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ABSTRACT

The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution. It has good
performance in global optimization fields such as maximization. In this paper, a new adaptive parameter strategy
and a parallel communication strategy are proposed to further improve the Cuckoo Search (CS) algorithm. This
strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s
ability to jump out of the local optimal. This paper compares the optimization performance of Parallel Adaptive
Cuckoo Search (PACS) with CS, Parallel Cuckoo Search (PCS), Particle Swarm Optimization (PSO), Sine Cosine
Algorithm (SCA), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Differential Evolution
(DE) and Artificial Bee Colony (ABC) algorithms by using the CEC-2013 test function. The results show that
PACS algorithm outperforms other algorithms in 20 of 28 test functions. Due to the superior performance of PACS
algorithm, this paper uses it to solve the problem of the rectangular layout. Experimental results show that this
scheme has a significant effect, and the material utilization rate is improved from 89.5% to 97.8% after optimization.
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1 Introduction

With the development of the meta-heuristic algorithm, researchers have paid more and more
attention to it. In real life, meta-heuristic algorithms have been widely used in industry, finance,
mathematics and other fields, and achieved good results. For example, Particle Swarm Optimization
(PSO) is applied to heterogeneous Wireless Sensor Networks (WSN) [1]. PSO is applied to job
scheduling algorithm on cloud [2]. Hu et al. improved binary Grey Wolf Optimizer (GWO) to feature
selection [3]. Parallel Whale Optimization Algorithm (WOA) is applied to the DV-Hop localization
method by Chai et al. [4]. In [5], the improved genetic algorithm is used to solve the job shop
scheduling problem. In [6], the researchers used a statistical variable learning strategy to improve the
PSO algorithm. Compact Differential Evolution (DE) algorithm is applied in biomedical fields [7], etc.
As a relatively new meta-heuristic algorithm, Cuckoo Search (CS) algorithm has fewer parameters
and is easy to implement. This algorithm not only has the superior ability of other meta-heuristic
algorithms in searching for optimization but also avoids the problem of being easily trapped in local
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optimization to some extent. Once proposed, this algorithm has been used by many researchers to solve
all kinds of practical problems. However, the CS algorithm also shows the shortcomings of relatively
slow convergence speed. In view of its shortcomings, researchers improved it through different means,
and then applied it to various fields to solve related problems. Walton et al. modified Cuckoo Search
(MCS) algorithm to make it perform well at high numbers of dimensions [8]. Wang et al. worked out
Chaotic Cuckoo Search (CCS) [9]. Yang et al. came up with Multi-Objective Cuckoo Search (MOCS)
for design optimization [10]. Rodrigues et al. came up with Binary Cuckoo Search (BCS) algorithm
[11]. Rakhshani applied intelligent multi-search strategy CS algorithm to numerical and engineering
optimization problems [12]. Pan et al. came up with compact CS algorithm [13] and Song et al. worked
out parallel compact CS algorithm [14], etc. This paper improves the CS algorithm from two aspects:
parallel communication strategy and adaptive parameter adjustment. These two improved strategies
aim to accelerate the convergence speed and accuracy of the algorithm, and to some extent strengthen
the ability of the algorithm to jump out of the local optimal. The effect of the improved algorithm
is tested by the test function and compared with the original algorithm and other common meta-
heuristic algorithms. The comparison results show that this algorithm has better performance in most
cases. Finally, we apply it to the rectangular layout problem.

Layout problems are widely used in the real world, such as stacking of items in warehouse,
newspaper text layout, container packing, and so on [15–19]. This kind of problem can be abstracted
into a layout problem. The layout problem is to place n known objects in a certain area according to
certain rules. During placement, ensure that objects are compact and do not overlap, that is, making
the space utilization the highest. Among all kinds of layout problems, rectangular layout problems
take up the largest proportion in actual production and life. In many layout problems, the target to
be placed is approximated as a rectangle and placed in a large rectangular area. So the rectangular
layout problem has become the basis of the layout problem. The solution of rectangular layout is a
classic NP-hard problem. Currently, there is no universally recognized fixed optimal solution. Many
researchers have applied meta-heuristic algorithms to layout problems and achieved good results [20–
22]. For example, Huang et al. further investigated the rectangular part layout problem by using the
Genetic Algorithm [23]; Turanoğlu et al. used a bacterial foraging optimization method to solve the
dynamic facility layout problem [24]; Liu et al. applied the multi-objective particle swarm optimization
algorithm to the dynamic facility layout problem [25]. In this paper, the improved Cuckoo Search
algorithm is applied to rectangular layout, aiming to ensure more excellent layout results by combining
the superior performance of this algorithm with rectangular layout rules.

The main contributions of this paper include the following four aspects:

1) A new adaptive parameter strategy is proposed to improve step size and rejection probability
respectively and the performance of the algorithm is significantly improved.

2) Based on the original algorithm, a new parallel communication strategy is applied to enhance
the global optimization of the population.

3) The new improved algorithm is compared with the original algorithm (CS) and several popular
algorithms (WOA, SCA, PSO, GWO, ABC, DE) through the CEC-2013 test function.

4) The improved algorithm is combined with the rule of the lowest horizontal line strategy to
expand the practice in the field of the rectangular layout.

The rest of this paper is organized as follows. In Section 2, we mainly introduce the principle of
the CS algorithm. In Section 3, the improvement of the CS algorithm is proposed. The comparison
between the improved cuckoo search algorithm and other algorithms is discussed in Section 4.
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Section 5 is mainly about the specific description of the application and the actual simulation
experiment results after the combination of the algorithm and the application. The conclusion is given
at the end of this paper.

2 Cuckoo Search Algorithm
2.1 Principle of Cuckoo Search Algorithm

Yang et al. proposed the CS algorithm in 2009 [26]. The algorithm is inspired by the breeding
behavior of cuckoos in nature. Cuckoos will randomly search for the best nests to lay their eggs on.
The algorithm mainly uses the Lévy flight to simulate the random walk of the cuckoo. In nature,
the movement patterns of many birds are characteristic of Lévy flight. The Lévy flight process
consists of frequent short-distance flights and occasional long-distance flights. The step size of the
flight conforms to the Lévy distribution. Frequent short-distance flights can effectively search for the
optimal solution in a certain area, while occasional long-distance flights can expand the search range
and avoid falling into local optimal values. To describe this behavior, Yang et al. proposed three rules:

(1) Cuckoo birds randomly choose a nest to lay eggs, and lay only one egg in a nest. At this time,
a nest can be abstracted into a solution.

(2) The best nests will be preserved. That means the best solution is saved for the next iteration.

