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ABSTRACT

We investigate the bounded travelling wave solutions of the Biswas-Arshed model (BAM) including the low group
velocity dispersion and excluding the self-phase modulation. We integrate the nonlinear structure of the model
to obtain bounded optical solitons which pass through the optical fibers in the non-Kerr media. The bifurcation
technique of the dynamical system is used to achieve the parameter bifurcation sets and split the parameter space
into various areas which correspond to different phase portraits. All bounded optical solitons and bounded periodic
wave solutions are identified and derived conforming to each region of these phase portraits. We also apply the
extended sinh-Gordon equation expansion and the generalized Kudryashov integral schemes to obtain additional
bounded optical soliton solutions of the BAM nonlinearity. We present more bounded optical shock waves, the
bright-dark solitary wave, and optical rogue waves for the structure model via these schemes in different aspects.

KEYWORDS
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1 Introduction

The study of optical solitons and their applications in the account of optical fiber transmissions is
a paramount topic in communication networks. The general concepts of transmission optical solitons
in nonlinear optical fiber systems are fundamentally important in controlling optical continuum
creation and transferring information over very long distances. The general nonlinear complex models
(see [1–7]) are the best examples of the exploration and description of the effect on the picosecond
vibration with the group velocity dispersion (GVD) as well as the self-phase modulation (SPM). Such
models can be used to explicitly address the electro-magnetic waves with ultrashort pules that can
cover the world within a nanosecond. Thus these varieties of waves have been highly studied in the
communication technologies, especially, in the optical fibers, data transmissions, telecommunication
sectors, transoceanic spaces and so on [6–10]. Recently, Biswas and Arshed introduced a model which
is greatly interesting due to the consideration of minor GVD and neglecting the SPM [1]. A number of
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works have done on this model to investigate optical solitons by using various approaches such as the
trail solution technique [12], modified simple equation technique [13], Kerr and power law nonlinearity
[14,15], mapping method [16], the extended trial function method [17], parameter restriction approach

[18] and the tan(
θ

2
) expansion approach [19]. They also pointed out the bright, singular and combo-

solitons for the two integration structures of the model. It is fundamentally effective in investigating
the dynamical bounded and unbounded solitons in optical fibers and metameterials in case of both
low GVD and nonlinearity via new effective approaches. Young dynamical researchers established
more new effective schemes to obtain various types of optical solitons like the generalized Kudryashov
(GK) approaches [20,21], the Jacobian elliptic function method [22], the extended sinh-Gordon
equation expansion method [23], Hirota bilinear scheme [24,25], Darboux transformation method
[26], dynamical system approaces [27], solitary waves travel in a porous medium or along an unsmooth
boundary [28,29] and so on. Although all those approaches have derived many profound results, some
bounded optical wave solutions could still be an unexplored subjects via dynamical scheme with a
bifurcation of the BAM.

The purpose of this paper is to show how we can present optical shock wave including both bright
and dark, optical soliton solutions, and construct the periodic wave solutions via dynamical system
method with bifurcation analysis for the model. We also use the extended sinh-Gordon equation
expansion (EShGEE) and the generalized Kudryashov (GK) approaches [20,21] to get a more bounded
wave solution. To our knowledge, these types of investigations for the BAM are the first step in the
study of the dynamical system, EShGEE and the GK methods.

2 The Biswas-Arshed Model

The Biswas-Arshed model (BAM) [11] is given as the following form:

i�t + a1�xx + a2�xt + i(b1�xxx + b2�xxt) = i[ε(|�|2�)x + σ(|�|2)x� + ϑ |�|2�x], (1)

where �(x, t) is the wave function of soliton and a1, a2, b1, b2 are, respectively, the GVD coefficient, the
spatio-temporal dispersion, the third-order dispersion coefficient, and the spatio-temporal third-order
dispersion coefficient. In the model ε represents self-steepening and σ , ϑ are dispersion effects. Biswas
and Arshed first explored this model in the context of higher-order dispersions with minor self-phase
modulation. The optical solutions of the model with transmission wave have been retrieved in the point
of view of Kerr and non-Kerr law [14]. Recently, the effect of the optical shock wave, optical solitons,
rogue waves and their various interactions were investigated in [19]. In this paper, we revisit this model
as it has wider applicability, and many other aspects such as bright and dark, optical soliton and the
periodic wave solutions of the BAM by the method of a dynamical system with bifurcation analysis,
the EShGEE and the GK methods still remain. In the following section, we use the transformation
variable to Eq. (1).

