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ABSTRACT

One of the most recent developments in the field of graph theory is the analysis of networks such as Butterfly
networks, Benes networks, Interconnection networks, and David-derived networks using graph theoretic parame-
ters. The topological indices (TIs) have been widely used as graph invariants among various graph theoretic tools.
Quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) need
the use of TIs. Different structure-based parameters, such as the degree and distance of vertices in graphs, contribute
to the determination of the values of TIs. Among other recently introduced novelties, the classes of ev-degree and
ve-degree dependent TIs have been extensively explored for various graph families. The current research focuses
on the development of formulae for different ev-degree and ve-degree dependent TIs for s− dimensional Benes
network and certain networks derived from it. In the end, a comparison between the values of the TIs for these
networks has been presented through graphical tools.
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1 Introduction

A classic and helpful strategy is to attach various graphs to objects that may be an algebraic
structure, a chemical structure of a drug, or a network, which assists in understanding certain features
of the objects. Various graph parameters can be associated with the properties of the structure under
examination which leads to a deeper study of its theory. These properties may include the algebraic
properties of the zero divisor graphs and the physio chemical properties of the chemical structures.
By adopting this strategy, several researchers studied different objects such as algebraic objects [1],
pysio-chemical properties of chemical structures [2–4], drugs used for breast cancer treatment [5], and
interconnection networks [6]. The analysis of networks, such as Butterfly network [7], Benes network
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[8,9], Interconnection network [6,10] and David-derived network [11] through similar approach, is one
of the most recent developments in the field of graph theory.

The class of topological indices (TIs) is a significant class of parameters associated with graphs.
Many TIs have been introduced and studied during the last fifty years. Among the class of degree
dependent TIs, the Zagreb indices (ZIs) introduced in [12], vastly studied due to the ability to estimate
the π-electron energy is still a topic of interest [13] after 5 decades. Another degree dependent graph
parameter, used in mathematical chemistry is known as Randíc index (RI). The details regarding its
applications and its different variants are presented in [14]. Furthermore, the geometric-arithmetic
(GA) index was formulated [15] in an attempt to exceed the Randíc index in terms of predicting ability.
Its chemical use and mathematical characteristics drew scientists to examine it further in [16]. Another
significant index, known as Atom bond connectivity index (ABC-index) was put forward by Estrada
and was used for investigating stain energy and stability of cycloalkanes and linear alkanes, see [17–20].
Another graph invariant, having connections with eigen values of graphs was introduced in [21] and
is a topic of interest till now known as Harmonic index (HI). In [22], Chellali et al. introduced some
new degrees of a vertex in a graph, known as ve-degree and ev-degree. Mathematical notions related
to these degrees were also studied by Horoldagva et al. [23]. The ZIs and RI, based on ev-degree and
ve-degree notions, are formulated in [24–27] and it was analyzed that predicting ability of ve-degree
ZI has improved as compared to its classical version. For more developments on the study of TIs,
see [28–32].

Figure 1: 3-dimentional Benes network

Butterfly graphs are the associated graphs of Fast Fourier Transforms (FFT) networks which
are especially effective in performing the FFT. The butterfly network is constructed by a sequence
of switch stages and connector patterns that allow ′n′ different configurations. The ′n′ outputs
should be connected to ′n′ inputs. Furthermore, the Benes network obtained by attaching back-to-
back butterfly networks is known for permutation routing [8]. These networks are key multistage
interconnection networks with appealing communication network topologies [9]. The graph associated
to s-dimensional butterfly network consists of vertex set V with elements [v, i] in which v is an s-bit
binary number representing the row of the node and 0 ≤ i ≤ s. The edge between any two vertices [v,
i] and [v′, i′] exists if and only if i′ = i + 1 and either (1) v = v′ or (2) v, v′ differ in exactly the ith bit.
Clearly, for |V(BF(s))| = 2s(s+1) and |E(BF(s))| = s2s+1. Further, an s dimensional Benes network is
obtained by connecting back-to-back butterflies BF(s). An s-dimensional Benes network is denoted
by B(s), for example B(3) is shown in Fig. 1. Further, |V(B(s))| = 2s(2s+1) and |E(B(s))| = s2s+2. For
more regarding the structure and construction of butterfly and benes networks, we refer readers to [6].
By keeping in view the importance of these networks, Hussain et al. recently introduced some families
of graphs obtained by Horizontal and vertical identifications of Benes network. These new graphs are
known as Horizontal Cylindrical (HCB(s)) and Vertical Cylindrical (VCB(s)) Benes network. In these
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networks, |V(HCB(s))| = (2s − 1)(2s + 1), |V(VCB(s))| = 2s+1s, |E(HCB(s))| = 2s(2s+1 − 1) and
|E(VCB(s))| = 2s+2s. For the complete details regarding the structures HCB(s) and VCB(s), see Figs. 2
and 3 [33,34].