(3) The number of nests n is constant, and the probability of cuckoo eggs being found is Pa. The
host will abandon the eggs or the nest after finding the abnormality and that means the nest
will be replaced with a certain probability. The acquisition of the new nest was made by Lévy
flight.

The CS algorithm performs two population updates in one iteration: a random walk update based
on the Lévy flight and an update by dropping the probability Pa. Each update has a strong memory. If
the fitness of the objective function improves after the update, the update will be accepted. Otherwise,
the original value will be maintained. Suppose that the number of nests set by CS algorithm is N, the
dimension of the nest, namely the dimension of the solution, is Nd. A nest represents a solution to an
objective function. The calculation formula is based on Lévy’s flying random walk:

xt+1
i = xt

i + a ⊗ L(β), i ∈ (1, 2, . . . , N) (1)

L(β) = s × (xt − xt
best) (2)

In Eq. (1), xi represents the location of nest i at iteration t. In Eq. (2), a is step length coefficient,
s is to obey the parameters for the Lévy of β distribution random number, xt

best represents the optimal
solution obtained when the algorithm iterates to generation t, symbol ⊗ said dot product.

s = μ

|υ|1/β
(3)
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In Eqs. (3) and (4), μ ∼ N(0, σ 2), υ ∼ N(0, 1), 1 ≤ β ≤ 3.

The random step size based on Lévy distribution has the characteristics of high probability short-
distance exploration and occasionally long-distance walking, as shown in Fig. 1.



2176 CMES, 2023, vol.135, no.3

Figure 1: The trajectory generated by Lévy’s flight in two-dimensional space

The second update strategy is as follows: CS algorithm discards partial solutions according to a
certain probability of discovery and then adopts preference walk to regenerate the same number of
solution.

xt+1
i = xt

i + r × (xt
j − xt

k), j, k ∈ (1, 2, . . . , N) (5)

In Eq. (5), r follows the uniform distribution of random numbers between [0, 1], and xt
j and xt

k are
any two t generation solutions.

Algorithm 2.1: CS
1: Fitness funtion f 1(x), x = (x1, . . . xd)T

2: Initialize the number of nests in the host to n, xi(i ≤ n), Pa = 0.25
3: while (t < MaxGeneration) or (stopcriterion) do
4: Update nest xi by Lévy flights via Eq. (1)
5: Get its quality/fitness Fi

6: A random nest xk is selected from the entire population
7: if (Fi > Fk) then
8: Replace xi with a new nest via Eq. (5)
9: end if

10: By discarding the probability Pa, a small number of poor solutions are screened out and
replaced by new ones

11: Preserve the current best solution
12: end while
13: Output the optimal solution

2.2 Specific Algorithm Step Description
Step 1: The number of nests is set to N, that is, the population number was set to N. The search

space dimension was set to d, and randomly generated initial population in the bird’s nest location
P0 = [x0

1, x0
2, x0

3, . . . , x0
N]T .
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Step 2: Bird’s Nest location update. The optimal nest location of the previous generation xi−1
b ,

is retained, and the other nest locations were updated using Eq. (1) to obtain a new nest (solution)
location. The obtained new position is compared with the current bird’s nest position, and the better
solution is reserved.

Step 3: During the solution process, the egg of the cuckoo has a certain probability (Pa) to be
found by the host. If the egg is found, it means the current egg is discarded. At this time, the next
bird’s nest is found through a specific random function. Otherwise, this situation is not found. The
positions of all bird nests in the whole population are Pi = [xi

1, xi
2, xi

3, . . . , xi
N]T .

Step 4: Find the optimal nest location xt
b and the optimal fitness value fmin in the final Pi obtained.

If the iteration stop condition is reached, the optimal global value fmin and the corresponding global
optimal position xt

b is output. Conversely, return Steps 2 and 3 to continue the loop body’s iterative
update. The iteration stop conditions mentioned here, such as reaching the iteration times, convergence
to the precision of the states, etc.

2.3 Advantages and Disadvantages of CS Algorithm
This algorithm has been proved by Yang et al. through many experiments. In general, Pa is set

as 0.25, dimension Dim and population number N can meet most of the use scenarios according
to their requirements. The algorithm has few parameters, and the variation of parameters has little
influence on the experimental results. The existence of Lévy flight mechanism is conducive to jumping
out of the optimal local solution and finding the optimal global solution. The algorithm abandons a
solution according to the random probability Pa and replaces it with a new solution, which enhances
the randomness and helps to find the global optimal solution to a certain extent.

The CS algorithm finds the bird’s nest through the Lévy flight mechanism. Lévy flight is a random
walk process consisting of short-distance flight with high probability and long-distance flight with low
probability. Therefore, the cuckoo’s nest finding path is easy to jump between different search areas,
resulting in the poor local fine search ability of the CS algorithm. After the algorithm is decomposed,
it is easy to oscillate in the area near the optimal solution, resulting in low algorithm efficiency.

3 Parallel Adaptive Parameter Cuckoo Search Algorithm

The last section mentioned that the CS algorithm has some advantages over other algorithms
but also has some disadvantages. To improve the performance of CS algorithm and expand the
application field of CS algorithm, researchers have developed multiple enhanced versions of CS
algorithm, such as binary CS algorithm used to replace discrete optimization problem, a chaotic CS
algorithm used to improve the performance of CS algorithm [27], adaptive CS algorithm [28] and
mixed with other algorithms, CS algorithm used to restore multi-objective optimization, modified
cuckoo search algorithm with self-adaptive parameter method [29], and a self-adaptive step size
strategy proposed to improve the performance of cuckoo algorithm [30]. In [31], the author adjusted
the parameters involved in the algorithm according to the current number of iterations, and improved
the performance of the algorithm. In [9], chaotic cuckoo search optimization algorithm was proposed.
It is proposed to use chaos theory to improve CS algorithm and to further protect the best cuckoo in the
elite protection plan. Experimental results show that chaotic CS has some advantages in accelerating
algorithm convergence. In 2011, Tuba et al. [32] and Walton et al. [8] proposed to sort solutions by
fitness value size and to exchange information between solutions, some improvements have been made
in the performance of the algorithm.
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Aiming at the shortcoming of CS algorithm’s low local precision search ability, in this paper,
improvements are made from two aspects: on the one hand, population parallel communication
strategy is adopted; on the other hand, adaptive parameter strategy is adopted.