2.1 The Structure of BAM
The transformation variable [11]

�(x, t) = �(ζ)eiχ(x,t), (2)

where �(ζ) is the amplitude portion with ζ = x − δt, the phase component χ(x, t) = −kx + wt + ρ,
where the constants δ, ρ, w, k are, respectively, the soliton velocity, the phase constant, the wave number
and the frequency of the soliton, convert the nonlinear evaluation Eq. (1) to an ordinary differential
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equation. After a long computation and an integration, one can present the differential equation of
Eq. (1) [11,14] as follows:

(a1 − a2δ + 3b1k − 2b2δk − b2w)�′′ − (a1k2 − a2wk + b1k3 − b2wk2 + w)� − k(ε + ϑ)�3 = 0. (3)

and the imaginary part:

(b2δk2 − 3b1k2 + 2b2wk − δ + 2a2δk − 2a1k + a2w)�′ + (b1 − b2δ)�
′′′ − (2σ + ϑ + 3ε)�2�′ = 0. (4)

One can easily find the following conditions that satisfies the Eq. (4): δ = b1/b2, b2δk2 − 3b1k2 +
2b2wk − δ + 2a2δk − 2a1k + a2w = 0 and 2σ + ϑ + 3ε = 0.

Thus, we have to analyze the Eq. (3) only. In the following subsection, we analyze bifurcation to
acquire phase portraits to identify the number and types of solutions that exist for the model. Beside
this, we apply three different techniques, namely, the dynamical, the EShGEE and the GK approaches
to the corresponding model Eq. (3) in order to obtain the corresponding exact optical soliton solutions
of Eq. (1).

2.2 Bifurcations Analysis of the BAM
We first consider the bifurcations of phase orbits of ordinary differential equation (ODE) Eq. (3).

To proceed of the motive, we need to convert the second order ODE to a dynamical system, which is
possible by setting �′ = � in the ODE. In this case the ODE in Eq. (3) takes the form of a dynamical
system:

�′ = �,

�′ = Q

P
� + R

P
�3, (5)

with the Hamiltonian

H(�, �) = �2

2
− Q

2P
�2 − R

4P
�4, (6)

where P = a1 − a2δ + 3b1k − 2b2δk − b2w, Q = a1k2 − a2wk + b1k3 − b2wk2 + w and R = k(ε + ϑ).

Setting the system of Eq. (5) to zero gives critical points O(0, 0), A(

√
−Q

R
, 0) and B(−

√
−Q

R
, 0).

Determinants of Jacobian matrices at the three equilibrium points are: detJO = − Q

P
, detJA = 2Q

P

and detJB = 2Q

P
.

If
Q

R
< 0, the system has three equilibrium points O, A, B and two cases arise here: (i)

Q

P
> 0

implies O-saddle, A, B-centers; there exist two homoclinic orbits 
A (right side) and 
B (left side) (see
the Fig. 1a) that connect at the saddle O. Centers A and B are surrounded by a family of periodic
orbits


A(h) =
{

H(�, �) = h, h ∈
(

Q2

2RP
, 0

)}


B(h) =
{

H(�, �) = h, h ∈
(

Q2

2RP
, 0

)}
. (7)
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(ii)
Q

P
< 0 implies O-center, A, B-saddles. There exist two heteroclinic orbits 
O

u (upper) and


O
L (lower) (see the Fig. 1b) that connect at the saddles A, B. Center O is surrounded by a family of

periodic orbits.


O(h) =
{

H(�, �) = h, h ∈
(

0,
Q2

2RP

)}
(8)

On the other hand, if
Q

R
> 0, the system has only one real equilibrium point at O: (i) for

Q

P
> 0

implies O-saddle (see the Fig. 2a), (ii) for
Q

P
< 0 implies O-center (see the Fig. 2b).

Figure 1: Bifurcation of system Eq. (5) with
Q

R
< 0: (a) for

Q

P
> 0 (b) for

Q

P
< 0 at x = t = 1

Figure 2: Bifurcation of system Eq. (5) with
Q

R
> 0 : (a) for

Q

P
> 0 (b) for

Q

P
< 0 at x = t = 1

Moreover, a different dynamical system can arise for Q = 0, which reads

�′ = �,

�′ = R

P
�3,

(9)
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with the Hamiltonian

H(�, �) = �2

2
− R

4P
�4. (10)

It has a unique critical point A(0, 0) of higher order with detP = 0. From the theorem-2 of [27],

we get a2m+1 = 2R

P
and bn = 0. It yields that A is a saddle point when

R

P
> 0 (see the Fig. 3a) and A is

a critical point when
R

P
< 0 (see the Fig. 3b). We observe that all bounded orbits and traveling wave

solutions can be simulated on the phase portraits. All bounded orbits and travelling wave solutions
can be simulated.

