Ã = [

ãeij

]
m×n

is calculated by Eq. (8).

Definition 9. [23] Given a normalized HFE matrix F̃ =
[
f̃ij

]
m×n

, the vectors of positive solution f̃ +

and negative solution f̃ − in F̃ =
[
f̃ij

]
m×n

are denoted as:

f̃ + =
{

maxi f̃ σ(1)

ij , maxi f̃ σ(2)

ij , . . . , maxi f̃ σ(m)

ij

}
(9)

f̃ − =
{

mini f̃ σ(1)

ij , mini f̃ σ(2)

ij , . . . , mini f̃ σ(m)

ij

}
(10)
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Definition 10. Let the normalized HFE, the positive ideal solution HFE and negative ideal solution

HFE be f̃ij, f̃ +, f̃ −, respectively; then, D
(

f̃ij, f̃ +
)

and D
(

f̃ij, f̃ −
)

are called the standard Hamming

distance of the positive ideal solution HFE f̃ + and the normalized HFE f̃ij, and the standard Hamming

distance of the negative ideal solution HFE f̃ − and the normalized HFE f̃ij, where D
(

f̃ij, f̃ +
)

and

D
(

f̃ij, f̃ −
)

are computed by:

D
(

f̃ij, f̃ +
)

= 1
lfi

lfi∑
k=1

|f̃ σ(k)

ij − f̃ +σ(k)| (11)

D
(

f̃ij, f̃ −
)

= 1
lfi

lfi∑
k=1

|f̃ σ(k)

ij − f̃ −σ(k)| (12)

where f̃ +σ(k) represents the kth element of the positive ideal solution HFE f̃ +, and f̃ −σ(k) represents the
kth element of the negative ideal solution HFE f̃ −.

Definition 11. [23] Let the normalized HFE, the positive ideal solution HFE and negative ideal

solution HFE be f̃ij, f̃ +, f̃ −, respectively; then, Prf̃ − f̃ +
(

f̃ −f̃ij

)
and Prf̃ + f̃ij

(
f̃ −f̃ +

)
are called the projection

of the vector formed by the HFE f̃ij and the negative ideal solution f̃ − on the positive ideal points f̃ +

and negative ideal points f̃ −, and the projection of the vector formed by the positive ideal solution f̃ +

and the negative ideal solution f̃ − on the positive ideal points f̃ + and the HFE f̃ij, where Prf̃ − f̃ +
(

f̃ −f̃ij

)
and Prf̃ + f̃ij

(
f̃ −f̃ +

)
are computed by:

Prf̃ − f̃ +
(

f̃ −f̃ij

)
=

lfi∑
k=1

(
f̃ +σ(k) − f̃ −σ(k)

) (
f̃ σ(k)

ij − f̃ −σ(k)

)
√

lfi∑
k=1

|f̃ +σ(k) − f̃ −σ(k)|2

(13)

Prf̃ + f̃ij

(
f̃ −f̃ +

)
=

lfi∑
k=1

(
f̃ +σ(k) − f̃ −σ(k)

) (
f̃ +σ(k) − f̃ σ(k)

ij

)
√

lfi∑
k=1

|f̃ +σ(k) − f̃ σ(k)

ij |2

(14)

According to Definition 9, Definition 10, and the calculation theory of closeness in reference [24],
the definitions of combined closeness are given below.

Definition 12. Let b̃f̃ij
be the combined closeness between the HFE f̃ij and the positive and negative

ideal solution f̃ +, f̃ −; then, can be computed as:

b̃fij = WD

⎛
⎝ D

(
f̃ij, f̃ −

)
D
(

f̃ij, f̃ +
)

+ D
(

f̃ij, f̃ −
)
⎞
⎠ + WPr

⎛
⎝ Prf̃ − f̃ +

(
f̃ −f̃ij

)
Prf̃ − f̃ +

(
f̃ −f̃ij

)
+ Prf̃ + f̃ij

(
f̃ −f̃ +

)
⎞
⎠ (15)

where WD and WPr signify the weights of the distance measure and projection.
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In Eq. (15), the larger the combined closeness b̃f̃ij
is, the closer f̃ij is to the positive ideal solution f̃ +,

and the more distant from the negative ideal solution f̃ − : namely, the greater the satisfaction. Then,

the satisfaction matrix B̃ =
[
b̃fij

]
m×n

is constructed by Eq. (15).