3.1 Population Parallel Communication Strategy
Parallel communication strategy can improve the search ability and convergence speed of meta-

heuristic optimization algorithms and find better solutions in a better way [33–36]. The parallel
meta-heuristic algorithms divide the population into several subgroups. Each subgroup is calculated
independently, and the communication and disturbance among the subgroups are carried out after
every m iteration. This strategy aims to influence or replace the inferior individuals in this group with
the best individuals in the adjacent group. In a parallel communication strategy, many methods can
communicate with each subgroup [37–40]. In this paper, two strategies are mainly used to disturb the
poor individuals. First, the adjacent subpopulation optimal individual was used to influence the flawed
individual of other populations, and the influence weight factor Q from 0 to 1 is randomly generated.
The xi+1

b of the next generation of the individual was obtained from the current xi
b of the individual

and the optimal individual location gi
best of the adjacent population, that is, xi+1

b = gi
best ∗q+xi

b ∗ (1−q).
Secondly, the global optimal individual Gbest is obtained by comparing all optimal individuals of the
population. The influence weight factor a and the number of affected individuals l are generated.
Disturbing one poor individual in each subpopulation by the optimal individual.

An example is given in Fig. 2, we divide the entire population into 4 small populations according
to the parallel strategy. The solid point o in the figure is the ideal optimal point, and the four individuals
(a, b, c, d) are the current optimal solutions in each population. Fig. 2a is the communication behavior
among the subpopulation individuals. Fig. 2b shows the mutual communication behavior among the
subgroups.

Figure 2: Population parallel communication strategies

The interpopulation communication of the parallel strategy is beneficial to the algorithm to avoid
falling into the local optimum and to find the global optimum or its optimal solution with high
probability in multiple ranges. Simultaneously, the strategy will accelerate the optimization speed of
the population to a certain extent and further improve work efficiency. This can also be proved in the
algorithm comparison section.
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3.2 Adaptive Parameter Strategy
In this paper, CS algorithm adopts an adaptive parameter strategy, which ensures a large-scale

random search in the early stage and a small-scale local precision search in the later stage. In the early
stage of the whole process, the CS algorithm is more conducive to finding the global optimal solution
or its vicinity by large-scale global random search. In the later stage, frequent local search can more
accurately converge to the global optimal solution or approximate global optimal solution, so as to
ensure better compliance with the experimental requirements.

The CS algorithm used in this paper involves a few parameters, and the real influential factors are
the abandonment probability Pa and Lévy flight step a of the solution. From the previous introduction,
we can also see that it is these two parameters that can affect the search scope.

(1) For the problem of abandonment probability Pa, this paper takes the number of iterations as
the independent variable and obtains the probability Pa through the linear change in the range from
the sine function π/2 to π . The specific changes are shown in Fig. 3a. Thus, the algorithm adaptively
matches the appropriate abandonment probability Pa as the number of times increases during
iteration. This strategy ensures frequent global long step search in the early stage and reduces the
search probability in the later stage. At the same time, this strategy avoids the oscillation phenomenon
and enhances the search accuracy. As shown in Eq. (6). Through testing, we concluded that under the
adaptive condition of abandoning the parameter Pa, the performance was optimal when the upper
bound was 0.7 and the lower bound was 0. The change image of Pa is shown in Fig. 3b.

(2) As for Lévy flight step size impact factor a, this paper selects a pattern to generate the step
size of the next generation position by determining whether the number of iterations conforms to the
standard. One of the two modes is the way of generating the step size of the original algorithm, and
the other is to appropriately adjust the Lévy flight step size impact factor according to the number of
iterations at this time. In this paper, this strategy avoids the oscillation effect caused by the excessively
long step size. As shown in Eq. (7).

Pa = 0.7 × sin[(t + n) × π/(2 × n)] (6)

xt+1
i = xt

i + a ⊗ L(β) ⊗ [1 − t/(2 × n)] i ∈ (1, 2, . . . , N) (7)
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Parallel Adaptive Cuckoo Search (PACS) algorithm pseudo-code is shown in algorithmic 3.1.

Algorithm 3.1: PACS
1: Generate initial population of n host nests
2: Divide the population into m subgroups, each group is G(i), (i ≤ m)
3: Each group computes the iteration independently and records the optimal nest (G(i).best) for the

group
4: Initialize global optimal solution, Gbest = G(1).best
5: while (t < MaxGeneration) or (stop criterion) do
6: for i = 1: m do
7: for j = 1: n/m do
8: Get its quality/fitness G(i): fitness(j)
9: Update the individual history optimal solution and the in-group optimal solution

10: end for
11: Update the global optimal solution
12: Create a new nest G(i).nest (j)1 based on the others
13: Get its quality/fitness G(i). fitness(j)1

14: if (G(i). fitness(j) > G(i). fitness(j)1) then
15: Replace G(i).nest( j) by the new solution G(i).nest(j)1

16: end if
17: A fraction (Pa) of worse nests are abandoned and new ones are built
18: end for
19: Intergroup communication is conducted every l iterations
20: if (t > MaxGeneration/2) then
21: The impact factor of Lévy flight step size(a) is adjusted adaptively according to the

number of iterations via Eq. (7)
22: end if
23: The probability Pa is adaptively adjusted according to the number of iterations via Eq. (6)
24: Update cuckoo G(i).nest(j) by Lévy flights
25: end while
26: Output the optimal solutions

4 Algorithm Contrast
4.1 Experimental Environment

In of 9 this paper, the performance algorithms is compared through 28 benchmark test functions
[41], as shown in Table 1. The algorithms for comparison were the CS [26], Parallel Cuckoo Search
(PCS), PACS, PSO [42], Sine Cosine Algorithm (SCA) [43], WOA [44], GWO [45], Artificial Bee
Colony (ABC) [46], DE [47] performance is analyzed. Set the population number (N) as 100, the
dimension (Dim) as 50, and the number of iterations (Max Generation) as 3000. The parameter settings
of each algorithm in the experimental comparison are shown in Table 2.



CMES, 2023, vol.135, no.3 2181

Table 1: Summary of the 28 CEC-2013 test functions

Fi Function introduction Optimal fitness value

F1 Sphere Function −1400
F2 Rotated High Conditioned

Elliptic Function
−1300

Unimodal Functions F3 Rotated Bent Cigar Function −1200
F4 Rotated Discus Function −1100
F5 Different Powers Function −1000
F6 Rotated Rosenbrock’s

Function
−900

F7 Rotated Schaffers F7
Function

−800

F8 Rotated Ackley’s Function −700
F9 Rotated Weierstrass Function −600
F10 Rotated Griewank’s Function −500
F11 Rastrigin’s Function −400

Basic Multimodal Functions F12 Rotated Rastrigin’s Function −300
F13 Non-Continuous Rotated

Rastrigin’s Function
−200

F14 Schwefe’s Function −100
F15 Rotated Schwefel’s Function 100
F16 Rotated Kalsuara Function 200
F17 Lunacek Bi_Rastrigin

Function
300

F18 Rotated Luncek Bi_Rastrigin
Function

400

F19 Expanded Griewank’s plus
Rosenbrock’s Function

500

F20 Expanded affer’s F6 Function 600
F21 Composition Function 1

(n = 5,Rotated)
700

F22 Composition Function 2
(n = 3,Unrotated)