Figure 3: Bifurcation of system Eq. (5) with Q = 0: (a) for
Q

P
> 0 (b) for

Q

P
< 0 at x = t = 1

2.3 Bounded Travelling Wave Solutions of BAM
This section will provide the explicit expressions of all bounded travelling wave solution of the

system Eq. (5).

2.3.1 The Periodic Wave Solution

Recall the cases
Q

R
< 0 and

Q

P
> 0, there are two classes of periodic orbits 
A and 
B enclosing

A and B, respectively. The corresponding wave solutions via Eq. (6) closed orbit 
A are as follows:

� = ±
√−R

2P

√
(� − l)(� − m)(� − n)(r − �), (11)

where l < m < n < � < r. Let us consider the periodicity of the orbit is 2T1 and initial value �(0) = n,
we have∫ �

n

√
−2P

R

d�√
(� − l)(� − m)(� − n)(r − �)

=
∫ ζ

0

dζ ; 0 < ζ < T1. (12)

−
∫ n

�

√
−2P

R

d�√
(� − l)(� − m)(� − n)(r − �)

=
∫ 0

ζ

dζ ; −T1 < ζ < 0. (13)
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Combining Eqs. (12) and (13), it leads to∫ �

n

√
−2P

R

d�√
(� − l)(� − m)(� − n)(r − �)

= |ζ |. (14)

By the direct elliptic integral and calculation, we arrive at the solution

�1(ζ ) = m + (n − m)(r − m){(r − m) − (r − n)sn2(

√−R

2P

√
(r − m)(n − l)

2
|ζ |)}−1, (15)

where T1 = 2b2π

b1

√
((r − m)(n − l))

√
−2P

R
. Noting that

∫ �

n

d�√
(� − l)(� − m)(� − n)(r − �)

= κsn−1(

√
(r − m)(� − n)

(r − n)(� − m)
, β), (16)

where κ = 2/
√

(r − m)(n − l) and β2 = (r − n)(m − l)/((r − m)(n − l)). Now, the corresponding
bounded periodic optical wave solution is coming from the relation Eq. (2) with modulus |�1(x, t)|.

Similarly, the periodic solution corresponding to 
B can be expressed as

� = ±
√−R

2P

√
(� − l)(m − �)(n − �)(r − �), (17)

where l < � < m < n < r. Taking period is 2T2 and initial condition �(0) = l, we arrive at the
solution

�2(ζ ) = r − (r − m)(r − l){(r − m) + (m − l)sn2(

√−R

2P

√
(r − m)(r − l)

2
|ζ |)}−1, (18)

where κ = 2/
√

(r − m)(n − l) and β2 = (r−n)(m−l)/((r−m)(n−l)), and T2 = 2b2π

b1

√
((r − m)(r − l))

√
−2P

R
.

Now, the corresponding bounded periodic wave are coming from the relation Eq. (2) with modulus
|�2(x, t)|.

Again, recall the cases dfracQR < 0 and
Q

P
< 0, there is class of periodic orbits 
O enclosing O.

The corresponding wave solutions via Eq. (6) closed orbit 
O are as follows:

� = ±
√

R

2P

√
(� − l)(� − m)(n − �)(r − �), (19)

where l < m < � < n < r which are real valued constants. Let us consider the periodicity of the orbit
is 2T3 and initial value �(0) = m, we obtain∫ �

m

√
2P

R

d�√
(� − l)(� − m)(n − �)(r − �)

=
∫ ζ

0

dζ ; 0 < ζ < T3. (20)

−
∫ m

�

√
2P

R

d�√
(� − l)(� − m)(n − �)(r − �)

=
∫ 0

ζ

dζ ; −T3 < ζ < 0. (21)
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Combining Eqs. (20) and (21), it leads to∫ �

m

√
2P

R

d�√
(� − l)(� − m)(n − �)(r − �)

= |ζ |. (22)

Again by the elliptic integral and after some calculation, we arrive at the solution

�3(ζ ) = l + (n − l)(m − l){(n − l) − (n − m)sn2(

√
R

2P

√
(r − m)(n − l)

2
|ζ |)}−1, (23)

where T3 = 2b2π

b1

√
((r − m)(n − l))

√
2P

R
. Noting that

∫ �

m

d�√
(� − l)(� − m)(n − �)(r − �)

= κsn−1(

√
(n − l)(� − m)

(n − m)(� − l)
, β), (24)

where κ = 2/
√

(r − m)(n − l) and β2 = (n − m)(r − l)/((r − m)(n − l)). Now, corresponding bounded
periodic wave are coming from the relation Eq. (2) with modulus |�3(x, t)|. It is noted that three classes
of periodic wave solutions of the Eq. (5) specified by �i(x, t); i = 1, 2, 3 are achieved for different
regions and the corresponding optical waves, which are specified by |�i(x, t)|, i = 1, 2, 3. Since the
nature of the waves are similar but in different boundary area with different initial conditions, we
depicted only the �1(x, t) and �1(x, t) graphically in the Fig. 4. To investigate all the propagation
properties of the wave, we illustrate here the 3D plots of �1(x, t), real part, imaginary part and square
of modulus of |�1(x, t)| in Figs. 4a–4d, respectively.

