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ABSTRACT

Flash floods are one of the most dangerous natural disasters, especially in hilly terrain, causing loss of life, property,
and infrastructures and sudden disruption of traffic. These types of floods are mostly associated with landslides and
erosion of roads within a short time. Most of Vietnam is hilly and mountainous; thus, the problem due to flash flood
is severe and requires systematic studies to correctly identify flood susceptible areas for proper landuse planning and
traffic management. In this study, three Machine Learning (ML) methods namely Deep Learning Neural Network
(DL), Correlation-based Feature Weighted Naive Bayes (CFWNB), and Adaboost (AB-CFWNB) were used for the
development of flash flood susceptibility maps for hilly road section (115 km length) of National Highway (NH)-6
in Hoa Binh province, Vietnam. In the proposed models, 88 past flash flood events were used together with 14 flash
floods affecting topographical and geo-environmental factors. The performance of the models was evaluated using
standard statistical measures including Receiver Operating Characteristic (ROC) Curve, Area Under Curve (AUC)
and Root Mean Square Error (RMSE). The results revealed that all the models performed well (AUC > 0.80) in
predicting flash flood susceptibility zones, but the performance of the DL model is the best (AUC: 0.972, RMSE:
0.352). Therefore, the DL model can be applied to develop an accurate flash flood susceptibility map of hilly terrain
which can be used for proper planning and designing of the highways and other infrastructure facilities besides
landuse management of the area.

KEYWORDS
Flash flood; deep learning neural network (DL); machine learning (ML); receiver operating characteristic curve
(ROC); Vietnam

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.022566
https://www.techscience.com/doi/10.32604/cmes.2023.022566
mailto:nadhir.alansari@ltu.se
mailto:romuluscostache2000@yahoo.com


2220 CMES, 2023, vol.135, no.3

1 Introduction

Flash floods are caused by rapid and excessive rainfall within a short period, usually within 6 h,
causing erosion, landslides and damages to infrastructures and properties besides huge loss of lives
[1]. The huge losses caused by flash floods can be attributed to a sudden rise in water level on the
ground surface that submerges houses, roads and other infrastructures. Damages are more severe on
the hill slopes and river valleys where runoff occurs with high velocity. Low-lying areas are also severely
affected by pluvial flash floods, submerging and damaging roads, houses and transport vehicles, and
creating havoc in the life of people, especially in the cities. Flash floods also occur due to sudden dam
breaks, sweeping everything downstream. All over the world, flash floods have increased due to recent
climate change effect, deforestation and landuse planning without providing proper drainage and
flood protection measures. In hilly and mountainous areas, the problem of a flash flood is more serious
due to the locations of human settlements and the layout of roads on high slopes and deep valleys.
Generally, flash floods in hilly areas also cause erosion of the ground and landslides which severely
damages roads connecting different areas. Therefore, it is desirable to identify areas vulnerable to
flash floods. Thus, the occurrence of flash floods in Vietnam’s mountain terrain negatively influences
people’s socio-economic conditions [2,3]. The flash flood assessment in an area may include geo-
spatial data such as meteorological data, locations of historical flash floods, topographical, geological
and geomorphological information [4–7]. This requires systematic topographical, geo-environmental
and geo-spatial study for the development of flash flood susceptibility models and maps for properly
managing flash flood-prone areas.

Recently, Machine Learning (ML) methods have been successfully used to develop flash flood
prediction maps using historical flood data in a combination of meteorology, topography, hydrology,
geology, and geo-environment spatial data [8,9]. For the present study, we have selected a strategic
hilly road section (115 km length) of National Highway (NH)-6 passing through Hoa Binh province
of Vietnam, which is prone to flash floods.

Flash flood susceptibility maps of the Tafresh river basin in Iran were generated using ML models
such as Alternating Decision Tree (ADT), Functional Tree (FT), Kernel Logistic Regression (KLR),
Multilayer Perceptron (MLP), and Quadratic Discriminant Analysis (QDA). Results indicated that
the ADT model has the best performance [10]. In Vietnam, a number of studies have been carried
out for developing flash flood susceptibilities map of Nghe An province using four ML models,
namely Kernel Logistic Regression (KLR), Radial Basis Function Classifier (RBFC), Multinomial
Naïve Bayes (NBM), and Logistic Model Tree (LMT) [11]. The study showed that all applied models
had shown high accuracy, but the performance of the LMT model was the best. In another study,
a single ML model of Reduced Error Pruning Trees (REPT) and four hybrid ML models namely
DecorateREPT (DCREPT), AdaBoostM1-REPT, Bagging-REPT, and MultiBoost AB-REPT were
employed for flash flood susceptibility mapping in Vietnam. Results indicated that the DCREPT
model is the best [12].