800

F23 Composition Function 3
(n = 3,Rotated)

900

Composition Functions F24 Composition Function 4
(n = 3,Rotated)

1000

F25 Composition Function 5
(n = 3,Rotated)

1100

F26 Composition Function 6
(n = 5,Rotated)

1200

F27 Composition Function 7
(n = 5,Rotated)

1300

(Continued)
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Table 1 (continued)

Fi Function introduction Optimal fitness value

F28 Composition Function 8
(n = 5,Rotated)

1400

Table 2: Parameter settings

Max_gen = 3000; Population = 100; Dim = 50; S_range = [−100, 100];

CS PCS PACS PSO ABC DE

Pa = 0.25 Pa = 0.25 Pa = 0.7×sin((t+n)×π/(2×n)) c = 2.0; Limit = 100 PCr = 0.5;
w = 0.9; F = 0.9;
Vmin = –10;
Vmax = 10;

4.2 Analysis of Experimental Results
Combined with the above comparison Figs. 4–6 and Table 3, it can be seen that the CS algorithm

has been significantly enhanced in terms of convergence speed and convergence precision after the
improvement of population parallel communication and adaptive parameter strategy. The Table 3
is divided into three parts: mean value, standard deviation and optimal value. Among them, the
mean value is the result obtained after 30 runs of each algorithm, which more intuitively shows the
advantages and disadvantages of each algorithm. The bold part represents the value of the algorithm
with the best performance in the test function. The standard deviation is used as an auxiliary function
to represent the stability of each algorithm in each test function. PACS outperforms other algorithms
in 20 of the 28 tested functions in CEC-2013. To reflect the performance difference of each algorithm
more clearly, this paper takes logarithms or reduces the range of the y-axis in some images. As can be
seen from the best value in the table, the improved algorithm also shows better performance in precise
optimization.
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Figure 4: Convergence curves of unimodal benchmark functions
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Table 3: Algorithm performance comparison

Function CS PCS PACS PSO GWO WOA ABC SCA DE
F1 Mean −1.40E+03 −1.40E+03 −1.40E+03 −1.34E+03 1.43E+03 −1.39E+03 3.66E+03 2.68E+04 4.32E+03

Std 1.87E−07 1.29E−09 9.44E−09 2.14E+02 1.28E+03 7.98E+00 4.19E+02 4.01E+03 4.92E+02
Best −1.40E+03 −1.40E+03 −1.40E+03 −1.40E+03 −4.61E+02 −1.40E+03 2.58E+03 1.84E+04 3.36E+03

F2 Mean 1.75E+07 9.78E+06 1.34E+07 8.52E+06 3.08E+07 6.54E+07 2.39E+0 8 3.42E+08 1.13E+09
Std 3.68E+06 2.81E+06 1.23E+06 5.96E+06 1.51E+07 1.22E+07 4.20E+07 1.02E+08 8.97E+07
Best 1.47E+07 7.61E+06 1.21E+07 4.53E+06 2.08E+07 5.60E+07 1.91E+08 2.49E+08 1.02E+09

F3 Mean 1.91E+09 9.50E+08 9.74E+07 9.65E+08 1.24E+10 3.65E+10 2.27E+13 9.98E+10 1.25E+11
Std 4.96E+08 2.98E+08 9.22E+07 2.62E+07 4.26E+09 5.74E+09 2.33E+13 2.18E+10 6.70E+09
Best 1.53E+09 7.64E+08 3.60E+07 9.40E+08 7.67E+09 3.08E+10 3.50E+12 7.82E+10 1.17E+11

F4 Mean 1.05E+05 6.13E+04 3.25E+04 5.92E+01 4.15E+04 4.32E+04 8.28E+04 6.50E+04 1.79E+05
Std 5.37E+03 2.37E+04 3.17E+03 2.36E+02 2.02E+03 1.19E+04 2.69E+03 4.39E+03 2.56E+04
Best 9.97E+04 4.41E+04 2.88E+04 −2.13E+02 3.94E+04 3.11E+04 7.98E+04 6.05E+04 1.55E+05

F5 Mean −1.00E+03 −1.00E+03 −1.00E+03 −9.61E+02 −1.59E+02 −8.54E+02 9.72E+02 2.53E+03 −7.48E+02
Std 3.80E−05 3.13E−04 1.57E−05 6.60E+01 2.88E+02 2.46E+01 1.87E+02 1.25E+03 1.96E+01
Best −1.00E+03 −1.00E+03 −1.00E+03 −1.00E+03 −7.21E+02 −9.17E+02 5.85E+02 1.22E+03 −7.87E+02

F6 Mean −8.58E+02 −8.55E+02 −8.56E+02 −8.20E+02 −6.44E+02 −6.93E+02 −5.32E+01 9.02E+02 1.80E+02
Std 2.83E+00 1.50E+00 2.38E-01 2.82E+01 4.34E+01 5.50E+01 4.68E+01 1.28E+02 7.68E+01
Best −8.61E+02 −8.57E+02 −8.57E+02 −8.51E+02 −6.81E+02 −7.28E+02 −1.07E+02 8.10E+02 1.05E+02

F7 Mean −6.49E+02 −6.88E+02 −6.89E+02 −6.87E+02 −7.35E+02 −1.82E+02 1.26E+03 −6.23E+02 −5.66E+02
Std 2.54E+00 8.21E+00 9.42E+00 2.95E+01 2.93E+01 4.19E+02 1.36E+02 2.00E+01 1.85E+01
Best −6.52E+02 −6.96E+02 −7.00E+02 −7.20E+02 −7.56E+02 −5.32E+02 1.15E+03 −6.43E+02 −5.86E+02

F8 Mean −6.79E+02 −6.79E+02 −6.79E+02 −6.79E+02 −6.79E+02 −6.79E+02 −6.79E+02 −6.79E+02 −6.79E+02
Std 4.17E−02 3.00E−02 2.04E−02 5.34E−02 2.08E−02 3.82E−02 1.97E−02 2.59E−02 6.88E−03
Best −6.79E+02 −6.79E+02 −6.80E+02 −6.79E+02 −6.79E+02 −6.79E+02 −6.79E+02 −6.79E+02 −6.79E+02

F9 Mean −5.43E+02 −5.40E+02 −5.42E+02 −5.40E+02 −5.61E+02 −5.31E+02 −5.56E+02 −5.27E+02 −5.26E+02
Std 7.05E−02 4.47E−01 3.55E−01 4.40E+00 2.35E+00 1.80E+00 2.62E+00 1.78E+00 9.85E-01
Best −5.43E+02 −5.40E+02 −5.42E+02 −5.45E+02 −5.64E+02 −5.32E+02 −5.59E+02 −5.29E+02 −5.27E+02