2.3.2 The Solitary Wave Solutions

Using the cases
Q

R
< 0 and

Q

P
> 0, the homoclinic orbits 
A and 
B can be represented as

� = ±
√−R

2P

√
(� + l)�2(l − �), (25)

where −l < � < l. Setting the homoclinic orbit and initial value �(0) = m, we obtain∫ l

�

√
−2P

R

d�

�
√

(� + l)(l − �)
= −|ζ |. (26)

Applying the elliptic integral and some calculation, we arrive at the solution

�4(ζ ) =
2lexp(

√−R

2P
m|ζ |)

1 + exp(2

√−R

2P
m|ζ |)

, l > 0. (27)

The resulting solution �4 comes due to the homoclinic orbit 
A for the system Eq. (5) by (6) and
it expresses the bright peaked soliton, i.e., bright peakon. Now, the corresponding bounded optical
soliton solution will come through the relation Eq. (2) with modulus as |�4(x, t)|, which is also a bright
optical peakon soliton.
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Figure 4: (a) Periodic wave for + via Eq. (15), (b) real part of �1(x, t) for Eq. (15), (c) imaginary part
of �1(x, t) for Eq. (15) and (d) optical bright waves |�1(x, t)|2 for the parametric values a1 = 5, a2 =
b2 = 2, b1 = δ = k = ε = 1, w = 0.5, ϑ = −2, l = 0.2, m = 0.3, n = 0.4, r = 3

Similarly, let the homoclinic orbit and initial value �(0) = −m, we obtain∫ �

−l

√
−2P

R

d�

�
√

(� + l)(l − �)
= |ζ |. (28)

Through the elliptic integral and after some calculation, we arrive at the solution

�5(ζ ) = −2le

√√√√√−R

2P
m|ζ |

1 + e
2

√√√√√−R

2P
m|ζ |

, l > 0. (29)

The obtained solution �5 comes due to the homoclinic orbit 
B for the system Eq. (5) by Eq. (6)
and it expresses the dark peaked soliton, i.e., anti-peakon. Now, the corresponding bounded optical
soliton solution will arise through the relation Eq. (2) with modulus as |�5(x, t)|, which is also a
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bright optical peakon soliton. The nature of the peaked solitons and its optical peaked solitons are
demonstrated via the Figs. 5 and 6 for �4(x, t), �4(x, t) and �4(x, t), �4(x, t) respectively. To investigate
the all propagation properties of the wave, we illustrate here the 3D plots of �4(x, t), �5(x, t), real part,
imaginary part and square of modulus of |�4(x, t)|, |�5(x, t)| in Figs. 5 and 6a–6d, respectively.

Figure 5: (a) Bright peaked soliton via Eq. (27), (b) Real part of �4(x, t) for Eq. (27), (c) Imaginary
part of �4(x, t) for Eq. (27) and (d) Optical bright peaked soliton |�4(x, t)|2 for the parametric values
a1 = 5, a2 = b2 = 2, b1 = δ = k = ε = 1, w = 0.5, ϑ = −2, l = 0.2, m = 5
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Figure 6: (a) Dark peaked soliton via Eq. (29), (b) Real part of �4(x, t) for Eq. (29), (c) Imaginary
part of �4(x, t) for Eq. (29) and (d) Optical bright peaked soliton |�4(x, t)|2 for the parametric values
a1 = 5, a2 = b2 = 2, b1 = δ = k = ε = 1, w = 0.5, ϑ = −2, l = 0.2, m = 5

2.3.3 The Shock Wave Solutions

For the cases
Q

R
< 0 and

Q

P
< 0, the heteroclinic orbits 
μ and 
L can be represented as

� = ±
√

R

2P

√
(� − l)2

(r − �)
2, (30)

where −
√−Q

R
= l < � < r =

√−Q

R
. For the heteroclinic orbit and initial value �(0) = l + r

2
= 0,

we obtain∫ �

0

√
2P

R

d�

(� − l)(r − �)
=

∫ ζ

0

dζ ; −∞ < ζ < +∞. (31)