4.3 Construction of a Two-Sided Matching Model Considering the Matching Intention and Stability

Based on the satisfaction matrices Ã = [
ãeij

]
m×n

and B̃ =
[
b̃fij

]
m×n

constructed in the above section

and the stable matching constraints in Definition 4, a TSM model with the objective of maximizing
the agent satisfactions can be denoted as:

(M-1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max ZA =
m∑

i=1

n∑
j=1

ãeij xij

Max ZB =
m∑

i=1

n∑
j=1

b̃fij xij

s.t.
n∑

j=1

xij ≤ 1.i = 1, 2, . . . , m

m∑
i=1

xij ≤ 1.j = 1, 2, . . . , n

xij + ∑
k:ãeik >ãeij

xik + ∑
l:b̃flj

>b̃fij

xlj ≥ 1

xij = {0, 1}, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

where xij is defined as a variable from 0−1,
n∑

j=1

xij ≤ 1. i = 1, 2, . . . , m and
m∑

i=1

xij ≤ 1. j = 1, 2, . . . , n are

defined as the one-to-one matching constraints, and xij + ∑
k:ãeik >ãeij

xik + ∑
l:ãelj >ãeij

xlj ≥ 1 is defined as the

stable matching constraint.

Referring to the references [24,25], we know that the matching intention coefficient is associated
with agent satisfaction and matching diversity. Thus, the optimal model for determining the matching
intention coefficient considering matching satisfaction and matching diversity is constructed as
follows:

(M-2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max f
(
ωij

) =
m∑

i=1

n∑
j=1

ãeij + b̃fij(
1 + |ãeij − b̃fij |

)ωij

s.t.
m∑

i=1

n∑
j=1

ω2
ij = 1

0 ≤ wij ≤ 1, i = 1, 2, . . . , m, j = 1, 2, . . . , n

To solve Model (M-2), the Lagrange function is introduced as follows:

L
(
ωij, λ

) =
m∑

i=1

n∑
j=1

ãeij + b̃fij(
1 + |ãeij − b̃fij |

)ωij − λ

2

[
m∑

i=1

n∑
j=1

ω2
ij − 1

]
(16)
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Then, let

∂L
∂ωij

=
m∑

i=1

n∑
j=1

ãeij + b̃fij(
1 + |ãeij − b̃fij |

) − λωij = 0 (17)

∂L
∂λ

= −1
2

m∑
i=1

n∑
j=1

ω2
ij +

1
2

= 0 (18)

Hence, the optimal solution can be obtained on the basis of Eqs. (17) and (18), in which

ωij =

ãeij + b̃fij(
1 + |ãeij − b̃fij |

)
√√√√√ m∑

i=1

n∑
j=1

⎡
⎣ ãeij + b̃fij(

1 + |ãeij − b̃fij |
)
⎤
⎦

2
(19)

Furthermore, the standardized matching intention coefficient can be computed by normalizing
Eq. (19), in which

wij = ωij

m∑
i=1

n∑
j=1

ωij

=

ãeij + b̃fij(
1 + |ãeij − b̃fij |

)
m∑

i=1

n∑
j=1

ãeij + b̃fij(
1 + |ãeij − b̃fij |

)
(20)

To concretely illustrate the calculation method of the matching intention coefficient given above,
we take an example with three agents of each side.

