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ABSTRACT

Convolutional neural networks (CNN) based on U-shaped structures and skip connections play a pivotal role in
various image segmentation tasks. Recently, Transformer starts to lead new trends in the image segmentation task.
Transformer layer can construct the relationship between all pixels, and the two parties can complement each
other well. On the basis of these characteristics, we try to combine Transformer pipeline and convolutional neural
network pipeline to gain the advantages of both. The image is put into the U-shaped encoder-decoder architecture
based on empirical combination of self-attention and convolution, in which skip connections are utilized for local-
global semantic feature learning. At the same time, the image is also put into the convolutional neural network
architecture. The final segmentation result will be formed by Mix block which combines both. The mixture model
of the convolutional neural network and the Transformer network for road segmentation (MCTNet) can achieve
effective segmentation results on KITTI dataset and Unstructured Road Scene (URS) dataset built by ourselves.
Codes, self-built datasets and trainable models will be available on https://github.com/xflxfl1992/MCTNet.
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1 Introduction

Accurate and robust road image segmentation can play a cornerstone role in computer-assisted
driving and visual navigation. Due to the deep learning revolution, the segmentation accuracy has
achieved impressive results.

Motivated by the successes of CNN-based classifiers [1–3] and the help of various optimization
algorithms [4–6], the task of semantic segmentation overcame many difficulties. Past researchers used
image patches to eliminate all the redundant computation [7]. The most famous fully convolutional
networks [8] extend image-level classification to pixel-level classification. Dilated convolutions were
introduced in [9] to perform multi-scale information fusion. The typical U-shaped network, U-
Net [10], obtained great success in a variety of medical imaging applications. The aforementioned
techniques proved the excellent learning ability of CNN.
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Currently, although the CNN-based methods lead the trend in the field of image segmentation,
they have more improvement space. Meanwhile, Transformer is showing revolutionary performance
improvements in the CV field. In [11], vision transformer (ViT) is proposed to perform the image
recognition task. Taking image patches as the input and using self-attention mechanism, ViT can
even achieve better performance compared with the CNN-based methods. LeVit [12] designed a
patch descriptor to improve calculation efficiency and ensured the accuracy. CaiT [13] optimized the
Transformer architecture, which significantly improved the accuracy of the deep Transformer. These
methods show that CV and NLP are expected to be unified under the Transformer structure, and
the modeling and learning experience of the two fields can be deeply shared, thereby accelerating the
progress of their respective fields.

Motivated by the Transformer’s success, we take an approach based on U-shaped encoder-decoder
and design a network architecture that combining the convolutional structure and Transformer
structure (MCTNet). This method performs road detection pixel-level segmentation tasks well, and
the reasons are as follows:

• We propose a fusion structure, which combine the result of CNN structure and Transformer
structure. This method can gather the advantage of CNN’s ability to establish the relationship
between neighboring pixels and Transformer’s ability to establish the relationship between all
pixels.

• We find the respective characteristics of Transformer and CNN, which Transformer focuses on
the main area of the road image and CNN focus on the details of edge area. Therefore, We
design a post-processing adding with prior knowledge of the road scene to deal with the results,
which make the accuracy of road area a certain degree of improvement.

• We built a harder task on structured and unstructured road area detection to test our method.
The dateset we built contains 2000 road scene including gravel pavement, soil-covered pavement,
water-covered pavement and highways. The experimental evaluation on KITTI and URS
datasets proves our model validity.

2 Related Work

Road Detection In recent years, more and more researches on autonomous driving at home and
abroad have accumulated a certain research foundation. OFA-Net [14] used a strategy called “1-N
Alternation” to train the model, which can make a fusion of features from detection and segmentation
data. RoadNet-RT [15] speeded up the inference time by optimizing Depthwise separable convolution
and non-uniformed kernel size convolution. ALO-AVG-MM [16] extracted multiples side-outputs and
used filtering to improve network performance. Volpi et al. [17] proposed a new evaluation framework
for online study about segmentation.

