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ABSTRACT

This paper deals with the numerical implementation of the exponential Drucker-Parger plasticity model in the com-
mercial finite element software, ABAQUS, via user subroutine UMAT for adhesive joint simulations. The influence
of hydrostatic pressure on adhesive strength was investigated by a modified Arcan fixture designed particularly to
induce a different state of hydrostatic pressure within an adhesive layer. The developed user subroutine UMAT,
which utilizes an associated plastic flow during a plastic deformation, can provide a good agreement between the
simulations and the experimental data. Better numerical stability at highly positive hydrostatic pressure loads for a
very high order of exponential function can also be achieved compared to when a non-associated flow is used.
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Nomenclature

�ε Total strain increment tensor
�εel Elastic strain increment tensor
Δεpl Plastic strain increment tensor
�σ Stress increment tensor
D Constitutive tensor of isotropic liner elastic materials
dλ Plastic multiplier
g Plastic potential function
n, m Plastic strain rate direction
g Plastic potential function
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ξ Eccentricity of hyperbolic function defined an approaching rate of function to its
asymptotes

β Dilation angle measured in the p−σ eff plane
σ eff Equivalent von Mises stress
p Hydrostatic pressure
pt Hardening constant
σ y Yield stress
a, b Material parameters that are independent to plastic deformation
σ 11, σ 22, σ 33 Normal stress components
σ 12, σ 13, σ 23 Shear stress components
pt

0 Hardening constant at yield
εpl

eq Equivalent plastic strain
Hpt Plastic shear hardening
H Hardening coefficient
q, c Material constants of hardening

1 Introduction

Structural adhesives have been widely used in the aerospace, aviation, shipbuilding, and automo-
tive industries due to a variety of benefits, including multi-material bonding, good load distribution
across bonded areas, less environmental degradation, and a simple manufacturing process. It is also
relatively inexpensive when compared to other joining methods [1,2]. To effectively use adhesives,
it is necessary to forecast the behavior of adhesive joints under complex loading combinations. As
a polymer, adhesives’ mechanical behavior and failure rely on hydrostatic pressure, strain rate, and
temperature [3]. In typical applications, hydrostatic pressure is the most visible factor influencing
the mechanical behavior of polymers. It has a significant impact in polymer yield strength, plastic
flow, strain hardening, and failure plasticity [4]. The effect of hydrostatic pressure on material yield
strength can be explained by the Drucker-Prager yield criterion, which is a modified version of the
von Mises criterion as a function of hydrostatic pressure. The model was originally a linear function
and was developed to predict the failure of soil [5]. The exponential version of this criterion shows a
good prediction of polymer base material behavior [6]. Despite the development of yield functions in
previous works [7], the flow function for plastic deformation is limited to a linear function, resulting
in a non-associated flow when using the exponential Drucker-Prager yield criterion. With this type
of flow, the simulations are prone to diverge when subjected to a serious tri-axial load in tension or
negative hydrostatic pressure, which is a critical load case for adhesives [8].

This article presents the numerical implementation of the exponential Drucker-Parger plasticity
model in the commercial finite element software ABAQUS through the user subroutine UMAT. The
development of subroutines was restricted to elastoplastic behavior, and for yield surface modification,
only hydrostatic pressure was considered. The associated flow during plastic deformation was expected
to increase the numerical stability for adhesive joint simulations. The experimental findings from spe-
cialized testing using the modified Arcan fixture [9], which is specifically intended to produce a distinct
state of hydrostatic pressure inside an adhesive layer, were utilized to validate the developed model.
Experiments and simulations using the second exponential Drucker-Parger model correlated well.
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2 Material and Behavior Model

From the classical plasticity theory, the total strain increment for an elastoplastic model can be
decomposed into elastic and plastic strain increments. For 3D problems, they are represented by 2nd

tensor forms as follows:

�ε = �εel + �εpl (1)

2.1 Elastic Behavior
Based on Hooke’s law, the incrementation of stress-strain relationship in the elastic deformation

is written as follows:

�σ = D�ε (2)

2.2 Flow Rule
A general form of flow rules for plastic behavior is written as:

dεpl = dλ
∂g
∂σ

(3)

The associated flow is achieved when the plastic potential function is the same as the yield function
(g = f). For this flow, the plastic flow direction will always be normal to the yield surface. Fig. 1
depicts an associated where g = f and non-associated flow where g �= f . The plastic flow direction is
perpendicular to the function g in the case of non-associated flow.