Figure 2: Normal representation of VCB(3)

Figure 3: Normal representation of HCB(3)

2 Preliminaries

Let G(V,E) denotes a connected graph having V as a vertex set and E as an edge set. For u ∈ V ,
the degree u, denoted by d(u) is the cardinality of edges incident to it. For any u, v ∈ V , the vertices
u, v are called adjacent if there is e ∈ E with e = uv. For u ∈ V its open neighborhood, denoted by
N(u), is defined as: N(u) = {v ∈ V : there exists e ∈ E with e = uv} and the closed neighborhood
N[u] = {u} ∪ N(u). For uv = e ∈ E, its ev-degree is the cardinality of the vertices in N[u] ∪ N[v] and
the ve-degree of v ∈ V is the cardinality of N[v]. The ev-degree of e and ve-degree of u are denoted by
dev(e) and dve(u), respectively. In Table 1, we include the formulae of ev-degree and ve-degree dependent
variants of the well known TIs discussed above.

Table 1: Ev-degree and ve-degree based TIs of a Graph G(V,E)

ZI (EV) Mev (G) = ∑
e∈E(G)

dev(e)2

RI (EV) Rev (G) = ∑
e∈E(G)

dev(e)− 1
2

1st Zagreb Alpha Index (VE) Mαve
1 (G) = ∑

v∈V(G)

dve(v)2

1st Zagreb Beta Index (VE) Mβve
1 (G) = ∑

uv∈E(G)

= (dve(u) + dve(v))

(Continued)
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Table 1 (continued)

2nd ZI (VE) Mve
2 (G) = ∑

uv∈E(G)

(dve(u)dve(v))

RI (VE) Rve(G) = ∑
uv∈E(G)

((dve(ut)dve(v)))−1/2

ABC-I (VE) ABCve(Gt) = ∑
uv∈E(G)

√
dve(u) + dve(v) − 2

dve(u)dve(v)

GA-I (VE) GAve(G) = ∑
uv∈E(G)

2
√

dve(u)dve(v)
dve(u) + dve(v)

HI (VE) Hve(G) = ∑
uv∈E(G)

2
dve(u) + dve(v)

Sum-Connectivity Index (VE) χ ve(G) = ∑
uv∈E(G)

(dve(u) + dve(v))−1/2

3 Ev-Degree Dependent Topological Indices for Bensen Networks and Its Derived Classes

In this section, we prove analytical formulae for the ev-degree dependent TIs for B(s), VCB(s) and
HCB(s). The formulae have been established through partition of the vertex sets of B(s), VCB(s) and
HCB(s) on the basis of ev-degree as shown in Tables 2–4. We start with the following theorem for B(s).

Table 2: Ev-degree based partition of V (B(s))

(d(u), d(v)) Ev-degree Frequency

(2, 4) 6 2s+2

(4, 4) 8 ss+2 − 2s+2

Table 3: Ev-degree based partition of V (VCB(s))

(du, dv) Ev-degree Frequency

(4, 4) 8 2s2s+2

Table 4: Ev-degree based partition of V (HCB(s))

(d(u), d(v)) Ev-degree Frequency

(4, 2) 6 2s+2 − 12
(3, 4) 7 4
(2, 6) 8 4
(4, 4) 8 9(s − 1)(2s − 3)

(3, 6) 9 2
(4, 6) 10 8(s − 1)

(6, 6) 12 2(s − 1).
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Theorem 3.1. For an s-dimensional Benes network B(s), we have:

(i) Mev(B(s)) = 2s+2(64s − 28).