Transformer In the field of NLP, transformer-based methods have achieved the most advanced
performance in various tasks. Vision transformer (ViT) [11], which achieved an impressive speed-
accuracy trade-off in image recognition tasks was motivated by the success of Transformer. Deit [18]
introduced several training strategies to make ViT perform better. On the basis of these methods,
Swin Transformer [19] restricted self-attention calculations to non-overlapping partial windows, while
allowing cross-window connections, which brought greater efficiency and flexibility. Compared to
previous work, Swin Transformer is able to significantly reduce the computation. Besides, Swin-Unet
[20] based on U-net and Swin Transformer stood out from medical image segmentation tasks.
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Self-Attention to Mix CNN Given the ability to leverage long-term dependence, transformers
are expected to help atypical convolutional neural networks overcome their inherent shortcomings
of spatial induction bias. However, most of the recently proposed Transformer-based segmentation
methods only use Transformer as an auxiliary module to help encode the global context as a
convolutional representation, and have not studied how to best combine self-attention (the core of
Transformer) with convolution. NnFormer [21] has an interleaved architecture based on a combination
of self-attention and convolution experience. Reference [22] was an interleaved architecture based on
the experience of self-attention and convolution. It achieved SOTA performance on ImageNet-1k
classification without bells and whistles.

For now, the study in the field of autonomous driving has achieved considerable results. The devel-
opment of transformer-based methods can provide a research foundation for autonomous driving
road detection. Therefore, this paper focuses on road detection tasks based on U-net, Transformer
and CNN.

3 Methodology
3.1 Architecture Overview

The overall architecture is presented on Fig. 1. Two main pipelines are trained together. The details
of two pipelines are presented on Fig. 2. We follow the base of [10]. The CNN pipeline is divided into
encoding block and fusion block. The backbone of CNN pipeline encoder is resnet101. The image
is down-sampled by convolution, the features are mapped to different scales, and then the image is
up-sampled and restored by deconvolution. The extracted context features are fused with multiscale
features from encoder via fusion block to complement spatial information.

Figure 1: Network structure. The pipeline at the top is transformer-based U-net, and the pipeline at
the bottom is CNN-based U-net

Our second part is based on Swin-Unet [20], which consists of encoder, hall block, decoder and
skip connections. The backbone is inspired by Swin Transformer block. For the encoder, the images
are split into non-overlapping patches to transform the inputs into sequence embeddings. The decoder
is composed of Transformer blocks and Patch Expanding layer. The skip connections have the same
function with fusion block. In contrast to patch merging layers, a patch expanding layer is designed to
perform up-sampling. Then a linear projection layer is applied on these up-sampled features to output
the pixel-level segmentation predictions. The output results of the two pipelines will be sent to Mix
Block for further processing to obtain higher accuracy. Both the Hall Model of two pipelines are to
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learn the deep feature representation. The feature dimension and resolution are kept unchanged. The
difference is that one uses convolution and the other uses Swin Transformer block.

Figure 2: Details of network structure. In the section, blue rectangles indicate down-sampling process,
yellow rectangles are up-sampling process, and green rectangles are hall block for deep feature
representation

3.2 Embedding Block
The embedding block is the common patch processing method for Transformer structures. In

this block, patches will be encoded as spatial information. Besides, Position embedding is able to
preserve the location information of the image patches. ViT also encodes the position embedding
at the input, and it is optional for Swin Transformer, because a relative position encoding is made
by Swin Transformer when calculating attention. As a result, the embedding block only contains
convolutional layer.

3.3 Swin Transformer Block
Swin transformer block is constructed based on shifted windows. In Fig. 3, two consecutive Swin

transformer blocks are presented. With the shifted window partitioning approach, consecutive Swin
transformer blocks are computed as:
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where ẑl and zl represent the outputs of the (S)W-MSA module and the MLP module of the lth block.
Similar to the previous works, self-attention is computed as follows:
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where Q, K, V ∈ R
M2×d denote the query, key and value matrices. M2 and d represent the number of

patches in a window and the dimension of the query or key, respectively. And, the values in B are taken
from the bias matrix B̂ ∈ R

(2M−1)×(2M+1).