Empirical and statistical methods have also been used for flash flood modeling. The Empirical
Unit Hydrograph Model was used for monsoonal and flash flood studies in Malaysia. The main
problem is in the calibration of the model [13]. A statistical-distributed modeling approach for flash
flood prediction was applied to the small basin to overcome modeling uncertainties [14,15]. The main
problem in this method was the scale issue. Most of these models have the problem of calibration,
scale issues and selection of appropriate spatial and other parameters for the proper prediction of
flash flood modeling. In general, ML-based models are advanced, robust, and effective approaches
for predicting flash floods based on a combination of spatial, meteorological and topographical
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factors. However, these models are required to be tested in different areas considering local geo-
environmental conditions for proper selection of the flash flood affecting factors. In addition, as the
model development is a continuous process, three novel ML models namely Deep Learning Neural
Network (DL), Correlation-Based Feature Weighted Naive Bayes (CFWNB), and Adaboost ensemble
(AB-CFWNB) were developed and proposed for the selection of the best model for the accurate
prediction of flash floods for proper landuse planning and taking adequate remedial measures for
maintaining traffic on the strategically important NH-6 of Vietnam. These ML models can also be
applied for flash flood management in other areas by considering local factors. The Weka software
was used for the modeling and Microsoft Visio software for data visualization.

2 Methods Used

In this work, three advanced ML methods, namely Deep Learning Neural Network (DLNN),
Correlation-Based Feature Weighted Naive Bayes (CFWNB), and Adaboost ensemble with CFWNB
(AB-CFWNB) were used. The reason for the selection of these methods is that while DLNN is the
most advanced ML method, CFWNB and AB-CFWNB are novel ML methods used for the prediction
of flash floods. The main features of these methods are given in the below sections:

2.1 Deep Learning Neural Network (DL)
Deep Learning Neural Network (DL) has the ability of a machine to learn deeply by itself.

The DL imitates complicated human brain functions in processing and solving non-identified or
unstructured large data [16]. The DL has more than one hidden layers in between input and
output layers for processing the data (Fig. 1) [17]. Since several hidden layers are utilized to solve
challenging classification issues, DL models are considered to be more computationally intensive than
conventional neural network models [18]. The back propagation algorithm is often used to construct
feed-forward neural networks in classifiers. In terms of the DL, it calculates the output error for
every weight using the chain rule, avoiding redundant computation in the chain rule’s mediator factor
[19]. The activation function defined by the Rectified Linear Unit (ReLU) [20], which is presented in
Eq. (1), will is used to greatly reduce the vanishing gradient using the back-propagation algorithm.
This function makes it easier to find the best balance between structural complexity (defined in terms
of total quantity of non-zero weights) and neural network approximation accuracy (defined in terms
of continuous-time functions approximated) [21].

r (x) =
{

x if x > 0
x if x ≤ 0

= max (0, x) (1)

where: x represents the neuron’s input signal and r represents the ReLU function.

The derivative of the ReLU function is required for the application of the back-propagation
method, which can be produced as Eq. (2):

r′ (x) =
{

1, x > 0
0, x ≤ 0

(2)

The difference between flood inventory and estimating floods is reduced by utilizing the connec-
tion weights between the layers in the training phase. In this case, the cross-entropy function (E), in
Eq. (3), will emphasize this discrepancy, which is decreased by the back-propagation process. It also
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has a significant role in DL success [22].

E = − 1
N

N∑
n=1

M ln (P) + (1 − M) ln (1 − P) (3)

N is the total amount of flash-flood points in the training set; M represents the number of flash-
flood values; and P represents the number of estimated flash-flood values.