Figure 1: Concept of the associated flow rule and non-associated flow rule

The flow rules in commercial finite element software are commonly non-associated flows since
they can be used for a variety of purposes. In this case, an implicit return mapping algorithm (backward
Euler method) is used for high precision calculations into the program [10]. In some load cases,
the difference between a plastic potential function and a yield function causes the calculation to
diverge. Eq. (4) is the plastic potential function for the exponential Drucker-Prager model in ABAQUS
software, which is also non-associated flow.

g =
√(

ξσy tan β
)2 + (

σeff

)2 − p tan β (4)

The hyperbolic function is the only available option for the plastic potential function in ABAQUS
when using a general exponent yield criterion. The 2nd order exponential Drucker-Prager yield criteria
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(parabolic function) is recommended even though the order of exponential Drucker-Prager yield
criteria can be arbitrary [11]. In the next section, this non-associated flow from ABAQUS will be
compared to the model that was made with an associated flow.

2.3 Implicit Integration
The numerical integration method is required in order to solve the elastoplastic differential

equations. The common methods used in computational processes are the forward Euler method,
the backward Euler method, and the midpoint method. While the forward Euler method is the
simplest computational process, it has a limit on computational stability and high error responses.
The backward Euler method is more complex than the forward Euler method but highly accurate
for the increase of stress that affects the yield surface expansion. The method is also very stable in
terms of computation [12]. For this reason, the backward Euler method is very popular for solving
elastoplastic. Its equation is written as in Eq. (5) and Fig. 2 illustrates its approximation step.

σ |k+1 = tσ + �σ − D�εpl |k+1 (5)

With 0σ = tσ + �σ being fixed over iterations, the Eq. (5) can be written as the Eq. (6).

σ |k+1 = 0σ − D�εpl |k+1 (6)

Figure 2: Numerical integration of the elastoplastic equations

The residual vector is then defined as follows:

R |k+1 = σ |k+1 − 0σ + D�εpl |k+1
∼= [0]6×1 (7)
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According to the associated flow rule, the plastic strain increment can be defined as follows:

�εpl |k+1 = �λk+1 ∂f
∂σ |k+1

= �λk+1a |k+1 (8)

where Δλ is the plastic multiplier and a is the flow vector. Substituting the flow vector into Eq. (7).

R |k+1 = σ |k+1 − 0σ + �λk+1Da |k+1 (9)

Then, applying the Newton-Raphson method in the residual vector (Eq. (9)).

R |k+1 = R |k + ∂R
∂σ T

∣∣∣∣k δσ |k + ∂R
∂�λ

∣∣∣∣k δλk (10)

Thus
∂R
∂σ T

= ∂σ

∂σ T
− ∂0σ

∂σ T
+ �λD

∂a
∂σ T

= [I ]6×6 + �λDA = Q (11)

where
∂σ

∂σ T
= [I ]6×6,

∂0σ

∂σ T
= [0]6×6 and

∂a
∂σ T

= ∂2f
∂σ T∂σ

= A

A is a second order derivativities tensor of yield function, thus
∂R
∂�λ

= ∂ (�λDa)

∂�λ
= Da (12)

Substituting Eqs. (11) and (12) into Eq. (10), then the increased stress can be finally determined
by rearranging Eqs. (13) to (14).

R |k+1 = R |k + Q |k δσ |k + Da |k δλk ≈ 0 (13)

δσ |k = −Q−1 |k R |k − Q−1 |k Da |k δλk (14)

2.4 Yielding Function
The exponential Drucker-Prager models are expressed as follows:

f
(
σ |k+1 , �λk+1

) = a
(
σ k+1

eff

)b − pk+1 − pk+1
t (15)

where σ eff is von Mises stress, p is hydrostatic pressure, pt is hardening constant, a and b are material
parameters that are independent to plastic deformation.

σeff =
√

1
2

(
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2 + 6
(
σ 2

12 + σ 2
13 + σ 2

23

))
(16)

p = −1
3

(σ11 + σ22 + σ33) (17)

The von Mises stress and hydrostatic pressure are defined as Eqs. (16) and (17). The strain
hardening for the Drucker–Prager model is defined by the multilinear method in plastic shear
hardening where hydrostatic pressure is zero [13]. Then, Eq. (15) can be rewritten as Eq. (18).

pt = aσ b
eff (18)
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The plastic shear stress equivalent plastic strain relationship in the hardening rule is defined as
follows:

pk+1
t = p0

t + Hpt

(
εpl

eq

)k+1 = p0
t + Hpt

tεpl
eq + Hpt�λk+1 (19)

The Newton-Raphson method is then applied to yielding function in Eq. (15).

f
(
σ |k+1 , �λk+1

) = f
(
σ |k , �λk

) + f (σ , �λ)

∂σ T

∣∣∣∣k δσ |k + ∂f (σ , �λ)

∂�λ

∣∣∣∣k δλk (20)

Defining
f (σ , �λ)

∂σ T

∣∣∣∣k = aT |k and
∂f (σ , �λ)

∂�λ

∣∣∣∣k = −Hpt , substituting into Eq. (20).

f
(
σ |k , �λk

) + aT |k

(−Q−1 |k R |k −Q−1 |k Da |k δλk
) − Hδλk = 0 (21)

By rearranging Eqs. (21) to (22), the plastic multiplier increment can be finally determined.