(ii) Rev (B (s)) = 2s+2
(

1√
6
+ s√

8
− 1

)
.

Proof.

By using Table 2, we compute the ev-degree based indices for Benes network as follows:

(i)

Mev (B (s)) =
∑

e∈E(B(s))

dev (e)2

= (6)2(2s+2) + (8)2(s)2s+2 − 2s+2

= 2s+2(64s − 28).

(ii)

Rev (B (s)) =
∑

e∈E(B(s))

dev (e)− 1
2

= (6)
− 1

2
(
2s+2

) + (8)
− 1

2 (s) 2s+2 − 2s+2

= 2s+2

(
1√
6

+ s√
8

− 1
)

.

Now, we continue to prove the ev-degree dependent TIs for VCB(s) in the next theorem.

Theorem 3.2. For VCB(s), the Mev(VCB(s)) and Rev(VCB(s)) are given as:

(i) Mev(VCB(s)) = 2s+9 · s.

(ii) Rev (VCB (s)) = 2s+ 3
2 · s.

Proof. (i) From Table 3 and the definition of Mev, we have:

Mev (VCB (s)) =
∑

e∈E(VCB(s))

dev (e)2

= (8)2(2)(s)(2s+2)

= 2s+9s.

(ii) From Table 3 and the definition of Rev, we have:

Rev (VCB (s)) =
∑

e∈E(VCB(s))

dev (e)− 1
2

= (8)
− 1

2 (2) (r)
(
2s+2

)
= 2s+ 3

2 · s.

We conclude the results of this section by proving the ev-degree dependent TIs for HCB(s):

Theorem 3.3. For HCB(s), the Mev(HCB(s)) and Rev(HCB(s)) are given as:

(i) Mev(HCB(s)) = 2s+7(2s − 1) + 320s − 138.
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(ii) Rev (HCB (s)) = 1√
6
2s+2 + s2s

[
6 + 24

√
5 + √

6 + √
2
]

+ 4√
7

+ 2√
2

− 12√
6

− 8√
10

+ 2
3

+ 6√
2

.

Proof. (i) From Table 4 and the definition of Mev, we have:

Mev (HCB (s)) =
∑

e∈E(HCB(r))

dev (e)2

= (6)2(2r+2 − 12) + (7)2(4) + (8)2(4) + (8)2(4)(s − 1)(ss − 3) + (9)2(2)

+ (10)2(8)(s − 1) + (12)2(2)(s − 1)

= 2s+7 + 2s(256s − 256) + 320s − 138,

which upon simplification gives the required result.

(ii) From Table 4 and the definition of Rev, we have:

Rev (HCB (s)) =
∑

e∈E(HCB(r))

dev (e)− 1
2

= (6)−1/2(2r+2 − 12) + (7)−1/2(4) + (8)−1/2(4) + (8)−1/2(4)(s − 1)(ss − 3)

+ (9)−1/2(2) + (10)−1/2(8)(s − 1) + (12)−1/2(2)(s − 1)

= 1√
6

2r+2 + 2√
2

s2s + 12√
8

2s

[
4√
8

+ 8√
10

+ 1√
3

]
s + 4√

7
+ 2√

2
− 12√

6
− 8√

10
+ 2

3
+ 6√

2
,

which upon simplification gives the required result.