Figure 1: Architectue of DL

2.2 Correlation-Based Feature Weighted Naive Bayes (CFWNB)
The Correlation-Based Feature Selection (CFS) algorithm quickly identifies and screens irrele-

vant, redundant, and noisy features. The Correlation-based Feature Weighted Naive Bayes (CFWNB),
first introduced by Jiang et al. [23], the difference between attribute correlation and the average of
collaborative correlation determines how much weight is given to an element. And maybe calculated
as follows:

Qi = NI (Fi; T) − 1
(m − 1)

m∑
j=1�j#i

NI
(
Fi; Fj

)
(4)

NI (Fi;T) is the significance of the standardized attribute correlation;

NI (Fi;Fj) is the significance of the average of collaborative correlation.

2.3 AdaBoost (AB) Ensemble Technique
Freund et al. [24] proposed AdaBoost (AB), which is a boosting ensemble ML method for

enhancing the efficiency of weak classifiers. AdaBoost is an adaptive boosting technique to build one
classification at a time; each classification is performed on purposely structured information from the
initial data by gradually affecting the probability of unexpected sequence data at each phase [25,26].
As a result, both the bias and the variation can be controlled by using this technique. In most cases, an
initial classifier is constructed using a part of the original data. The samples from the original dataset
are then forecasted that used the former classification-based model. After the classifier and assessment
of the error, a new subset is created. This method is replicated until the base classifier’s performance
is optimal. For natural disaster prediction, AB has been used extensively in conjunction with other
classifications like logistic regression [25], functional tree [27], and neural network [28].
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2.4 Validation Methods
2.4.1 Receiver Operating Characteristic Curve (ROC)

The Receiver Operating Characteristic (ROC) curve is commonly used to assess models’ overall
prediction performance. As a result, the Area Under Curve (AUC) demonstrates the model’s accuracy.
An AUC near 1 implies a high-performing model, whereas an AUC near 0 indicates a non-informative
model. AUC of 0.5 to 0.6 usually suggests a weak model, whereas an AUC of 0.6–0.7 indicates bad
performance. The performance of a model with an AUC of 0.7 to 0.8 is considered reasonable. If the
AUC is more than 0.8, the created model is well-fit to the data [29].

2.4.2 Statistical Indexes

The standard statistical indices namely Positive Predictive Value (PPV) or Precision, Negative
Predictive Value (NPV), sensitivity (SST), specificity (SPF), accuracy (ACC), and Kappa index (K)
were used to evaluate the performance of the models, besides Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) [30], where TP, FP, FN and TN are True Positive, False Positive, False
Negative, and True Negative values, respectively, representing flood and non-flood locations in this
study.

PPV = TP
(TP + FP)

(5)

NPV = TN
(TN + FN)

(6)

SST = TP
(TP + FN)

(7)

SPF = TN
(TN + TP)

(8)

ACC = TP + TN
TP + FP + TN + FN

(9)

K = A − B
1 − B

(10)

where:

A = (TP + TN)(TP + TN + FN + FP) (11)

and

B = (TP + FN) (TP + FP) (FP + TN)/(FN + TN)/
√

(TP + TN + FN + FP) (12)

Also, the equations below can be used to compute the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) to check the prediction accuracy of the models:

RMSE =

√√√√∑n

i=1

(
Yi − Ŷ

)2

n
(13)

MAE = 1
n

∑n

i=1

∣∣∣Yi − Ŷ
∣∣∣ (14)
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where: Ȳ : Mean value of Y, Ŷ : Predicted value of Y.

The models get increasingly reliable as Cohen kappa K approaches 1. The SPF and NPV criteria
for measuring how well the models detect non-flood pixels, whereas the SST and PPV metrics are used
to define flood pixels. The RMSE and MAE are also indicators of model error, but the ACC confirms
the model’s overall correctness. The smaller RMSE, MAE and higher ACC, the better precise model
is [30–32].

2.4.3 Frequency Ratio (FR)

Flood susceptibility modeling must take into account the impact of flood relevant variables
on flood events. The FR method was applied to perform the flood susceptibility analysis using
GIS techniques. This method is based on the relationship between the spreading of flooding (flood
locations) and each conditioning factor in the study area Therefore, FR for every predictive class was
determined. The probabilistic correlation between variables using FR analysis was done [33–35]. FR
value can be obtained from the equation:

FR = A/B
C/D

(15)

where: A represents the set of flash flood sites in each class, B represents the total amount of flood
points, C reflects the number of pixels at every class, and D represents the total quantity of pixels.