Figure 3: Transformer structure

3.4 Skip-Connection Block/Fusion Block
The fusion of deep and shallow information in FCN [8] is through the addition of corresponding

pixels, we follow this method and apply it as the fusion block of CNN pipeline. U-net structure is
through splicing. In the addition method, the dimension of the feature map has not changed, but
each dimension contains more features. For ordinary classification tasks, which do not need to be
restored from the feature map to the original resolution, this is an efficient selection; splicing retains
more dimensional/location information, which allows the subsequent layers to freely choose between
shallow and deep features, which benefits semantic segmentation tasks. Thus, the Skip-connection
block of Transformer pipeline is depend on splicing.

3.5 Mix Block
As shown in Fig. 4, the Transformer pipeline focus on the main area of road detection. The results

from CNN pipeline have a remarkable road edge detection effect, but it has quite a few false detection
of non-road areas. Thus, we design a mix method below:

ωFIF (x, y) = (
ωf IT (x, y) + (

1 − ωf

)
IC (x, y)

) ×
⎛
⎝1 +

consistency︷ ︸︸ ︷
2 (ln 2 − ln (1 + |IT(x, y) − IC(x, y)|)

⎞
⎠ (6)

| . | means to calculate the absolute value, ωf and ωF the weight coefficient with a value between
0 and 1. IC(x, y) and IT(x, y) respectively represent the road confidence map based on CNN pipeline
and Transformer pipeline.
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Figure 4: The results of different pipelines. The first row is the input; the second row is the result of
CNN pipeline; the third row is the result of Transformer pipeline and the forth row is the result of mix
block

The purpose of the above formula is to fuse two road confidence maps and enhance the pixels with
similar probabilities. The first half of the formula is the general probability fusion formula, the second
half adds consistency as marked in the formula (6). After the consistency item is strengthened, at any
point (x, y), if the two confidence graphs have similar values, the consistency item is approximately
equal to 1.386. This means that if the judgments of the two confidence graphs at point (x, y) are both
roads, IC(x, y) will be enlarged. Conversely, if the two confidence maps both show that the point (x, y)

is a background pixel, the road surface probability of the pixel remains 0 after the fusion because
the weighted fusion item on the left is 0. In other cases, when the two fusion confidence maps obtain
two completely different confidence values at (x, y), then the value of IT(x, y) will be suppressed by the
consistency item after normalization. Here, a constant factor of 1 is added before the consistency term
to ensure that the influence of the weighted fusion term is preserved, instead of getting a zero value
when fusing two completely different confidence values. In the end, we use some prior knowledge to
remove some irrelevant pixel value predictions, such as some areas at the top of the image.

4 Experiments
4.1 Datasets

KITTI Dataset Our model is mainly estimated on KITTI-ROAD dataset, which includes 289
training and 290 testing structured road scenes. We split the original training set for supervised data.
The new training and validation set contain 230 and 59 road scenes respectively. Ablation study is
conducted on new data split. The final result comparison with other existing models is based on KITTI
testing set.

URS Dataset To further verify our model efficiency, we examine the results on self-built dataset
(Unstructured Road Scene dataset). As shown in Fig. 5, the dataset we built contains 2000 road images
of different types containing gravel pavement, soil-covered pavement, water-covered pavement and
cement pavement. These images include almost all types of roads. Unlike other open datasets, such
as KITTI, this dataset contains a large number of unconventional road image, which provides more
abundant and diversified challenges and tests for road segmentation tasks. Its applicable scenarios are
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also wider. We use 1400 images for training, 400 images for validation, and 200 images for test. The
distribution of the number of image types is shown in the Table 3.

(a) cement pavement (b) water-covered pavement (c) soil-covered pavement

(d) gravel pavement (e) highway

Figure 5: Different kinds of self-built dataset. The first row is the RGB image; the second row is the
ground-truth

4.2 Implementation Details
On KITTI dataset, we train two main pipelines separately. While network training, the input image

size is set as 512 in both pipeline. Data augmentation is realized by rotating or cropping images.