Now, we present an example of the results proved in this section:

Example 3.1. By taking s = 4 in Theorem 3.1, Theorem 3.2 and Theorem 3.3, we obtain the values
of ev-degree based TIs for B(4), VCB(4) and HCB(4) as shown in Table 5:

Table 5: Ev-degree based TIs for B(4), VCB(4) and HCB(4)

B(4) VCB(4) HCB(4)

Mev(B(4)) = 14592 Mev(VCB(4)) = 32768 Mev(HCB(4)) = 15478

Rev (B (4)) =
32

(√
6 + 6

√
2 − 6

)
3

Rev (VCB (4)) = 2
15
2 Rev (HCB (4)) =

40390 + 161280
√

5 + 7630
√

6 + 7140
√

2 + 60
√

7 − 84
√

10
105

4 Ve-Degree Dependent Topological Indices for Bensen Networks and Its Derived Classes

In this section, we develop formulae for the ve-degree dependent TIs for B(s), VCB(s) and HCB(s).
The key to obtaining these formulae is to obtain partition the edge set of B(s), VCB(s) and HCB(s) on
the basis of ve-degrees of the end vertices of each edge as shown in Tables 6–8.
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Table 6: Partition the edge set of B(s) in terms of ve-degrees of end vertices

(d(u), d(v)) (dve(u), dve(v)) Frequency

(2, 4) (8, 12) 2s+2

(4, 4) (12, 16) 2s+2

(4, 4) (16, 16) s2s+2 − 2s+3

Table 7: Partition the edge set of VCB(s) in terms of ve-degrees of end vertices

(d(u), d(v)) (dve(u), dve(v)) Frequency

(4, 4) (16, 16) s2s+2

Table 8: Partition the edge set of HCB(s) in terms of ve-degrees of end vertices

(d(u), d(v)) (dve(u), dve(v)) Frequency

(2, 6) (10, 21) 42s+2

(3, 4) (10, 13) 4 2s+2

(3, 6) (10, 21) 2(s2s+2 − 2s+3)

(4, 2) (14, 8) 8
(4, 2) (12, 8) 2s+2 − 20
(4, 4) (13, 16) 4
(4, 4) (14, 16) 4
(4, 4) (12, 18) 8
(4, 4) (12, 16) 2s+2 − 28
(4, 4) (18, 16) 4(2s − 4)

(4, 4) (16, 18) 4(2s − 4)

(4, 4) (16, 16) (2s − 4)(2s+1 − 14)

(6, 6) (21, 28) 1
(6, 6) (28, 21) 1
(6, 6) (28, 28) 2s − 4
(4, 6) (14, 28) 4
(4, 6) (21, 16) 4
(4, 6) (20, 28) 4
(4, 6) (18, 28) 8s − 20

Theorem 4.1. For B(s), the ve-degree dependent TIs Mαve
1 (B(s)), Mβve

1 (B(s)), Mve
2 (B(s)), Rve(B(s)),

ABCve(B(s)), GAve(B(s)), Hve(B(s)) and χ ve(B(s)) are given as:

(i) Mαve
1 (B(s)) = 32.2s(16s − 11).

(ii) Mβve
1 (B(s)) = 2s+2(32s − 16).
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(iii) Mve
2 (B(s)) = 2s+2(256s − 224).

(iv) Rve (B (s)) = 2s+2
[

1√
96

+ 1√
192

+ s
16

− 1
8

]
.

(v) ABCve (B (s)) = 2s+2
[ √

2√
96

+ √
7√

192
+ √

2s
4

− √
2

2

]
.

(vi) GAve (B (s)) = 2s+2
[

2
√

6
5

+ 8
√

3
14

+ s − 2
]
.

(vii) Hve (B (s)) = 2s+2
[

13
280

+ s
16

]
.

(viii) χ ve (B (s)) = 2s+2
[

1
2
√

5
+ s

8
√

14
+ 1

2
√

2

]
.

Proof. (i) From Table 6 and the definition of Mαve
1 , we have:

Mαve
1 (B (s)) =

∑
v∈V(B(s))

dve (v)2

= (8)22s+1 + (12)22s+1 + (16)2(2s − 3)2s

= 2s+1(208) + 512s2s − 7682s,

which upon simplification gives the required formula.

(ii) The Table 6 and the formula for Mβve
1 yields:

Mβve
1 (B (s)) =

∑
uv∈E(B(s))

(dve (u) + dve (v))

= (12 + 8)2s+2 + (12 + 16)2s+2 + (16 + 16)(s2s+2 − 2s+3)

= 2s+2(32s − 16).