−
∫ �

0

√
2P

R

d�

(� − l)(r − �)
=

∫ ζ

0

dζ ; −∞ < ζ < +∞, (32)
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and applying the elliptic integral and after some calculation, we arrive at the solution

�6(ζ ) = r − l
2

tanh(
r − l

2

√
R

2P
ζ ), �7(ζ ) = r − l

2
tanh(

l − r
2

√
R

2P
ζ ) (33)

Noting that∫ �

0

d�

(� − l)(� − r)
= 2

r − l
tanh−1(

2� − (l + r)
r − l

). (34)

The resulting solution �6(x, t) comes in-terms of tanh-function due to the heteroclinic orbit 
μ for
the system Eq. (5) by Eq. (6) and it expresses the kink type shock wave, and its corresponding bounded
optical soliton solution will arise through the relation Eq. (2) with modulus as |�6(x, t)|, which is a
bounded optical dark peaked soliton, i.e., anti-peakon. The nature of this soliton is specified in Figs. 7a
and 7b for �6(x, t) and |�6(x, t)|2, respectively. Moreover, the resulting solution �7(x, t) (depicted in
7c) comes in-terms of tanh-function due to the heteroclinic orbit 
L for the system Eq. (5) by Eq. (6),
and it expresses the anti-kink type shock wave and its corresponding bounded optical soliton solution
comes through the relation Eq. (2) with modulus as |�7(x, t)|2 (depicted in Fig. 7d), which is also a
bounded optical dark peaked soliton, i.e., anti-peakon.

Figure 7: (a) Shock wave (kink) via �(x, t) for Eq. (33), (b) Optical anti-peakon |�6(x, t)|2 for Eq. (29),
(c) Shock wave (anti-kink) via �(x, t) for Eq. (29) and (d) Optical anti-peakon |�7(x, t)|2 for the
parametric values a1 = b1 = δ = k = ε = 1, a2 = b2 = 2, w = 0.5, ϑ = −2
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2.4 Optical Soliton Solutions to BAM via the EShGEE
One considers the general form of the trail solution in the extended sinh-Gordon equation

expansion approach (EShGEE) [23],

�(�) =
n∑

r=1

coshr−1
(�)[Lr sinh(�) + Mr cosh(�)] + M0, (35)

where M0, Mr, Lr, r = 1, 2, . . . , n are free constants to be later calculated, and the � is a function of ζ ,
which satisfies the condition,

d�
dζ

= sinh(�). (36)

Due to balance principal, the value n of Eq. (35) can be obtained. The Eq. (36) has been obtained
from the sinh-Gordon equation [23],

uxt = λ sinh(u), (37)

and they [23] obtained the solutions,

sinh(�) = ±csch(ζ ), or sinh(�) = ±isech(ζ ), (38)

and

cosh(�) = ±coth(ζ ), or cosh(�) = ±tanh(ζ ), (39)

where i = √−1.

We now compute the balance number of Eq. (3), which leads to n = 1. Then the trail solution
Eq. (35) in the EShGEEM takes the form,

�(�) = L1 sinh(�) + M1 cosh(�) + M0. (40)

Putting Eq. (40) into Eq. (3) along with Eq. (36), we obtain a polynomial of sinh(ζ ) and cosh(ζ )

functions, whose equating coefficients lead to a system of equations, and the solutions of the system
of equations yield the following constraints:

Set 1: δ = −
1

2(k2b2 + ka2 − 1)(2kb2 + a2)
,

w = k(εM2
1 + k2b1 + ϑM2

1 + ka1)

(k2b2 + ka2 − 1)
,

M0 = 0, L1 = 0, M1 const., (41)

Set 2: δ = −
2

(k2b2 + ka2 − 1)(2kb2 + a2)
,

w = k(εM2
1 + k2b1 + ϑM2

1 + ka1)

k2b2 + ka2 − 1
,

M0 = 0, L1 = M1, M1 const., (42)
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Set 3: δ = −
2

(k2b2 + ka2 − 1)(2kb2 + a2)
,

w = k(εM2
1 + k2b1 + ϑM2

1 + ka1)

k2b2 + ka2 − 1
,

M0 = 0, L1 = −M1, (43)

where M1 presents arbitrary constant and 
1 = (εk3M2
1 b2+k3ϑM2

1 b2+εk2M2
1 a2+k2ϑM2

1 a2+2εkM2
1 b2−

4k3b1b2 +2kϑM2
1 b2 −εkM2

1 −6k2a2b1 −kϑM2
1 −2ka1a2 +6b1k+2a1), and 
2 = 2εk3M2

1 b2 +2k3ϑM2
1 b2 +

2εk2M2
1 a2 +2k2ϑM2

1 a2 +εkM2
1 b2 −2k3b1b2 +kϑM2

1 b2 −2εkM2
1 −3k2a2b1 −2kϑM2

1 −ka1a2 +3kb1 +a1.