F10 Mean −4.99E+02 −4.99E+02 −4.99E+02 −4.12E+02 4.46E+01 −2.51E+02 5.81E+02 3.19E+03 5.94E+03
Std 1.32E−01 7.74E−02 3.59E−01 9.37E+01 2.25E+02 8.87E+01 8.62E+01 7.36E+02 9.31E+02
Best −4.99E+02 −4.99E+02 −5.00E+02 −4.72E+02 −1.02E+02 −3.49E+02 5.07E+02 2.72E+03 5.09E+03

F11 Mean −2.27E+02 −2.38E+02 −2.82E+02 1.85E+00 −1.82E+02 3.51E+02 −7.43E+01 2.95E+02 3.14E+01
Std 1.38E+01 1.92E+01 9.61E+00 6.64E+01 4.04E+01 8.96E+01 6.15E+01 4.25E+01 1.80E+01
Best −2.54E+02 −2.71E+02 −3.01E+02 −9.48E+01 −2.39E+02 1.66E+02 −1.87E+02 2.06E+02 −1.56E+01

F12 Mean 6.55E+01 5.86E+01 −2.05E+01 2.40E+02 2.06E+01 5.43E+02 1.45E+02 4.25E+02 4.34E+02
Std 2.14E+01 4.73E+01 3.13E+01 1.20E+02 1.47E+02 2.23E+02 3.41E+01 6.85E+01 3.71E+01
Best 4.67E+01 5.57E+00 −5.35E+01 1.32E+02 −8.72E+01 3.59E+02 1.06E+02 3.59E+02 3.91E+02

F13 Mean 1.71E+02 2.86E+02 1.51E+02 4.31E+02 2.85E+02 7.71E+02 2.49E+02 5.17E+02 5.68E+02
Std 3.36E+01 3.51E+01 1.18E+01 2.59E+01 3.03E+01 1.91E+01 2.80E+01 4.46E+01 2.05E+01
Best 1.37E+02 2.47E+02 1.41E+02 4.09E+02 2.50E+02 7.54E+02 2.17E+02 4.74E+02 5.53E+02

(Continued)
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Table 3 (continued)

Function CS PCS PACS PSO GWO WOA ABC SCA DE
F14 Mean 6.02E+03 5.25E+03 4.83E+03 6.25E+03 5.47E+03 9.01E+03 5.10E+03 1.32E+04 8.17E+03

Std 4.00E+02 4.55E+02 4.18E+02 6.38E+02 9.45E+02 1.19E+03 2.05E+02 4.09E+02 3.10E+02
Best 5.03E+03 4.21E+03 3.98E+03 5.07E+03 3.76E+03 5.73E+03 4.52E+03 1.22E+04 7.59E+03

F15 Mean 9.27E+03 8.50E+03 7.88E+03 8.53E+03 8.45E+03 1.06E+04 1.28E+04 1.43E+04 1.43E+04
Std 5.72E+02 1.80E+02 3.59E+02 3.43E+02 3.44E+02 1.02E+03 3.97E+01 1.40E+02 4.02E+02
Best 8.61E+03 8.33E+03 7.75E+03 8.12E+03 8.09E+03 9.66E+03 1.28E+04 1.42E+04 1.38E+04

F16 Mean 2.03E+02 2.02E+02 2.01E+02 2.03E+02 2.03E+02 2.03E+02 2.03E+02 2.03E+02 2.03E+02
Std 2.90E−01 3.88E−01 3.27E−01 4.99E−01 2.89E−01 4.71E−01 2.48E−01 2.65E−01 2.50E−01
Best 2.02E+02 2.01E+02 2.01E+02 2.01E+02 2.03E+02 2.02E+02 2.03E+02 2.03E+02 2.03E+02

F17 Mean 6.09E+02 6.91E+02 5.20E+02 7.35E+02 6.13E+02 1.41E+03 6.45E+02 1.27E+03 1.33E+03
Std 2.40E+01 5.03E+01 2.63E+01 7.12E+01 4.93E+01 1.10E+02 1.67E+01 6.94E+01 8.05E+01
Best 5.46E+02 5.84E+02 4.66E+02 6.40E+02 5.28E+02 1.17E+03 6.11E+02 1.13E+03 1.21E+03

F18 Mean 7.66E+02 9.09E+02 6.89E+02 8.88E+02 9.04E+02 1.42E+03 9.47E+02 1.40E+03 1.50E+03
Std 5.20E+01 2.35E+01 1.19E+01 1.19E+02 1.65E+01 9.33E+01 2.63E+01 6.24E+00 9.42E+01
Best 7.08E+02 8.91E+02 6.77E+02 8.12E+02 8.86E+02 1.33E+03 9.22E+02 1.39E+03 1.40E+03

F19 Mean 5.22E+02 5.37E+02 5.17E+02 6.37E+02 1.67E+03 6.52E+02 5.49E+04 3.33E+04 5.47E+03
Std 2.24E+00 7.56E+00 5.81E+00 1.89E+02 1.90E+03 4.74E+01 1.93E+04 1.47E+04 2.05E+03
Best 5.21E+02 5.28E+02 5.13E+02 5.29E+02 5.74E+02 5.97E+02 3.33E+04 1.65E+04 3.51E+03

F20 Mean 6.24E+02 6.23E+02 6.21E+02 6.22E+02 6.22E+02 6.25E+02 6.22E+02 6.24E+02 6.23E+02
Std 4.46E−01 4.50E−01 2.03E−01 2.02E+00 1.80E+00 5.61E−03 2.45E−01 1.33E−01 8.29E−02
Best 6.23E+02 6.23E+02 6.19E+02 6.20E+02 6.19E+02 6.25E+02 6.22E+02 6.24E+02 6.23E+02

F21 Mean 9.06E+02 1.04E+03 8.89E+02 1.65E+03 2.78E+03 1.67E+03 2.63E+03 4.57E+03 3.71E+03
Std 2.59E+00 2.91E+02 2.82E+01 2.79E+02 6.31E+02 2.43E+02 4.15E+02 1.28E+02 6.71E+02
Best 9.00E+02 8.12E+02 8.08E+02 9.11E+02 1.31E+03 9.58E+02 2.16E+03 4.32E+03 2.54E+03

F22 Mean 8.50E+03 7.90E+03 5.36E+03 1.03E+04 7.11E+03 1.23E+04 6.44E+03 1.52E+04 9.69E+03
Std 4.51E+02 5.46E+02 4.78E+02 1.49E+03 9.31E+02 1.54E+03 3.31E+02 4.55E+02 2.83E+02
Best 7.55E+03 6.78E+03 4.34E+03 7.79E+03 5.56E+03 9.77E+03 6.04E+03 1.45E+04 8.99E+03