(iii) The Table 6 and the formula for Mve
2 yields:

Mve
2 (B (s)) =

∑
uv∈E(B(s))

(dve (u) dve (v))

= (12)(8)2s+2 + (12)(16)2s+2 + (16)(16)(s2s+2 − 2s+3)

= 2s+2(256s − 224).

(iv) The Table 6 and the formula for Rve gives:

Rve (B (s)) =
∑

uv∈E(B(s))

((dve (u) dve (v)))
−1/2

= ((12)(8))−1/22s+2 + ((12)(16))−1/22s+2 + ((16)(16))−1/2(s2s+2 − 2s+3)

= 2s+2

[
1√
96

+ 1√
192

+ s
16

− 1
8

]
.
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(v) The Table 6 and the formula for ABCve yields:

ABCve (B (s)) =
∑

uv∈E(B(s))

√
dve(u) + dve(v) − 2

dve(u)dve(v)

=
√

12 + 8 − 2
(12)(8)

2s+2 +
√

12 + 16 − 2
(12)(16)

2s+2 +
√

16 + 16 − 2
(16)(16)

(
s2s+2 − 2s+3

)

= 2s+2

[ √
2√
96

+
√

7√
192

+
√

2s
4

−
√

2
2

]
.

(vi) The Table 6 and the formula for GAve yields:

GAve (B (s)) =
∑

uv∈E(B(s))

2
√

dve (u) dve (v)
dve (u) + dve (v)

= 2
√

(12) (8)

12 + 8
2s+2 + 2

√
(12) (16)

12 + 16
2s+2 + 2

√
(16) (16)

16 + 16

(
s2s+2 − 2s+3

)

= 2s+2

[
2
√

6
5

+ 8
√

3
14

+ s − 2

]
.

(vii) The Table 6 and the formula for Hve yields:

Hve (B (s)) =
∑

uv∈E(B(s))

2
dve(u) + dve(v)

= 2
12 + 8

2s+2 + 2
12 + 16

2s+2 + 2
16 + 16

(
s2s+2 − 2s+3

)
= 2s+2

[
13

280
+ s

16

]
.

(viii) Lastly, the Table 6 and the formula for χ ve gives:

χ ve (B (s)) =
∑

uv∈E(B(s))

(dve (u) + dve (v))−1/2

= (12 + 8)−1/22s+2 + (12 + 16)−1/22s+2 + (16 + 16)−1/2(s2s+2 − 2s+3)

= 2s+2

[
1

2
√

5
+ 1

2
√

7

s

4
√

2
+ 1

2
√

2

]
,

which upon simplification gives the required formula.

By using the Table 7 and the formulae of TIs defined in Table 1, we get the following results for
the VCB(s).

Theorem 4.2. For VCB(s), ve-degree dependent TIs Mαve
1 (B(s)), Mβve

1 (B(s)), Mve
2 (B(s)), Rve(B(s)),

ABCve(B(s)), GAve(B(s)), Hve(B(s)) and χ ve(B(s)) are given as:

(i) Mαve
1 (VCB(s)) = 256s2s+1.

(ii) Mβve
1 (VCB(s)) = 32s2s+2.
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(iii) Mve
2 (VCB(s)) = 256s2s+2.

(iv) Rve (VCB (s)) = s
16

2s+2.

(v) ABCve (VCB (s)) = √
2s
4

2s+2.

(vi) GAve(VCB(s)) = s2s+2.

(vii) Hve (VCB (s)) = s
16

2s+2.

(viii) χ ve (VCB (s)) = s
4
√

2
2s+2.

By using the Table 8 and the formulae of TIs defined in Table 1, we get the following results for
the HCB(s).

Theorem 4.3. For HCB(s), the ve-degree dependent TIs Mαve
1 (B(s)), Mβve

1 (B(s)), Mve
2 (B(s)) and

Rve(B(s)) are given as:

(i) Mαve
1 (HCB(s)) = 2s(512s − 352) + 816s.

(ii) Mβve
1 (HCB(s)) = (16s + 409)2s+3 + 128s − 88.

(iii) Mve
2 (HCB(s)) = (8s − 7)2s+7 + 3040s − 2932.