Now for the Set 1, if we combine Eq. (41) with Eqs. (38)–(40), and substituting into Eq. (2), we
obtain the exact soliton solutions of Eq. (1). These solutions of the model give us the optical shock
wave and optical singular shock solitons,

�8,9(x, t) = ±M1 tanh(x − δt)ei(−kx+wt+ρ), (44)

�10,11(x, t) = ±M1 coth(x − δt)ei(−kx+wt+ρ), (45)

where δ and w come from Eq. (41). In the Eq. (44), �(x, t) comes in terms of tanh-function which
presents kink shock waves. This solution presents a kink shock wave for the positive taking sign in
the results (see Fig. 8a) but taking negative sign it presents an anti-kink shock wave (see Fig. 8b).
The corresponding optical solitons represent dark-bell type peaked soliton (see Fig. 8c). On the other
hand, in the Eq. (45), �(x, t) comes in terms of coth-function which presents kink shock waves with
singularities i.e., singular kink type shock wave, for the positive sign it expresses singular kink but for
the negative sign, it presents singular anti-kink type shock wave. The corresponding optical solitons
represent bright peaked solitons with singularities (see Fig. 8d).

Similarly, for the Set 2, if we combine Eq. (42) with Eqs. (38)–(40), and substituting into Eq. (2),
we obtain the exact soliton solutions of Eq. (1). These solutions give us the combination of chirp-free
bright and optical shock wave double solitons, and the combination of optical singular double solitons,

�12,13(x, t) = M1[±isech(x − δt) ± tanh(x − δt)]ei(−kx+wt+ρ), (46)

�14,15(x, t) = M1[±csch(x − δt) ± coth(x − δt)]ei(−kx+wt+ρ), (47)

where δ and w come from Eq. (42). And for the Set 3, if we combine Eq. (43) with Eqs. (38)–(40), and
substituting into Eq. (2), we obtain the exact soliton solutions of Eq. (1). These solutions are able to
give the combination of chirp-free bright and optical shock wave double solitons, and the combination
of optical singular double solitons,

�16,17(x, t) = M1[∓isech(x − δt) ± tanh(x − δt)]ei(−kx+wt+ρ), (48)

�18,19(x, t) = M1[∓csch(x − δt) ± coth(x − δt)]ei(−kx+wt+ρ), (49)

where δ and w come from Eq. (43). The nature of solutions �12,13(x, t) and �16,17(x, t) are similar as
they comes from produce periodic exponential function with linear combinations of sech-function
(give bell solitonic nature) and tanh-function (give kink shock solitonic nature). Thus, the resulting
nature of all the solutions is periodic bell wave with at least one kink in the surface depicted by the
real part of �17(x, t) in Fig. 9a and square of modulus of �12(x, t) in Fig. 9b. We see that the square of
modulus give us many small amplitude waves which can propagate to transmit signal rapidly through
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optical fiber. Besides this, the solutions �14,15(x, t) have the same properties that they exhibits muti-
peaked optical solitonic nature in presence of singularities. This character is displayed in Fig. 9c via
|�14(x, t)|2. The solutions �18,19(x, t) have the same properties that they exhibits dark bell optical soliton
in presence of singularities. This character is displayed in Fig. 9d via |�18(x, t)|2.

Figure 8: (a) Shock wave (Kink) for + via (tanh) of Eq. (44), (b) Shock wave (anti-kink)
for−via (tanh) of Eq. (44), (c) Optical dark peakon via (tanh) of Eq. (44) and (d) Opti-
cal bright peaked (anti-peakon) with singularities Eq. (45) for the parametric values a1 =
5, a2 = b1 = b2 = h = 2, b1 = δ = k = ε = 1, w = 0.5, ϑ = −2, L1 = 2, M1 = 1
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Figure 9: (a) Combine bell kink soliton comes from real part of |�17(x, t)|, (b) Small amplitude
response |�12(x, t)|2, (c) Multi-peaked optical soliton with singularities via �14(x, t) and (d) Dark
bell optical soliton with singularities via �18(x, t) for the parametric values a1 = 5, a2 = b2 = 2,
b1δ = k = ε = M1 = 1, w = 0.5, ϑ = −2

2.5 Optical Soliton Solutions to the Biswas-Arshed Model via the GK Method
The GK method [30] is a unique approach to obtaining the generalized solitons and periodic rogue

waves of the nonlinear evolution equations (NLEEs) [20,21]. We now consider a rational series in this
method as:

�(ζ) =

n∑
r=0

Mr(F(ζ ))
r

m∑
l=0

Ll(F(ζ ))
l

, (50)

where Mr, Ll, are constants to be later calculated and Mn �= 0, Lm �= 0. The function F(ζ ) satisfies the
Ricatti equation,

F ′(ζ ) = F 2(ζ ) − F(ζ ), (51)
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with the solution

F(ζ ) = 1
1 + heζ

, (52)

where h is the integral constant.