We train MCTNet with batch size of 1 on one GPU (GeForce GTX 1080 8 GB), and use SGD
optimizer with momentum = 0.9 and weight decay = 0.0005. Learning rate is set at 0.001 and decays
by a factor of 10, attached every 6 epochs of 30 epochs in total. For Transformer pipeline, the stage of
encoder and decoder is 4 and the number layers of them are [2,6,8,16]. In Mix block, the ωf is set to
0.2 and the ωF is set to 0.15 to generate evaluation result. The loss function is a common cross-entropy
function used for semantic segmentation.

On self-built dataset verification, the same network setting is utilized. In Mix block, the ωf is set
to 0.15 and the ωF is set to 0.1 to generate evaluation result.

4.3 Ablation Study
For the purpose of exploring the influence of different factors on the accuracy, we conducted

ablation studies on KITTI dataset. Specifically, optimizer, input sizes, and model scales are discussed
below.

Effect of optimizers, model scales and image sizes: For CNN pipeline, we explore the effect of
different optimizers and weight decay (WD). The experimental results in Table 1 indicate that the SGD
combined with weight decay can obtain better segmentation accuracy. For Transformer pipeline, we
discuss the effect of network deepening on model performance. Similar to [19], we try different scales of
the network. It can be seen from Table 1 that increase of model scale improves the performance of the
model. Considering the accuracy, we adopt the large-size model to perform road image segmentation.
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The testing results of the network with 224, 512 input resolutions as input are presented in Table 1.
As the input size increases from 224 to 512 and the patch size remains the same as 4, the input token
sequence of Transformer will become larger, and more semantic information is used to improve the
ability of the Transformer pipeline. The CNN pipeline has the same effect, so the experiments in this
paper use 512 resolution scale as the input.

Table 1: Ablation study in different pipelines (%)

Pipelines Image size Optimizer Scales MaxF AP PRE REC FPR FNR

Transformer 224 Tiny 86.41 75.23 85.43 87.91 2.99 12.09
224 Middle 87.08 77.10 87.64 87.13 2.48 12.87
224 Large 85.96 73.53 86.17 86.68 2.85 13.32
512 Tiny 86.56 76.32 86.71 86.97 2.67 13.03
512 Middle 86.67 75.05 87.71 86.15 2.41 13.85
512 Large 87.04 77.47 88.05 86.61 2.35 13.39

CNN 224 Adam 86.43 75.39 83.43 89.84 3.89 10.16
224 Adam-WD 86.13 75.60 83.65 89.01 3.77 10.99
224 SGD-WD 90.62 80.35 89.17 92.29 2.52 7.71
512 Adam 93.17 84.84 91.51 94.95 1.91 5.05
512 Adam-WD 93.77 86.17 92.98 94.66 1.55 5.34
512 SGD-WD 94.52 86.81 93.69 95.43 1.41 4.57

Effect of fusion degree: The experimental results in Table 2 indicate that the results of Transformer
pipeline do improve detection accuracy, although most of the effects are contributed by the CNN
pipeline. The fusion degree balances the contributions of both and indicates each advantages.

Table 2: Ablation study of fusion degree (ωF & ωf ). MIOU is used to evaluate the effect of mix block

ωF 0.05 0.05 0.05 0.15 0.15 0.15 0.25 0.25 0.25
ωf 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
MIOU (%) 88.38 89.63 87.33 89.38 90.03 88.43 87.58 88.03 86.33

Table 3: The distribution of the number of road image types

Road image types Quantity ratio Number

Cement pavement 0.50% 10
Water-covered pavement 2.50% 50
Soil-covered pavement 51.90% 1038
Gravel pavement 43.20% 864
Highway 1.90% 38
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4.4 Main Results
Tables 4 and 6 show the performance of our method (MCTNet) on KITTI test set, compared to

other listed methods. According to Table 4, the model proposed in this chapter has obvious advantages
in road segmentation compared with other models on KITTI dataset. Table 5 shows the result of
mixing CNN pipeline and Transformer pipeline. It can be noted that MCTNet method is more effective
because of combination of CNN and Transformer.