Example 1. Let U = {U1, U2, U3} and V = {V1, V2, V3} be the sets of two-sided agents, where the
satisfaction matrices of the two-sided agents are represented as:

ãeij =
⎡
⎣0.60 0.70 0.80

1.00 0.50 0.40
0.30 0.60 0.90

⎤
⎦

b̃fij =
⎡
⎣0.30 1.00 0.40

0.60 0.80 0.50
0.90 0.70 0.40

⎤
⎦

then, the matching intention coefficient can be computed through Eq. (20) as follows:

wij =
⎡
⎣0.08 0.15 0.10

0.13 0.12 0.09
0.09 0.14 0.10

⎤
⎦



1612 CMES, 2023, vol.135, no.2

According to Eq. (20), the matching intention coefficient matrix φ = [wij]m×n is constructed; then,
the comprehensive satisfaction gij from Ui to Vj and the comprehensive satisfaction hij from Vj to Ui

are calculated as:

gij = ãeij wij (21)

hij = b̃fij wij (22)

Therefore, Model (M-1) is transformed into Model (M-3) based on the comprehensive satisfac-
tions gij and hij:

(M-3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max ZA =
m∑

i=1

n∑
j=1

gijxij

Max ZB =
m∑

i=1

n∑
j=1

hijxij

s.t.
n∑

j=1

xij ≤ 1.i = 1, 2, . . . , m

m∑
i=1

xij ≤ 1.j = 1, 2, . . . , n

xij + ∑
k:gik>gij

xik + ∑
l:hlj>hij

xlj ≥ 1

xij = {0, 1}.i = 1, 2, . . . , m; j = 1, 2, . . . , n

4.4 Solution Process of the Two-Sided Matching Model Based on the G-S Algorithm
The framework of the solution process for TSM Model (M-3) based on the G-S algorithm is

shown in Algorithm 1; then, the detailed procedures are presented as follows:

Step 1. For each agent Ui (i = 1, 2, . . . , m), rank all agents of side V according to the
comprehensive satisfactions. For each agent V = {V1, V2, . . . , Vn}, rank all agents of side U according
to the comprehensive satisfactions, and then proceed to Step 2.

Step 2. For each agent Ui (i = 1, 2, . . . , m), send a cooperation invitation to the agent Vr at the
top of side U . If agent Vr is not matched and accepts the cooperation invitation, then match (Ui, Vr)

is obtained. Otherwise, proceed to Step 3.

Step 3. For agent Vr of side V , choose the matching agent according to the comprehensive
satisfaction ranking of side U . If agent Vr prefers agent Ui+1 rather than Ui, then Ui still remains free.
If agent Vr prefers agent Ui rather than Ui+1, then match (Ui, Vr) is obtained and Ui+1 is not matched
with Vr; then, proceed to Step 4.

Step 4. For other two-sided agents of side V and side U , rank all remaining agents of side V and
side U according to the comprehensive satisfactions. Then, return to Step 2 until all agents of side U
are matched.
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Algorithm 1: G-S algorithm
Input: TSM θ that is empty
Output: TSM θ that is stable
begin
For each agent Ui ∈ U(i = 1, 2, . . . , m)

Rank all agents V = {V1, V2, . . . , Vn} according to the comprehensive satisfaction gij(r = 1, 2, . . . , n)

For each agent Vr ∈ V(r = 1, 2, . . . , n)

Rank all agents U = {U1, U2, .., Um} according to the comprehensive satisfaction hij(i = 1, 2, . . . , m)

While agent Ui ∈ U did not send a cooperation invitation to the agent Vr at the top of the side with
which Ui is not matched do
Ui proposes Vr

If Vr is not matched then (Ui, Vr)

Else (Ui+1, Vr)

If agent Vr prefers agent Ui+1 rather than agent Ui then
Agent Ui is not matched an (Ui, Vr)

Else agent Vr+1 prefers agent Ui rather than agent Ui+1 then
agent Ui+1 is not matched and (Ui, Vr)

End if
End if
End while

4.5 Steps of Two-Sided Matching Decision-Making with Hesitation Fuzzy Set Preference
In summary, the steps of stable HFE TSMDM considering matching intention are given below:

Step 1. Transform HFE preference matrices C̃ = [
c̃ij

]
m×n

and D̃ =
[
d̃ij

]
m×n

into normalized HFE

preference matrices Ẽ = [
ẽij

]
m×n

and F̃ =
[
f̃ij

]
m×n

.