F23 Mean 1.17E+04 1.11+04 1.15E+04 1.18E+04 9.62E+03 1.37E+04 1.41E+04 1.60E+04 1.55E+04
Std 4.11E+02 8.74E+02 7.79E+02 1.12E+03 2.65E+03 1.37E+03 3.76E+02 4.21E+02 3.78E+02
Best 1.06E+04 8.79E+03 9.93E+03 9.31E+03 6.47E+03 9.93E+03 1.31E+04 1.48E+04 1.47E+04

F24 Mean 1.37E+03 1.37E+03 1.37E+03 1.38E+03 1.30E+03 1.41E+03 1.34E+03 1.42E+03 1.39E+03
Std 6.34E+00 7.75E+00 7.09E+00 1.62E+01 1.07E+01 1.23E+01 4.30E+00 5.66E+00 4.21E+00
Best 1.36E+03 1.35E+03 1.35E+03 1.35E+03 1.28E+03 1.39E+03 1.33E+03 1.41E+03 1.38E+03

F25 Mean 1.51E+03 1.50E+03 1.50E+03 1.53E+03 1.44E+03 1.53E+03 1.46E+03 1.55E+03 1.50E+03
Std 4.28E+00 8.61E+00 8.33E+00 2.49E+01 1.00E+01 1.64E+01 6.92E+00 6.14E+00 3.25E+00
Best 1.50E+03 1.47E+03 1.48E+03 1.48E+03 1.42E+03 1.49E+03 1.45E+03 1.53E+03 1.50E+03

F26 Mean 1.40E+03 1.40E+03 1.40E+03 1.63E+03 1.59E+03 1.67E+03 1.59E+03 1.56E+03 1.68E+03
Std 3.83E−01 3.96E−01 1.54E−01 6.31E+01 1.19E+01 5.15E+01 7.26E+01 1.22E+02 7.80E+00
Best 1.40E+03 1.40E+03 1.40E+03 1.40E+03 1.58E+03 1.41E+03 1.41E+03 1.43E+03 1.66E+03

F27 Mean 3.13E+03 3.22E+03 2.67E+03 3.25E+03 2.64E+03 3.48E+03 2.98E+03 3.63E+03 3.49E+03
Std 3.07E+02 5.65E+01 6.95E+02 1.51E+02 1.23E+02 9.85E+01 7.22E+01 4.61E+01 3.28E+01
Best 2.18E+03 3.10E+03 1.70E+03 2.97E+03 2.39E+03 3.28E+03 2.81E+03 3.49E+03 3.43E+03

F28 Mean 1.80E+03 1.80E+03 1.80E+03 5.63E+03 3.27E+03 9.43E+03 2.68E+03 6.74E+03 5.13E+03
Std 3.51E−02 2.17E−03 7.37E−03 2.95E+03 1.64E+03 1.69E+03 9.66E+01 7.21E+02 1.75E+03
Best 1.80E+03 1.80E+03 1.80E+03 2.22E+03 2.30E+03 7.97E+03 2.57E+03 6.15E+03 3.11E+03

The first five are unimodal functions, and the performance of the PACS algorithm is the best.
Where, in F1, although the final result of CS and PACS is the same, PACS converges faster than CS.
In F4, PSO shows good performance. F6 to F20 are multimodal functions. PACS performance is
slightly lower than CS performance in F6 and GWO performance in F7 and F9 respectively. Among
the other test functions, PACS performed better. F21 to F28 are compound functions. PACS and
GWO win or lose half, but the former is more stable. Overall, PACS show better performance in 20
functions, while CS, PSO and GWO all had their strengths in the remaining eight functions. The best
performing algorithm in each function is highlighted in bold. Comparing the experimental data of CS
and PCS, it can be seen that the parallel strategy works well in improving performance. Comparing
the experimental data of PCS and PACS, it can be seen that the performance of the algorithm is
significantly improved by the adaptive strategy. As can be seen from Table 4, the running time of the
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improved algorithm (PACS) does not extend compared with the previous CS algorithm, which also
indicates that the improved strategy is effective and does not produce other defects.

Table 4: Algorithm time consuming

Function CS PCS PACS

F1 9.44E+00 5.98E+00 6.02E+00
F2 1.28E+01 8.81E+00 8.73E+00
F3 1.30E+01 9.08E+00 9.41E+00
F4 1.11E+01 7.66E+00 7.66E+00
F5 9.73E+00 6.20E+00 6.22E+00
F6 1.06E+01 7.23E+00 7.28E+00
F7 1.95E+01 1.51E+01 1.53E+01
F8 1.80E+01 1.37E+01 1.37E+01
F9 7.54E+01 7.30E+01 7.23E+01
F10 1.28E+01 9.39E+00 9.28E+00
F11 1.33E+01 9.36E+00 9.58E+00
F12 1.66E+01 1.28E+01 1.28E+01
F13 1.67E+01 1.29E+01 1.29E+01
F14 1.52E+01 1.11E+01 1.13E+01
F15 1.57E+01 1.26E+01 1.25E+01
F16 2.70E+01 2.12E+01 2.21E+01
F17 9.89E+00 7.47E+00 7.50E+00
F18 1.25E+01 9.81E+00 9.89E+00
F19 1.03E+01 7.30E+00 7.38E+00
F20 1.34E+01 1.03E+01 9.98E+00
F21 2.31E+01 1.99E+01 1.99E+01
F22 2.61E+01 2.26E+01 2.29E+01
F23 2.96E+01 2.83E+01 2.82E+01
F24 9.66E+01 9.08E+01 9.10E+01
F25 9.70E+01 9.17E+01 9.15E+01
F26 1.03E+02 1.00E+02 9.95E+01
F27 1.01E+02 9.70E+01 9.72E+01
F28 4.09E+01 3.65E+01 3.66E+01

To judge whether the experimental results are statistically significant, Wilcoxon’s rank-sum test is
executed at a 5% significance level. The results are shown in Table 5. “=” means that the algorithm is
equivalent to those that acquire the best results. “<” shows that the compared algorithm is superior
to PACS, “>” indicates that the algorithm is not as good as PACS. At the same time, the table is also
attached with the specific results of the test. If the value is less than 5%, PACS is superior to this
algorithm. As can be seen from Table 5, at (F6, CS), (F5, PSO), (F20, GWO) the results show “=”,
and others show “>”. Combining with Tables 3 and 5, we can see that CS has better performance than
PACS in F6 but is similar, and PACS is not much different from PSO and GWO at F15 and F20.
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Table 5: Wilcoxon’s rank-sum test