(iv) Rve (HCB (s)) =
[

s
8

+ 2
√

3 + √
6 − 3

√
2

12
√

2

]
2s+1 +

[
2
√

2
3

− 47
28

]
s + 6√

210
+ 4√

130
+ 2√

7
−

5√
6

+ 1√
13

+ 1√
14

+ 4

3
√

6
− 4

√
2

3
+

√
3

21
− 47

17
+ 2

7
√

2
+ 1

4
√

21
+ 1√

35
+ 4

3
√

14
− 15456.

(v) ABCve (HCB (s)) =
[√

32s
16

+
√

5
6

+
√

7

2
√

3
− √

2

]
2s+1 +

[
4
√

17
3

− 7
√

32
4

+ 14
7

+ 4
√

46

3
√

14

]
s +

6

√
31

210
+ 4

√
23

130
+ 2

√
22
7

+ 10
√

5√
6

+
√

29
13

+
√

30
14

+ 4
√

30

3
√

6
−

√
56

8
√

3
+ 8

√
17

3
− 7

√
32

2
+

√
3

3
+

23
√

14
14

+ 2
√

42

7
√

2
+ 23

√
37

2
√

21
+ 4

√
3√

35
− 10

√
46

3
√

4
.

(vi) GAve (HCB (s)) =
[

s + 2
√

6
5

+ 4
√

3
7

− 2

]
2s+1+

[
8
√

288
17

+ 4
√

504
23

+ 28
26

− 14

]
s+ 12

√
210

31
+

8
√

130
23

+ 4
√

112
11

+ 4
√

208
29

+ 2
√

224
15

+ 4
√

216
15

− 32
√

288
34

+ 4
√

3
7

+ 2
√

392
21

+ 4
√

336
37

+
√

35
3

−
10

√
504

23
− 4

√
6 − 8

√
3 + 30.

(vii) Hve (HCB (s)) = 6
35

22s+3
[

s
8
− 1

4

] − 7885
21436

s − 17.57077354.

(viii) χ ve (HCB (s)) =
[

s

2
√

2
+ 1√

5
+ 1√

7
− 1√

2

]
2s+1 +

[
s

2
√

2
+ 16√

34
+ 1√

14
+ 8√

4

]
s + 6√

31
+

8√
22

− 2√
5

+ 4√
29

+ 12√
30

− 10√
7

− 32√
34

− 2√
14

+ 1√
2

+ 4√
37

+ 1√
3

− 20√
46

+ 2
7

+ 7
√

2.

Now, we conclude the section by including the following example:

Example 4.1. By taking s = 4 in Theorem 4.1, Theorem 4.2 and Theorem 4.3, we obtain the values
of ve-degree based TIs for B(4), VCB(4) and HCB(4) as shown in Table 9:
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Table 9: Ve-degree based TIs for B(4), VCB(4) and HCB(4)

B(4) VCB(4) HCB(4)