The trail solution Eq. (50) to the BAM takes the following form for the balance numbers n = 2
and m = 1,

�(ζ) = M0 + M1F(ζ ) + M2(F(ζ ))
2

L0 + L1F(ζ )
. (53)

Putting Eq. (53) into Eq. (3) along with Eq. (51), we obtain a polynomial of F(ζ ) functions, whose
equating coefficients lead to a system of equations, and provide the following set of constraints:

Set 1: δ = −�1

L2
1(2k3b2

2 + 3k2a2b2 + ka2
2 − 2kb2 − a2)

,

w = k(k2L2
1b1 + kL2

1a1 + εM2
1 + ϑM2

1 )

L2
1(k2b2 + ka2 − 1)

,

M0 = 0, L0 = 0, M2 = −2M1, (54)

where L1, M1 are constants and �1 = 2εk3M2
1 b2 + 2k3ϑM2

1 b2 − 2k3L2
1b1b2 + 2εk2M2

1 a2 + 2k2ϑM2
1 a2 −

3k2L2
1a2b1 + εkM2

1 b2 + kϑM2
1 b2 − kL2

1a1a2 − 2εkM2
1 − 2kϑM2

1 + 3kL2
1b1 + L2

1a1.

Set 2: δ = −�2

8L2
0(k2b2 + ka2 − 1)(2kb2 + a2)

,

w = k(8k2L2
0b1 + 8kL2

0a1 − εM2
1 − ϑM2

1 )

8L2
0(k2b2 + ka2 − 1)

,

M0 = 0, M2 = −M1, L1 = −2L0, (55)

where L0, M1 are constants and �2 = εk3M2
1 b2 + k3ϑM2

1 b2 − 16k3L2
0b1b2 + εk2M2

1 a2 + k2ϑM2
1 a2 −

24k2L2
0a2b1 − εkM2

1 b2 − kϑM2
1 b2 − 8kL2

0a1a2 − εkM2
1 − kϑM2

1 + 24kL2
0b1 + 8L2

0a1.

Set 3: δ = −�3

2(2k3b2
2 + 3k2a2b2 + ka2

2 − 2kb2 − a2)L2
0

,

w = k(k2L2
0b1 + kL2

0a1 + εM2
0 + ϑM2

0 )

L2
0(k2b2 + ka2 − 1)

,

M1 = −2M0, M2 = 2M0, L1 = −2L0, (56)

where L0, M0 are constants and �3 = εk3M2
0 b2 + k3ϑM2

0 b2 − 4k3L2
0b1b2 + εk2M2

0 a2 + k2ϑM2
0 a2 −

6k2L2
0a2b1 + 2εkM2

0 b2 + 2kϑM2
0 b2 − 2kL2

0a1a2 − εkM2
0 − kϑM2

0 + 6kL2
0b1 + 2L2

0a1.

Set 4: δ = −�4

(2k3b2
2 + 3k2a2b2 + ka2

2 − 2kb2 − a2)L2
0

,

w = k(k2L2
0b1 + kL2

0a1 + εM2
0 + ϑM2

0 )

L2
0(k2b2 + ka2 − 1)

,

M1 = M0(L1 − 2L0)

L0

, M2 = −M0L1

L0

, (57)
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where L0, L1, M0 are constants and �4 = 2εk3M2
0 b2 +2k3ϑM2

0 b2 −2k3L2
0b1b2 +2εk2M2

0 a2 +2k2ϑM2
0 a2 −

3k2L2
0a2b1 + εkM2

0 b2 + kϑM2
0 b2 − kL2

0a1a2 − 2εkM2
0 − 2kϑM2

0 + 3kL2
0b1 + L2

0a1.

Now for the Set 1, if we combine Eq. (54) with Eq. (53) and substituting into Eq. (2), we obtain
the exact soliton solutions of Eq. (1). These solutions are able to give us optical rogue wave solitons,

�20(x, t) = M1

L1

F(x − δt)ei(−kx+wt+ρ), (58)

where δ and w come from Eq. (54) and F(x − δt) comes from Eq. (52).