Function CS PCS PSO SCA WOA GWO ABC DE

F1 1.21E-12 > 1.21E-12 > 1.21E-12 > 1.21E-12 > 1.21E-12 > 1.21E-12 > 1.21E-12 > 1.21E-12 >
F2 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >
F3 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >
F4 3.02E-11 > 3.02E-11 > 6.28E-06 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >
F5 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >
F6 7.51E-01 = 1.32E-04 > 1.07E-09 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >
F7 3.02E-11 > 3.02E-11 > 4.98E-11 > 3.02E-11 > 3.02E-11 > 1.36E-07 > 1.36E-07 > 3.02E-11 >
F8 1.84E-02 > 7.62E-03 > 1.44E-02 > 3.02E-11 > 2.68E-04 > 6.55E-04 > 2.68E-04 > 2.47E-04 >
F9 4.08E-11 > 6.70E-11 > 1.29E-06 > 3.02E-11 > 3.02E-11 > 1.41E-09 > 6.73E-11 > 3.50E-11 >
F10 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >
F11 3.02E-11 > 3.34E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >
F12 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 5.57E-10 > 3.02E-11 > 3.02E-11 >
F13 5.49E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 7.77E-09 > 3.02E-11 > 3.43E-11 >
F14 2.67E-09 > 7.60E-07 > 1.16E-07 > 3.02E-11 > 3.69E-11 > 2.01E-04 > 2.01E-04 > 2.01E-04 >
F15 5.00E-09 > 2.83E-08 > 5.30E-01 = 3.02E-11 > 6.12E-10 > 9.88E-03 > 5.84E-05 > 7.68E-03 >
F16 5.49E-11 > 5.97E-09 > 5.57E-10 > 3.02E-11 > 9.26E-09 > 3.69E-11 > 5.97E-09 > 5.97E-09 >
F17 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.69E-11 > 3.02E-11 > 3.02E-11 >
F18 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >
F19 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 5.49E-11 > 5.32E-11 > 4.46E-11 >
F20 3.02E-11 > 4.20E-10 > 6.52E-09 > 1.72E-12 > 3.00E-11 > 7.73E-01 = 5.49E-11 > 3.30E-10 >
F21 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >
F22 3.02E-11 > 3.69E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 5.46E-09 > 3.69E-11 > 3.45E-11 >
F23 6.53E-07 > 1.75E-05 > 2.53E-04 > 3.02E-11 > 2.03E-09 > 5.61E-05 > 2.53E-04 > 2.78E-04 >
F24 3.02E-11 > 3.02E-11 > 2.61E-10 > 3.02E-11 > 3.02E-11 > 1.07E-09 > 3.02E-11 > 3.32E-10 >
F25 3.02E-11 > 1.96E-10 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 6.05E-07 > 4.02E-11 > 3.45E-11 >
F26 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >
F27 4.18E-09 > 3.02E-11 > 1.46E-10 > 3.02E-11 > 3.02E-11 > 1.34E-05 > 2.34E-06 > 3.44E-05 >
F28 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 > 3.02E-11 >

5 Algorithm and Experiment Application Background Analysis

Researchers have conducted some similar case studies in the field of layout. In [48], Lee et al. inte-
grated simulation and ant colony optimization to improve the service facility layout in a station.
Motaghi et al. [49] used heuristic algorithms to optimize hospital layout. Heragu et al. [50] carried
out an experimental analysis of simulated annealing based algorithms for the layout problem. Gomes
de Alvarenga et al. [51] explored out metaheuristic methods for a class of the facility layout problem.
Lin et al. [52] integrated systematic layout planning with fuzzy constraint theory to design and optimize
the facility layout for operating theatre in hospitals. In different application fields, there are different
kinds of rectangular layout problems according to specific requirements. In this paper, PACS is used
to solve the rectangular packing problem. The layout problem studied in this paper refers to placing
a group of different rectangles in a fixed area and finding out their arrangement to make them as
compact as possible. At the same time, there is no clear fixed solution for this kind of problem, and
there may be multiple optimal solutions.



2188 CMES, 2023, vol.135, no.3

5.1 Steps of Algorithm
A group of rectangular (P1, P2, . . . , PN) and a known length and width and strongly heterogeneous

[53]. The width of the raw material is W , the height is H. PACS algorithm and search strategy based
on the lowest horizontal line are used to find the optimal solution. In the discharge process, three
constraints should be met, namely, no overlap between rectangular parts. Rectangle parts should not
exceed the boundary of the plate and the bottom edge of the rectangle parts should be parallel to
the bottom edge of the container. hmax is the maximum height after N rectangles are arranged. Y is
the utilization ratio of sheet metal, that is, the ratio between the sum of the rectangular area and the
area below the maximum height of the layout drawing. Rectangular arrangement decoding consists of
two parts: the order and the state of each rectangle. Among them, we numbered each rectangle at the
beginning of the experiment and worked out the order at the end of the experiment. The rectangle state
is initially set to the horizontal state, meaning that the long side of the rectangle is placed horizontally.

Y =

n∑
i=1

wi × hi

W × hmax

(8)

There are four commonly used methods about the existing rectangular layout algorithms: the BL
algorithm, step down algorithm, the lowest horizontal line algorithm, and improved search algorithm
based on the lowest horizontal line. Among them, the BL algorithm has severe defects, some of the best
solutions cannot be found. Moreover, the phenomenon of left side height may occur. The descending
step algorithm is similar to the BL algorithm, but the difference is that it is easy to produce the
sensation of high right side. The lowest horizontal line algorithm generally does not show the sensation
that one side is too high, but there are other drawbacks. Stay when the width of the minimum horizontal
line is smaller than the width of the rectangular of a row. The method used by the algorithm is to find
the current lowest horizontal line and compare the current rectangular blocks to be arranged. However,
the height of the lowest level is less than right now to the width of the rectangular of a row, but that
doesn’t mean it’s less than the width of all the rectangles. This can make the minimum horizontal lines
above small rectangular part of the waste. The search algorithm based on the lowest horizontal line
is better than the BL algorithm and the lower step algorithm. Compared with the lowest horizontal
line algorithm, this algorithm can solve the waste defect of the small rectangular part above the lowest
horizontal line to a certain extent. In this paper, the search algorithm based on the lowest horizontal
line is used to arrange the set of rectangular in the determined order.

5.2 Specific Steps of the Application Algorithm
The specific steps are divided into four steps.

Step 1: Set the initial horizontal line queue. The horizontal line queue is arranged in an increasing
height. At this time, there is only one horizontal line in the queue with a height of 0 and a length equal
to the width of the raw material. Sets the queue of rectangular to be arranged in a known initial order.