2.4.4 Factor Selection Based on Information Gain Ratio (IGR)

In flood modeling, all the harmonics in the original set may not be equally predictive and may
even in some cases influence the model. Therefore, the predictors of the conciliatory factor need to be
quantified and the factors with low or null predictive potential should be excluded. This will lead to a
more accurate prediction of the resulting models [36].

In this study, the Information Gain Ratio (IGR), one of the most popular feature selection
methods for measuring the predictive power of factors in data mining, was selected to evaluate the
importance of factors used for flood modeling [37]. The information obtained is based on information
theory that tracks the decrease in entropy to quantify the importance of factors. However, Information
Gain tends to favor attributes with many possible values and thus, can lead to the low predictive power
of the resulting models [38].

3 Study Area

The study area is along and around 115 kilometers (from Km38 to Km153) long National
Highway-6 (NH-6) passing through Hoa Binh province of Vietnam (Latitude: 20°19′ to 21°08′ N:
Longitude: 104°48′ to 105°40′ E) (Fig. 2). Total length of the highway (NH-6) is 504 km. It is a
very critical important economic and militarily strategic route connecting Hanoi capital city to
Vietnam’s northern mountainous provinces. Flash floods disrupt traffic on the NH-6, which leads
to the transportation problem. Flash floods have become more common in the area as a result of
changing geo-environmental conditions. Rainfall averages are around 210 mm during the dry period
and 1510 mm during the monsoon rains, with maximum daily rainfall exceeding 100 mm [12].
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Figure 2: Location of the study area and historical flash floods

4 Data Used
4.1 Flash Flood Inventory

In any flood study, it is required to have a past record of flood events to assess the future
occurrences of floods in the area for developing flood susceptibility or flood prediction models. In
this study, flash flood data of the years: 2017, 2018 and 2019 were collected from the field record
[9] and satellite imageries using remote sensing and GIS techniques. In total, 88 flash flood events
were recorded along the study segment of NH-6 for the data analysis and modeling. Based on the
flood inventory and literature survey. Flash flood event data was split into 70:30 ratio for the models
training and evaluation (testing), respectively [2,3,11,12].

4.2 Flash Flood Conditioning (Influencing) Factors
The relationship and impact of conditioning factors affecting the occurrence of flood or flash

flood in an area should be highlighted. The varied conditioning factors provided differently to the
frequency of flash floods [33]. As a result, identifying the contributing factors is critical for ensuring
the reliability of flash flood mapping. The 14 conditioning variables used in this study were selected,
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including elevation, slope, aspect, curvature, Topographic-Wetness Index (TWI), Stream-Power Index
(SPI), drainage density, elevation difference, land use, geomorphology, lithology, structural zone,
weathering crust, and rainfall that based on local topographical, geo-environment conditions and
literature survey [3,6] (Fig. 3).

Figure 3: (Continued)
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Figure 3: (Continued)
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Figure 3: Thematic maps of the study area: (a) elevation, (b) slope, (c) aspect, (d) curvature, (e) TWI, (f)
SPI, (g) drainage density, (h) elevation difference, (i) land use, (j) geomorphology, (k) structural zone,
(l) lithology, (m) weathering crust, (n) rainfall

4.2.1 Elevation

The elevation has a significant impact on the occurrence of flash floods as it controls the rainfall,
vegetation and ice formation [39,40]. At higher elevations, rainfall is generally less in comparison to
middle and lower elevations. The elevation map of the area was prepared from DEM (https://search.
asf.alaska.edu/) and classified into eleven classes using the natural break method of ArcGIS (Fig. 3a).

4.2.2 Slope

The velocity of surface flow and soil penetration are both affected by the slope angle [41]. At
higher slopes, the runoff will be more and the possibility of infiltration is almost negligible. Thus higher
slopes in hilly areas have good conditions for devastating flash floods. The slope map was prepared
from DEM using ArcGIS tool into 10 classes (Fig. 3b).

4.2.3 Aspect

For flash flood modeling, several topographic parameters such as curvature, and aspect are taken
into account [34,39,42]. Aspect plays an important role in the formation of soil, vegetation and
moisture on the slope surface thus affect the runoff in the area. The Aspect map was prepared the
DEM and classified into nine classes (Fig. 3c).