δλk = f
(
σ |k , �λk

) − aT |k Q−1 |k R |k(
aT |k Q−1 |k Da |k + Hpt

) (22)

Eqs. (14) and (22) will be used in the following section for finite element implementation.

3 Mechanical Properties of Adhesive

The structural adhesive used in this study is an epoxy-based adhesive called SikaPower-497,
manufactured by Sika. The mechanical properties of adhesive were identified from a modified-Arcan
test using a universal testing machine (Instron 5567). The specimen deformation was followed by an
image correlation system (ARAMIS, manufactured by GOM) as shown in Fig. 3.

Figure 3: Modified-Arcan test [7]

The modified Arcan fixture was designed to induce a different state of stress within an adhesive
layer by varying its angle. A direction of 0° and 90° represents a triaxial and pure shear mode. A
direction of 30° and 60° induces a mixed state of stress, which is a tensile-shear mode in an adhesive
joint. A direction of 120° represents a compressive-shear mode. The experimental yield and failure
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surfaces are plotted on the von Mises stress-hydrostatic pressure axis as shown in Fig. 4. They both
depend on hydrostatic pressure with the non-linearity that corresponds to the exponential Drucker-
Prager model. The elastic properties and yield surface parameters are summarized in Tables 1 and 2,
respectively.
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Figure 4: The Drucker-Prager yield and failure surface [7]

Table 1: Summary of elastic property parameters

Description Value

Young’s modulus (MPa) [14] 2120
Poisson’s ratio [14] 0.36

Table 2: Summary of yield surface parameters [7]

F = aσeff
b − p − pt a b pt (MPa)

Yield surface (Eq. (15)) 7.69 × 10−6 4 17.83

The parameters of the nonlinear hardening equation (Eq. (23)) were identified using simulations
of the entire modified Arcan fixture to consider the deflection of the fixture. They are summarized in
Table 3.

σeff = σy + q
(

1 − e−cε
p
eq

)
+ Hεp

eq (23)

Table 3: Summary of identified parameters for the adhesive [7]

σeff = σy +q
(

1 − e−cε
p
eq

)
+Hεp

eq σ y (MPa) q (MPa) c H (MPa)

Hardening (Eq. (23)) 29.6 9.2 19.5 62.8
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4 Finite Element Implementations

The exponential Drucker-Prager model with an associated flow rule was implemented in
ABAQUS software via a user subroutine, UMAT. With this developed model, the high-order
exponential Drucker-Prager is also possible. It also provides higher simulation stability at high-order
exponential and requires fewer model parameters since the yield and plastic potential function are the
same (associated flow). In subroutine UMAT, elastic and plastic behavior have to be established from
input data (material properties). For elastic behavior, it is the same as in ABAQUS. Concerning plastic
behavior, an iterative calculation approach is needed to find the solution of a stress tensor increment
for plastic behavior (δσ ) and the plastic multiplier increment (δλ). At the end of each increment, the
subroutine UMAT returns the updated values of stress tensor (σ ) and equivalent plastic strain (εeq

pl)
to the program for the next increment calculation. The flow chart of user subroutine UMAT can be
summarized in Fig. 5.

Figure 5: Flow chart of user subroutine UMAT

4.1 Validation of Model
The finite element simulations of the modified Arcan test have been carried out as a validation

of the implemented Drucker-Prager model. The four cases were performed: (1) an ABAQUS material
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model with 2nd order exponential Drucker-Prager yield function and non-associated flow rule (Eq. (4));
(2) a developed user subroutine UMAT with 2nd order exponential Drucker-Prager yield function and
associated flow rule; (3) an ABAQUS material model with 4th order exponential Drucker-Prager yield
function and non-associated flow rule (Eq. (4)), and (4) a developed user subroutine UMAT with 4th

order exponential Drucker-Prager yield function and associated flow rule. The 4th order in the cases
was selected because this high order fits relatively well the experimental data of the initial yield surface
(Fig. 6). All mechanical properties for the simulations are summarized in Tables 1 to 5.