Table 4: Main indicators results of BEV segmentation on KITTI test set (%)

Benchmark MaxF AP PRE REC FPR FNR

UM_ROAD 90.44 83.88 89.14 91.77 5.10 8.23
UMM_ROAD 94.40 88.26 91.85 97.10 9.47 2.90
UU_ROAD 89.64 81.10 86.75 92.72 4.61 7.28
URBAN_ROAD 92.07 84.87 89.81 94.45 5.91 5.55

Table 5: Best indicators results on KITTI train set (%)

Results MaxF AP PRE REC FPR FNR

CNN 94.52 86.81 93.69 95.43 1.41 4.57
Transformer 87.04 77.47 88.05 86.61 2.35 13.39
Mix result 94.59 88.45 95.48 93.79 0.96 6.21

Table 6: Segmentation accuracy of different methods on KITTI dataset (%)

Method MaxF AP PRE REC FPR FNR

ALO-AVG-MM [16] 91.15 83.82 89.07 93.33 5.22 6.67
RoadNet-RT [15] 91.99 92.54 92.75 91.24 3.25 8.76
OFA net [14] 92.08 82.73 87.87 96.72 6.08 3.28
MCTNet (ours) 92.07 84.87 89.81 94.45 5.91 5.55

Table 7 shows the performance of our method (MCTNet) on self-built dataset. As shown in Fig. 6,
the performance prove the ability of the network. Obviously, the blurred boundaries, the brightness
interference of the field light, and the absence of artificial dividing lines make this task even more
challenging. Table 8 shows the performance of our method and some classical segmentation models
on URS dataset. Fig. 7 also shows that our method outperforms the others, and our method basically
detects the main passable areas of the road. In the future, we will continue to experiment to test the
effectiveness of our method and the challenge of this dataset.

Table 7: Segmentation accuracy on URS dataset. ωF and ωf represent the degree of mixing

Dataset Pipelines Image size ωF /ωf MaxF MIOU

URS CNN 512 × 512 - 78.34% 73.03%
Transformer - 76.23% 69.38%
Mix result 0.15/0.1 79.68% 74.33%
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Figure 6: The results of different pipelines on URS dataset. The first row is the input; the second row
is the result of CNN pipeline; the third row is the result of Transformer pipeline and the forth row is
the result of mix block

Table 8: Segmentation accuracy of different methods on URS dataset

Dataset Methods Image size Batch Epoch MIOU

URS FCN [8] 512 × 512 8 80 71.04%
PSPNet [23] 8 80 72.48%
MCTNet (ours) 1 30 74.33%

Figure 7: The results of different method on URS dataset. The first row is the input; the second row is
the test result of FCN method on self-built dataset; the third row is the test result of PSPNet method
on self-built dataset and the forth row is the result of our method (MCTNet)
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4.5 Summary
Through the above experiments, we can naturally find that the convolution module of CNN and

Swin Transformer Block have different representation effects. It is a better idea to combine them in a
single network, and some researchers are already experimenting with it, such as [21]. We have tried to
make the convolutional layer and Swin Transformer Block appear in the network at the same time, but
we have not obtained excellent results for the time being. We will continue to explore their potentiality
for road segmentation tasks.

5 Conclusion

We present a mix method of CNN and Transformer for road segmentation and achieve high
performance on KITTI and self-built datasets. The method make full use of the CNN’s performance
and Transformer’s advantages in the road segmentation task. To meet the demand of autonomous
driving, a post-processing adding with prior knowledge of the road scene is also vital. Besides, the
Unstructured Road Scene dataset we built shows us a unique road segmentation task scene, which
brings diversity and applicability. With regard to future research, we will investigate more methods of
combining CNN and Transformer for better performance.
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