Step 2. Transform normalized HFE matrices Ẽ = [
ẽij

]
m×n

and F̃ =
[
f̃ij

]
m×n

into the agent

satisfaction matrices Ã = [
ãeij

]
m×n

and B̃ =
[
b̃fij

]
m×n

through Eqs. (2)–(8) and Eqs. (9)–(15).

Step 3. Construct the TSM Model (M-1) based on the satisfaction matrices Ã = [
ãeij

]
m×n

and

B̃ =
[
b̃fij

]
m×n

under the one-to-one stable matching constraint.

Step 4. Calculate the matching intention coefficient matrix φ = [wij]m×n through Eq. (20) based on

the satisfaction matrices Ã = [
ãeij

]
m×n

and B̃ =
[
b̃fij

]
m×n

.

Step 5. Transform satisfactions ãeij and b̃fij into the comprehensive satisfactions gij and hij through
Eqs. (21) and (22).

Step 6. Transform Model (M-1) into Model (M-3) based on the comprehensive satisfactions gij

and hij.

Step 7. Determine the stable alternative of TSM by solving Model (M-3) through Algorithm 1.
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5 Case Study

In the business activities of enterprises, the terminal distribution problem is the last link in the
enterprise supply chain. Currently, the quality of terminal distribution will affect the overall benefit of
enterprises, so the terminal distribution plays an important role in the supply chain. At the same time,
there are two decision-makers in a terminal distribution problem, namely, freight cars and terminal
distribution centers. The decision-making process may be affected by many factors; therefore, we will
consider a distribution problem between freight cars and terminal delivery points as an example to
verify the validity and feasibility of the TSM model proposed in this paper. The framework of the
proposed case is given in Fig. 1. In addition, a comparison analysis is presented to clarify the advantage
of the proposed model.

Figure 1: Framework of the terminal distribution problem

5.1 Steps of Two-Sided Matching Decision-Making with Hesitation Fuzzy Set Preference
GH is a third-party logistics enterprise specializing in LCL transportation. In a certain terminal

distribution task, GH Company needs to arrange four trucks {U1, U2, . . . , U4} to transport different
quantities of goods to five terminal distribution centers {V1, V2, . . . , V5}. The business department of
the terminal distribution center will conduct a comprehensive evaluation of four trucks in terms of
transportation speed, transportation volume, safety measures, movement cost, etc., and then provide
the hesitant fuzzy preference information for four trucks by means of questionnaires. The HFE
evaluation matrix C̃ = [

c̃ij

]
4×5

is given, as shown in Table 1. The freight department will conduct
a comprehensive evaluation of terminal distribution stations based on fire protection measures,
geographical location, informatization degree and other indicators, and then provide evaluation
information in the form of an HFE for five terminal distribution stations through statistical analysis.

The HFE matrix D̃ =
[
d̃ij

]
4×5

is given, as shown in Table 2. GH Company will optimize matching

according to the HFE matrices C̃ = [
c̃ij

]
4×5

and D̃ =
[
d̃ij

]
4×5

given by two-sided agents and then

provide an optimal matching scheme.
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Table 1: HFE preference matrix C̃ = [
c̃ij