Mαve
1 (B(4)) =

27136
Mαve

1 (VCB(4)) =
32768

Mαve
1 (HCB(4)) = 30400

Mβve
1 (B(4)) = 7168 Mβve

1 (VCB(4)) =
8192

Mβve
1 (HCB(4)) = 60968

Mve
2 (B(4)) = 51200 Mve

2 (VCB(4)) =
65536

Mve
2 (HCB(4)) = 60428

Rve (B (4)) =
8
√

2√
3

+ 25
3

Rve(VCB(4)) = 16 Rve (HCB (4)) =
−26257

17
+ 56

√
6 + 56

√
3 − 309 − 31

√
2

21
+

√
6

35
+ 2

√
2

65
+

2√
7

+ 1

7
√

3
+ 1

4
√

21

1√
35

+ 2
√

2

3
√

7
− 5√

6
+ 1√

13
+ 1√

14
+ 2

√
2

3
√

3

ABCve (B (4)) =
16√

3
+

√
7√
3

+ 32
√

2
ABCve (VCB (4)) =
64

√
2

ABCve (HCB (4)) = 16
√

10√
3

+ 16
√

7√
3

+ 16
√

7
3

+ 64
√

2

3
√

7
+8−

42
√

2+6

√
31

210
+4

√
23

130
+2

√
22
7

+
√

29
13

+
5
(√

5 − √
46

)
3

−
√

7

2
√

6
+ 8

√
17 + √

3
3

+ 23
√

37

2
√

21
+ 4

√
3√

35
+ 4

√
5√
3

+ 23√
14

+ 2
√

3√
7

GAve (B (4)) =
32√

5
+ 16

√
2

7 + 16
√

2
GAve(VCB(4)) =
256

GAve (HCB (4)) = 64
√

6
5

+
9108

√
3 + 13892

√
2 + 168

√
130 − 1260

√
14 + 161

√
35

483
+

1382
13

+ 96
√

14
23

− 4
√

6 − 8
√

3 + 12
√

210
31

+ 16
√

7
11

+
16

√
13

29
+ 8

√
14

15
− 192

√
2

17
+ 16

√
21

37

Hve (B (4)) =
128

√
6

5 + 256
√

3
7 + 128

Hve(VCB(4)) = 16 Hve (HCB (4)) = 16186873
187565

− 17.57077354

χ ve (B (4)) = 664
35 χ ve (VCB (4)) =

32
√

2
χ ve (HCB (4)) =
32√

5
+ 32√

7
+27

√
2+ 2

√
2√

7
+ 32

√
2

17
+ 556

35
+ 6√

31
+ 4√

29
+

4√
37

+ 4
√

2√
11

+ 2
√

6√
5

+ 1√
2
+ 1√

3
− 10√

7
− 16

√
2√

17
− 10

√
2√

23
−

√
2√
7

5 Graphical Analysis

We proceed further with our obtained formulae in previous section to study graphical patterns in
the values of TIs of B(s), HCB(s) and HCB(s). In Figs. 4–6, the patterns of ZI(VE), RI(VE), ABC-
I(VE), GA-(VE) and HI(VE) (on y-axis), where the value of s has been taken on x-axis, for B(s),
HCB(s) and VCB(s) have been presented. All the figures show the rapid rise in the values of each
TI for B(s), HCB(s) and HCB(s) with the rise in the value of s. The trends in Fig. 4 (L) show that
the HCB(s) attains higher values of ZI(VE), whereas values of ZI(VE) for VCB(s) remain between
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B(s) and HCB(s). Similar trend for RI(VE) has been shown in Fig. 4 (R). In Fig. 5 (L), it can be seen
that the values of ABC-I(VE) show different behaviours as in case of ZI(VE) and RI(VE). The ABC-
I(VE) attains lowest values for HCB(s), whereas values for B(s) remain between VCB(s) and HCB(s).
Furthermore, the trend for HI(EV) is shown in Fig. 5 (R). In the case of GA(VE), the values for B(s)
remain the highest and the values for VCB(s) remain between the values of B(s) and HCB(s), see Fig. 6.

Figure 4: Graphical comparison between ZI(VE) on left (L) and RI(VE) on right (R) of B(s), HCB(s)
and HCB(s)

Figure 5: Graphical comparison between ABC(VE) on left (L) and HI(VE) on right (R) of B(s),
HCB(s) and HCB(s)
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Figure 6: Graphical comparison between GA-I(VE) of B(s), HCB(s) and HCB(s)

6 Conclusion

The study of newly formed networks is always a fascinating topic. Using B(s), several novel
networks such as HCB(s) and VCB(s) have been defined through identifications in [33] and further
investigated in [34]. Furthermore, the ev-degree and the ve-degree of these structures were not
investigated yet. In the current work, we constructed the ev-degree based partition of the vertex set
and the ve-degree based partition of the edge set for these networks. Through these partitions, we
developed formulae for several ev-degree and ve-degree based TIs for B(s), HCB(s) and VCB(s) in
terms of the parameter s. Further, we presented the comparative analysis of the values of ZI(VE),
RI(VE), ABC-I(VE), GA-I(VE) and HI(VE) for B(s), HCB(s) and VCB(s). It is observed that similar
patterns have been developed for ZI(VE) and RI(VE), whereas the other three TIs produce different
trends.
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