Step 2: Whenever a rectangular is placed, select the section with the lowest height from the
horizontal line queue. If there are several segments, select the leftmost segment to determine whether
the width of the horizontal segment is greater than or equal to the width of the part to be arranged.
If the horizontal segment is less than the width of the rectangular, the width of the rectangular state
continues to contrast. If still cannot let go of the rectangular, continued to contrast the other block
after this block, while the block after all rectangular is unable to meet the conditions. If no block
matches the placement criteria, set the lowest horizontal line to the next in the horizontal line queue.
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Step 3: Repeat the Step 2 process until a part can be discharged. Each time a part is discharged,
the part is removed from the queue of waiting parts.

Step 4: Repeat Step 2 and Step 3 until all parts are discharged. Finally, the maximum height of
the upper edge of all rectangular is the required plate’s height.

Fig. 7a is filled with blocks 1, 2, 3, 4, 5, and 6. Assuming these rectangulars of initial order 1, 2, 3,
4, 6, 5, will be encountered in Step 2 mentioned in the case when block 4 into block 6 anyway cannot
meet the minimum horizontal line fill-in the rules. You need to block after 5, block 6 continues with
the horizontal comparison, at the same time, if the number 5 rectangular is longer than high, wide is
placed horizontally, the need to adjust the state can conform to the requirements of the fill in. Fig.7b
is the case of filling rectangle 7 after the filling of Fig.7a. When block 7 is filled, the height of the
lowest horizontal line is the height of the top edge of block 4. Still, because the horizontal line is too
small to fill any rectangular blocks, therefore, it is necessary to change the lowest horizontal line to
the lowest horizontal line other than this horizontal line, that is, the top edge of block 1, continue the
comparison, and so on. In this paper, the general order and initial state of the rectangular blocks are
changed by improving the CS algorithm, and the initial order is iteratively transformed to find the
optimal solution.

Figure 7: Rectangular layout diagram

In the experiment, the coding of the solution is divided into two parts: on the one hand, each
rectangular block is initially assigned with a number; on the other hand, each rectangular block has its
own state (horizontal and vertical), as shown in the first rows of Table 6. In the process of algorithm
iteration, the process scheme for building new solutions is as follows. First, randomly initialize the
order and state of each rectangular block (horizontal and vertical). Then, in each iteration, some of
the other non-optimal solutions choose the variants of the current optimal solution to become the
next generation solution, as shown in the following table. The variant is the product of the random
transformation order and state of some rectangular blocks selected by the current optimal solution.
The other part selects the random transformation order and state of some rectangular blocks on the
basis of its own solution. The second and third rows of Table 6 show the transformation order and
state of rectangular blocks.



2190 CMES, 2023, vol.135, no.3

Table 6: The rectangle group initialization table

Rectangular order 1 3 5 2 6 4 7 8
Status (horizontal and vertical) 0 1 0 0 1 1 1 0
Order1 1 2 3 4 5 6 7 8
Status 0 1 0 1 1 0 1 0
Order2 2 5 6 4 1 8 7 3
Status 1 1 1 0 1 0 1 0

6 Experimental Simulation

Simulation experiment environment: Windows 10, MATLAB R2020a.

Raw material: width is 20, height is 200 rectangle.

The rectangular layout information is shown in Table 7. In Table 7, Order1 is the sequence number
of 30 rectangular blocks that have not been explored by the algorithm, Order2 is the sequence number
of these rectangular blocks after the exploration of the layout algorithm in this paper.

Table 7: The experiment table

W 3 4 6 4 2 6 4 4 9 4 6 4 9 4 2 8 9 6 6 2 9 3 8 3 7 6 7 8 8 5
H 6 7 7 2 5 4 2 6 6 7 4 6 3 5 7 4 6 3 3 6 7 5 5 4 4 3 5 7 9 3
Order1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Order2 25 21 6 30 15 11 19 7 29 2 14 13 9 16 24 8 4 20 1 22 18 5 28 10 23 3 26 12 17 27

In order to test the superior performance of PACS in the application, this paper also combines
other 8 algorithms (CS, PCS, GWO, SCA, WOA, DE, ABC, PSO) with the application to compare
their performance. After 20 comparative experiments, the PACS algorithm can find the optimal
solution every time, that is, the solution with a height of 43 in the experimental graph. However,
other algorithms may not obtain the optimal solution. The specific experimental results are shown
in Table 8. In the table, Avg represents the average of the optimal solutions obtained by 20 runs of
each algorithm, Max represents the worst result in 20 runs of each algorithm, and Min represents the
optimal solution they can obtain. Times represents the number of times each algorithm found the best
solution for that application. This also shows that PACS algorithm is more suitable for application
and has better performance.

Table 8: Algorithm comparison results in rectangular layout

CS PCS PACS PSO SCA WOA GWO ABC DE

Avg 43.2 43.15 43 43.15 43.3 43.25 43.05 43.3 43.2
Max 44 44 43 44 45 44 44 45 45

(Continued)
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Table 8 (continued)

CS PCS PACS PSO SCA WOA GWO ABC DE

Min 43 43 43 43 43 43 43 43 43
Times 16 17 20 17 16 15 19 16 17

According to the initial sequence, the material height used in the layout results is 47, and the
material utilization rate is 841/940 = 89.5%.

The material height of the layout results obtained by combining the improved algorithm is 43, and
the material utilization ratio is 841/860 = 97.8%.
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Figure 8: (Continued)
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Figure 8: Rectangular layout using legend

7 Conclusion

In this paper, the convergence speed and accuracy of CS algorithm is improved by parallel and
adaptive strategies. The performance comparison experiments of PACS, CS, PCS, PSO, GWO, SCA,
ABC, DE and WOA are carried out through the CEC-2013 test function set, and the results show
that the improvement effect is significant. The optimal layout is a classical NP-hard problem, and the
solution set of rectangular layout is huge. In this paper, PACS algorithm is used to obtain the layout
order and state of the rectangle. According to the results of application experiments, the material
utilization ratio of the improved CS algorithm applied to the layout system is increased from 89.5% to
97.8% compared with the layout algorithm based on the lowest horizontal line algorithm.

In the following research work, we will study Monte Carlo theory [54–57], Fuzzy theory [58], the
Taguchi method [59], and Compact technology [60], and explore the connection between them and
intelligent algorithms. Through research in this area, we can gain a more comprehensive and systematic
understanding of the field of algorithms. At the same time, we can also try to apply evolutionary
computing to more aspects, such as, Internet of Things [61], Cognitive Network [62], 5G-IoV Networks
[63], and Drone Data Collection [64]. Finally, we can continue to study intelligent algorithms to try
to find a more suitable algorithm for rectangular layout applications, further improve efficiency and
availability, and play a more important role in industrial production.
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