]
4×5

Van Distribution center

V1 V2 V3 V4 V5

U1 {0.2, 0.3, 0.4} {0.2, 0.5, 0.6, 0.7} {0.1, 0.2, 0.9} {0.2, 0.6, 0.8} {0.1, 0.6, 0.7}
U2 {0.4, 0.6, 0.8} {0.2, 0.3, 0.5, 0.9} {0.1, 0.4, 0.6} {0.1, 0.4, 0.7} {0.3, 0.6, 0.7}
U3 {0.1, 0.4, 0.5, 0.6} {0.2, 0.7, 0.8} {0.3, 0.5, 0.9} {0.3, 0.6} {0.3, 0.7, 0.8}
U4 {0.2, 0.7, 0.9} {0.3, 0.5, 0.6} {0.4, 0.5} {0.2, 0.4, 0.5} {0.1, 0.3, 0.5, 0.9}

Table 2: HFE preference matrix D̃ =
[
d̃ij

]
4×5

Van Distribution center

V1 V2 V3 V4 V5

U1 {0.5, 0.6, 0.8} {0.2, 0.4, 0.7} {0.1, 0.3, 0.8, 0.9} {0.2, 0.3, 0.5} {0.4, 0.5}
U2 {0.3, 0.5, 0.6} {0.1, 0.3, 0.6, 0.8} {0.2, 0.4, 0.5} {0.3, 0.7} {0.1, 0.2, 0.7}
U3 {0.1, 0.3, 0.6} {0.2, 0.4, 0.9} {0.4, 0.6} {0.5, 0.7, 0.8} {0.3, 0.5, 0.6}
U4 {0.1, 0.3, 0.7} {0.2, 0.4, 0.5, 0.6} {0.2, 0.4, 0.7} {0, 2, 0.6, 0.9} {0.3, 0.4, 0.6}

5.2 Solution Process
The proposed method is adopted to solve the problem, and the solution steps are displayed as

follows.

Step 1. Transform the HFE preference matrices C̃ = [
c̃ij

]
4×5

and D̃ =
[
d̃ij

]
4×5

given by the terminal

distribution point and freight part into normalized HFE preference matrices Ẽ = [
ẽij

]
4×5

and F̃ =[
f̃ij

]
4×5

, as shown in Tables 3 and 4.

Table 3: Normalized HFE preference matrix Ẽ = [
ẽij

]
4×5

Van Distribution center

V1 V2 V3 V4 V5

U1 {0.2, 0.3, 0.4, 0.4} {0.2, 0.5, 0.6, 0.7} {0.1, 0.2, 0.9} {0.2, 0.6, 0.8} {0.1, 0.6, 0.7, 0.7}
U2 {0.4, 0.6, 0.8, 0.8} {0.2, 0.3, 0.5, 0.9} {0.1, 0.4, 0.6} {0.1, 0.4, 0.7} {0.3, 0.6, 0.7, 0.7}
U3 {0.1, 0.4, 0.5, 0.9} {0.2, 0.7, 0.8, 0.8} {0.3, 0.5, 0.9} {0.3, 0.6, 0.6} {0.3, 0.7, 0.8, 0.8}
U4 {0.2, 0.7, 0.9, 0.9} {0.3, 0.5, 0.6, 0.6} {0.4, 0.5, 0.7} {0.2, 0.4, 0.5} {0.1, 0.3, 0.5, 0.9}
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Table 4: Normalized HFE preference matrix F̃ =
[
f̃ij

]
4×5

Van Distribution center

V1 V2 V3 V4 V5

U1 {0.5, 0.6, 0.8, 0.8} {0.2, 0.4, 0.7, 0.7} {0.1, 0.3, 0.8, 0.9} {0.2, 0.3, 0.5, 0.5} {0.4, 0.5, 0.5, 0.5}
U2 {0.3, 0.5, 0.6, 0.6} {0.1, 0.3, 0.6, 0.8} {0.2, 0.4, 0.5, 0.5} {0.3, 0.7, 0.7, 0.7} {0.1, 0.2, 0.7, 0.7}
U3 {0.1, 0.3, 0.6} {0.2, 0.4, 0.9} {0.4, 0.6, 0.6} {0.5, 0.7, 0.8} {0.3, 0.5, 0.6}
U4 {0.1, 0.3, 0.7, 0.7} {0.2, 0.4, 0.5, 0.6} {0.2, 0.4, 0.7, 0.7} {0, 2, 0.6, 0.9, 0.9} {0.3, 0.4, 0.6, 0.6}