The behavior of the solution �20(x, t) via Eq. (58) comes from produce periodic exponential
function and exponential function (give solitonic nature). Thus, the resulting nature of the solution
is periodic wave with a single shock (anti-kink) wave in both the real and imaginary parts, illustrated
in Figs. 10b and 10c. But the simple �(x, t) and square of modulus of �20(x, t) exhibits anti-kink type
shock wave response in Figs. 10a and 10b, respectively.

Figure 10: (a) Shock wave, (b) Real part of, (c) Imaginary part of and (d) Shock wave of Eq. (58) for
the parametric values a1 = a2 = b1 = δ = k = ε = 1, b2 = h = 2, w = 0.5, ϑ = −2, L1 = 2, M1 = 1

Similar, for the Set 2, if we combine Eq. (55) with Eq. (53) and substituting into Eq. (2), we obtain
the exact soliton solutions of Eq. (1). These solutions lead to optical rogue wave solitons,

�21(x, t) = M1F(x − δt)(1 − F(x − δt))
L0{1 − 2F(x − δt)} ei(−kx+wt+ρ), (59)
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where δ and w come from Eq. (55) and F(x − δt) from Eq. (52). For the Set 3, if we combine Eq. (56)
with Eq. (53) and substituting into Eq. (2), we obtain the optical rogue wave soliton solutions of
Eq. (1),

�22(x, t) = M0{1 − 2F(x − δt) + 2(F(x − δt))2}
L0{1 − 2F(x − δt)} ei(−kx+wt+ρ), (60)

where δ and w come from Eq. (56), and F(x−δt) from Eq. (52). And for the Set 4, combining Eq. (57)
with Eq. (53) and substituting into Eq. (2), we obtain the optical rogue wave soliton solutions of
Eq. (1),

�23(x, t) = M0L0 + M0(L1 − 2L0)F(x − δt) − M0L1(F(x − δt))2

L2
0{1 − 2F(x − δt)} ei(−kx+wt+ρ), (61)

where δ and w come from Eq. (57) and F(x − δt) from Eq. (52). The behavior of the solution �21(x, t),
�22(x, t) and �23(x, t) are same with singularities arises for L0 = 0 or {1 − 2F(x − δt)} = 0.
Since the resulting solution via Eqs. (59)–(61) comes from produce periodic exponential function
and exponential function (give solitonic nature). Here, we reveal the results of Eq. (61) only against
the three solutions, which exhibits a periodic wave with a singular shock wave in the both real and
imaginary parts, illustrated in Fig. 11b and 11c. But the simple �(x, t) presents singular kink type
shock wave (Fig. 11a) and the square of modulus of �23(x, t) exhibits multi-peaked optical soliton
with more singularities (Fig. 11d).

Figure 11: (a) Shock wave with singularity, (b) Real part of, (c) Imaginary part of and (d) Sin-
gular bright soliton of Eq. (61) for the parametric values a1 = a2 = b1 = δ = k =
ε = 1, b2 = h = 2, w = 0.5, ϑ = −2, L0 = M0 = 1
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3 Results and Discussions

This section will provide some discussions of the physical importance of the acquired results. The
results of the BAM structure presented in this research have richer physical structure than earlier
outcomes in the literature [11–18]. The recorded solutions are significant in the context of nonlinear
dynamics, physical science, mathematical physics and the optical communication through optical fiber.
We studied BAM given by Eq. (1) using bifurcation analysis, dynamical system, EShGEE and GK
schemes. The bifurcation scheme provided us the evidence of the existence of various periodic wave
and optical soliton solution splitting parametric areas shown in different phase portraits in Figs. 1
and 3 of the BAM. We also illustrated the physical meaning of the obtained explicit solutions 3D and
contour plots that appeared in Figs. 4 and 11.

4 Conclusion

The main results of this paper are on the application of the bifurcation analysis via a dynamical
system scheme and the derivation of all bounded optical wave solutions of the Biswas-Arshed model.
We obtained all types of phase portraits and corresponding bounded optical shock wave, bounded
solitary wave, and the bounded periodic wave solutions of the BAM by using the dynamical scheme,
the extended sinh-Gordon equation expansion, and the generalized Kudryashov integral schemes. To
our knowledge, these types of solitons for the Biswas-Arshed model have not been explored before
[13–16,19]. All the solutions are illustrated graphically. The model could be investigated to get multi-
soliton and rogue wave solutions by the other existing methods, in particular, Hirota bilinear approach
[24,25] and Darboux transformation [26]. The results would be interesting to use in social media,
telecommunication industries, internet zone, and many other aspects.
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