Table 4: Summary of yield surface parameters for simulation [7]

F = aσeff
b − p − pt a b pt (MPa)

Yield surface order 2 1.3 × 10−2 2 19.5
Yield surface order 4 7.69 × 10−6 4 17.83

Table 5: Summary of flow potential parameters [7]

g =
√(

ξσy tan β
)2 + (

σeff

)2 − p tan β σ y (MPa) ξ β (°)

Flow potential (Eq. (4)) 29.6 18 14.6
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The modified Arcan fixture and adherends are made of steel (Young’s modulus = 200 GPa,
Poisson’s ratio = 0.3 and yield stress = 570 MPa). The detailed geometries and boundary conditions
are presented in Fig. 7. The adhesive layer has a thickness of 0.3 mm with a total cross-sectional area
of 70 × 10 mm2. Because the modified-Arcan fixture is symmetrical in the x-y plane, the finite element
model was only constructed in half, and the fixed boundary condition in the z-direction (U3 = 0)
across the entire surface is applied. The tie condition is used for the constraint between the fixture and
the adhesive layer. The model has 97,860 elements in total, with 350 elements for the adhesive layer.
The element volume ranges from 0.3 to 15.5 mm3 and is kept constant at 0.3 mm3 for the adhesive
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layer. All fixture components, including an adhesive layer, were assigned a 3D 8-node solid element
(C3D8) as shown in Fig. 8.
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Figure 7: The detailed geometries and boundary conditions

Figure 8: The element size of the modified Arcan test in direction 0°
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4.2 Results and Discussion
The results of stress field on a modified Arcan fixture loaded in directions of 0°, 60°, 90°, and 120°

are shown in Fig. 9. The deformations of the fixture are also comparable to the experimental test and
cannot be neglected. This confirms the necessity of the entire fixture simulation.

Figure 9: The modified Arcan simulation in direction: (a) 0°, (b) 60°, (c) 90°, and (d) 120°

The comparison between experiments and simulations is shown in Fig. 10 for directions of 0°,
60°, 90°, and 120°, respectively. They are the plots of average stress and average strain as the stress-
strain fields from a modified Arcan test are not uniform across the section. The simulation results for
directions of 0°, 60°, and 90° from cases 1 and 2 are in good agreement with experimental results, while
in cases 3 and 4, the discrepancy is more obvious. However, none of the cases can reproduce the results
in the direction of 120°. Considering the comparisons with ABAQUS, these confirm the validity of
the developed user subroutine UMAT. They also show that the epoxy-based adhesive SikaPower-497
behavior is compatible with the 2nd order exponential Drucker-Prager model.

From the simulations, the ABAQUS material models with 2nd and 4th order exponential Drucker-
Prager yield function and non-associated flow rule give almost identical results as the developed
UMAT with 2nd and 4th order exponential Drucker-Prager yield function and associated flow rule. For
further investigation, higher order exponential model simulations were performed for 120° loading. At
the 9th order of exponential function (Fig. 11), the result does not converge for the ABAQUS material
model. However, with the developed user subroutine UMAT, a converged result can be obtained
despite a long computational time. This implies that the associated flow provides more numerical
stability than the non-associated flow, especially for a very high order of exponential function and at
highly positive hydrostatic pressure loads. In common application, there is no significant difference
between the associated and non-associated. However, the associated flow still has the advantage of
having fewer material parameters since it uses the same function to describe the yield surface and
plastic potential function.
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Figure 10: The modified Arcan simulation result in direction: (a) 0°, (b) 60°, (c) 90°, and (d) 120°
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Figure 11: The simulation result of 9th order exponential model

5 Conclusions

The finite element implementation of the exponential Drucker-Prager model for the elastoplastic
material has been carried out and validated experimentally with epoxy-based adhesive joints. The
numerical implementation of the ABAQUS software was accomplished using a user subroutine,
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UMAT. This subroutine defines the plastic behavior of the adhesive joint using a yield and plastic
potential function. With an associated flow, these functions are identical, providing the advantages of
fewer plastic flow parameters and better numerical stability at very high orders of exponential function
compared to when a non-associated flow is used. The developed UMAT is also capable of simulating
high order exponential function of the Drucker-Prager model which makes it more flexible to apply
to other elastoplastic materials.

For the adhesives used in this study (SikaPower-497), its hydrostatic pressure dependent yield
surface and plastic behavior have been identified using the modified Arcan tests. The experimental
results from different directions of the modified Arcan fixture are used as a validation for the developed
UMAT. The simulation result from the 2nd order exponential Drucker-Prager model shows a good
agreement with experiments. For the 4th order exponential Drucker-Prager model, it predicts an initial
yield surface better than the 2nd order model but poorly interprets the plastic deformation of the
adhesive. Concerning the results at direction 120°, neither the ABAQUS material model nor the
developed user subroutine UMAT can reproduce the experimental results. This divergence is also
expected since the experimental results at direction 120° show the mix of cohesive and adhesive failure
modes. In this direction, the compressive stress induced by the fixture strengthens the adhesive joint, so
its strength is close to the interface strength leading to the mixed failure mode. The interface element
option in ABAQUS [14–16] was not used in this work since the developed UMAT focuses only on
material behavior. This limitation opens the way to further development of this UMAT. Another
important factor that affects the simulation results is the hardening rule [17–19]. Its parameters can
also be further investigated based on hydrostatic pressure and effective plastic strain to provide better
simulation results.
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