Step 2. Calculate the positive solutions for two-sided normalized HFE matrices through Eqs. (2)
and (9): {0.4, 0.7, 0.9, 0.9}, {0.3, 0.7, 0.8, 0.9}, {0.4, 0.5, 0.9}, {0.4, 0.6, 0.8}, {0.3, 0.7, 0.8, 0.9}, {0.5,
0.6, 0.8, 0.9}, {0.3, 0.7, 0.7, 0.8}, {0.5, 0.7, 0.9}, {0.3, 0.6, 0.9, 0.9}. Calculate the negative solutions for
two-sided normalized HFE matrices through Eqs. (3) and (10): {0.1, 0.3, 0.4, 0.4}, {0.2, 0.3, 0.5, 0.6},
{0.1, 0.2, 0.6}, {0.1, 0.4, 0.5}, {0.1, 0.3, 0.5, 0.7}, {0.1, 0.3, 0.5, 0.5}, {0.1, 0.2, 0.5, 0.5}, {0.1, 0.3, 0.6},
{0.1, 0.3, 0.5, 0.6}.

Construct the agent satisfaction matrices Ã = [
ãeij

]
4×5

and B̃ =
[
b̃fij

]
4×5

through the use of Eqs. (4)–

(8) and Eqs. (11)–(15), as shown in Tables 5 and 6, where WD = WPr = 0.5.

Table 5: Agent satisfaction matrix Ã = [
ãeij

]
4×5

Van Distribution center

V1 V2 V3 V4 V5

U1 0.177 0.321 0.311 0.632 0.435
U2 0.637 0.256 0.217 0.245 0.551
U3 0.387 0.734 0.753 0.516 0.811
U4 0.804 0.310 0.669 0.115 0.147

Table 6: Agent satisfaction matrix B̃ =
[
b̃fij

]
4×5

Van Distribution center

V1 V2 V3 V4 V5

U1 0.908 0.367 0.456 0.082 0.324
U2 0.481 0.360 0.240 0.780 0.269
U3 0.000 0.390 0.484 0.790 0.326
U4 0.246 0.142 0.359 0.878 0.280



CMES, 2023, vol.135, no.2 1617

Step 3. Then, Model (M-1) considering the stable matching constraints is constructed as:

(M-1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max ZA =
4∑

i=1

5∑
j=1

ãeij xij

Max ZB =
4∑

i=1

5∑
j=1

b̃fij xij

s.t.
5∑

j=1

xij ≤ 1. i = 1, 2, 3, 4

4∑
i=1

xij ≤ 1. j = 1, 2, 3, 4, 5

xij + ∑
k:ãeik >ãeij

xik + ∑
l:b̃flj

>b̃fij

xlj ≥ 1

xij = {0, 1}, i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5.

Step 4. Based on the satisfaction matrices Ã = [
ãeij

]
4×5

and B̃ =
[
b̃fij

]
4×5

, the matching intention

coefficient matrix φ = [wij]4×5 is calculated through Eq. (16), as shown in Table 7; then, we transform
satisfactions ãeij and b̃fij into the comprehensive satisfactions gij and hij through Eqs. (21) and (22), as
shown in Tables 8 and 9.

Table 7: Matching intention coefficient matrix φ = [wij]4×5

Van Distribution center

V1 V2 V3 V4 V5

U1 0.048 0.050 0.051 0.035 0.052
U2 0.074 0.043 0.034 0.051 0.049
U3 0.021 0.064 0.075 0.079 0.059
U4 0.052 0.030 0.060 0.043 0.029

Table 8: Comprehensive satisfaction gij

Van Distribution center

V1 V2 V3 V4 V5

U1 0.0085 0.0161 0.0159 0.0221 0.0226
U2 0.0471 0.0110 0.0074 0.0125 0.0270
U3 0.0081 0.0470 0.0565 0.0408 0.0478
U4 0.0418 0.0093 0.0401 0.0049 0.0043
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Table 9: Comprehensive satisfaction hij

Van Distribution center

V1 V2 V3 V4 V5

U1 0.0445 0.0184 0.0233 0.0029 0.0168
U2 0.0356 0.0155 0.0082 0.0398 0.0132
U3 0.0000 0.0250 0.0363 0.0624 0.0192
U4 0.0128 0.0043 0.0215 0.0378 0.0081

Step 5. Transform Model (M-1) into Model (M-3) based on the comprehensive satisfactions gij

and hij.

Step 6. Determine a stable alternative of TSM by solving Model (M-3), as shown in Table 10.

Table 10: The best TSM scheme

Van Distribution center

V1 V2 V3 V4 V5

U1 0 0 0 0 1
U2 1 0 0 0 0
U3 0 0 1 0 0
U4 0 1 0 0 0

Therefore, the best TSM is θ = θ1 ∪ θ2, where θ1 = {(U1, V5), (U2, V1), (U3, V3), (U4, V2)}, θ2 =
{(V4, V4)}, as shown in Fig. 2. According to Fig. 2, we can see that car U1 and terminal distribution
center V5 are matched, car U2 and terminal distribution center V1 are matched, car U3 and terminal
distribution center V3 are matched, car U4 and terminal distribution center V2 are matched, and
terminal distribution center V4 is not matched.

Furthermore, we reconstruct Model (M-4) without the stable constraint:

(M-4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max Z =
4∑

i=1

5∑
j=1

(
ãeij + b̃fij

)
wijxij

s.t.
5∑

j=1

xij ≤ 1. i = 1, 2, . . . , 4

4∑
i=1

xij ≤ 1. j = 1, 2, . . . , 5

xij = {0, 1}. i = 1, 2, . . . , 4; j = 1, 2, . . . , 5
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Figure 2: The best TSM scheme between cars and terminal distribution centers

Then, the matching scheme can be obtained by solving TSM Model (M-4), as shown in Table 11.

Table 11: The best TSM scheme without stability constraint

Van Distribution center

V1 V2 V3 V4 V5

U1 0 0 0 0 1
U2 1 0 0 0 0
U3 0 0 0 1 0
U4 0 0 1 0 0

Hence, the best TSM scheme is determined from Table 11, i.e., θ1 = {(U1, V5), (U2, V1), (U3, V4),
(U4, V3)}, θ2 = {(V2, V2)}. Furthermore, two TSM schemes are compared, as shown in Table 12.

Table 12: The comparison analysis for two TSM schemes

TSM method considering stable
constraints (Proposed Method I)

θ1 = {(U1, V5), (U2, V1), (U3, V4), (U4, V3)},
θ2 = {(V4, V4)}

TSM method without stable constraints
(Method II)

θ1 = {(U1, V5), (U2, V1), (U3, V4), (U4, V3)},
θ2 = {(V2, V2)}

As seen from Table 12, in the best TSM schemes obtained through method I and method II, only
(U1, V5) and (U2, V1) are the same, and other matching pairs are different. Furthermore, the model
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proposed in this paper better ensures the stability of the matching result and improves the satisfaction
of two-sided agents as much as possible due to the stable matching constraints.

5.3 Comparative Analysis
First, there are several kinds of methods for dealing with fuzzy preference information, such as

the TOPSIS method based on distance measures or biprojection technology. This paper adopted a
brand-new method to deal with fuzzy preference information, which contains distance measures and
biprojection technology. To further state the effectiveness of the method proposed in this paper, we
compare the proposed method for handling hesitant fuzzy information with two methods given in
references [16] and [23]. Reference [23] only adopted the biprojection technology for transforming
fuzzy preference information into exact values. Meanwhile, reference [16] adopted only the distance
measure for transforming fuzzy preference information into exact values. The TSM results obtained by
different methods are displayed in Table 13. From Table 13, it can be concluded that the TSM results
obtained by the mentioned methods are different. Meanwhile, the methods proposed in references
[23] and [16] may cause deviations in hesitant preference information in the process of conversion.
Furthermore, the method proposed in this paper can effectively synthesize the advantages of the two
methods proposed in the references [23] and [16]. Therefore, the proposed method can guarantee the
integrity of decision-making evaluation information.

Table 13: TSM results of different methods

Method proposed in this paper θ1 = {(U1, V5), (U2, V1), (U3, V3), (U4, V2)},
θ2 = {(V4, V4)}

Method proposed in reference [23] θ1 = {(U1, V4), (U2, V1), (U3, V5), (U4, V3)},
θ2 = {(V2, V2)}

Method proposed in reference [16] θ1 = {(U1, V4), (U2, V1), (U3, V3), (U4, V2)},
θ2 = {(V5, V5)}

Second, many of the existing TSMDM studies ignored the matching intention of two-sided agents.
In this paper, the proposed TSMDM method considered the matching intention of matching agents,
which can be applied to minimize the diversity of the TSM scheme.

Third, stability plays a significant role in the TSMDM process because the unstable matching
pair may hinder the formation of matching results even if the satisfaction of two-sided agents is high.
From the aforementioned research, we find that stability has not been fully considered in TSMDM
problems in hesitant fuzzy preference environments. Hence, the one-to-one stable matching constraints
are integrated into the TSMDM model developed in this paper, which can not only maximize the
satisfaction of two-sided agents but also ensure a stable TSM scheme.

6 Conclusion

In this paper, a TSM decision-making model considering the matching intention and stability
of two-sided agents under hesitant fuzzy preference is proposed. In this method, the normalized
HFE is transformed into the agent satisfaction after normalizing the HFE preference information.
A multiobjective programming model considering the agent satisfactions and the stable matching
constraint is constructed. Based on the agent satisfaction matrices, the matching intention coefficient
matrix is calculated, and then the comprehensive satisfaction matrices are calculated. Furthermore, the
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multiobjective programming model based on the satisfactions is transformed into the multiobjective
programming model based on the comprehensive satisfactions. The best TSM scheme can be obtained
by solving the developed model.

The main innovation of this paper can be denoted as follows: First, the TSM scheme obtained
by the method proposed in this paper can reflect the matching intention of two-sided agents; second,
the proposed method ensures the stability of the matching scheme. The TSM method proposed in this
paper provides a new perspective for studying the TSM problem under the condition of HFS.

Further research work can be conducted as follows:

(1) In the proposed TSMDM method, we present a novel method including distance measures
and biprojection technology for dealing with hesitant fuzzy preference information. However,
due to the complex decision-making environment, the proposed distance measures may not
fully reveal the comments of the decision-makers who have various preferences. Therefore, it
could be practicable to develop a brand-new distance measure for HFS and the corresponding
TOPSIS method.

(2) For some TSMDM problems, two-sided agents may provide multiple hesitant fuzzy preference
information, such as probability hesitant fuzzy sets, interval hesitant fuzzy sets, and probability
interval hesitant fuzzy sets. These would be interesting topics for developing a TSMDM model
with multiple hesitant fuzzy preference information.

(3) It is meaningful to conduct research on the TSMDM problem considering bipolar hesitant
fuzzy sets and T-spherical fuzzy sets [27] which can be used to solve decision-making problems
in dynamic scenarios.
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