4.2.4 Curvature

Curvature is one of the important conditioning factor in the occurrence of flood [43,44]. Flat
surfaces are most vulnerable for accumulating flood water, whereas curved surfaces are to runoff with
velocity. The curvature map of the area was prepared from the DEM and classified into three classes
(Fig. 3d).

4.2.5 TWI and SPI

To evaluate topographic management of hydrology procedures, the Topographic-Wetness Index
(TWI) and Stream-Power Index (SPI) were frequently utilized [33,45]. SPI describes the flow’s eroding

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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power in the watershed. SPI, an assessment of a flow’s scouring capacity. TWI represent amount flow
accumulation in a drainage area and trend of water going down the slope under the effect of gravity.
Thematic maps of TWI (Fig. 3e) and SPI (Fig. 4f) were generated from DEM and classified in different
classes. TWI can be calculated using the following formula [46]:

TWI = ln
(

As

tan β

)
(16)

where: AS denotes the typical watershed area (m2/m) and denotes the slope in degrees.

Figure 4: Modeling framework for Flash flood susceptibility prediction

Moore et al. [43] used the following equation to determine SPI:

TWI = As × tan β (17)

4.2.6 Drainage Density

The drainage density plays an important role in flooding of the area [47]. The drainage basin
having high drainage density will drain more runoff quickly into the main rain channel, thus helping
in flash flood in the event of heavy rains. The overall length of rivers in a watershed represents the
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length of a hydraulic network [48,49]. The drainage density is computed by splitting the total drainage
distance (km) per 1 km2 area. Drainage density map of the area was prepared from the DEM (Fig. 3g).

4.2.7 Elevation Difference

The elevation difference shows the terrain’s relative elevation, which is the height difference
between places on the terrain [44,50]. The elevation difference condition states the vertical topography
surface variance, which is a key element in flash-flood events because it impacts streamlines, speed, and
volume of runoff water. The research area’s elevation difference was calculated using a topographical
map at a resolution of 1:50,000 to calculate relative topography elevation (meters) in each uniform
grid (per 1 km2) (Fig. 3h).

4.2.8 Land-Use

Land use types influence hydrodynamic procedure attributes such as permeability, evapotranspi-
ration, and runoff creation [51]. Low vegetation areas have more runoff, thus enhancing flash floods.
Similarly, areas of impermeable surfaces such as roads building etc. also increase runoff and less
infiltration of rain water. A land use map of the study area was obtained from the Department of
Agriculture and Rural Development (Fig. 3i).

4.2.9 Geomorphology

Geomorphological features and processes affect the flooding of the area such as river valleys, hill
slopes, configuration of drainage basins [42,52]. The geomorphology map of the study area was derived
from a 50,000-scale Hoa Binh geomorphic obtained from Vietnam’s Ministry of Natural Resources
and Environment. Eleven geomorphic units are represented in this thematic map (Fig. 3j).

4.2.10 Structural Zone

Types of structures affect the natural flow of the water, thus flooding process [31]. In the study
area, the NH-route passes three main structural zones: Da River, Fansipan, and Nam Co. (Fig. 3k).
This map was derived from the geology map of the area.

4.2.11 Lithology

Lithology is one of the factors which affects the occurrence flash floods [12,31]. Impervious rocks
have more runoff in the event of rainfall and thus increasing possibility of flash floods depending
on their nature and area distribution. Five lithological classes present the research region (Fig. 3n).
The lithological map of the study area was derived from the Hoa Binh lithological map, which was
published by the Vietnamese Ministry of Natural Resources and Environment on a scale of 1:50,000.

4.2.12 Weathering Crust

As in the case of geology, the nature and type of weathering crust affect the runoff and infiltration
[53,54]. Impervious material forming weathering crust will have more runoff in comparison to previous
material. The research site is in a sub-tropical climate that has resulted in a variety of weathering crusts.
The weathering crust map was derived from the published map of Hoa Binh province (Scale 1:50,000)
of the Vietnamese Ministry of Natural Resources and Environment (Fig. 3m).
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4.2.13 Rainfall

Rainfall is one of the main causes of the flooding of the area [4,42]. Heavy rainfall in a short time
causes flash floods depending on the topography, drainage and other geo-environmental conditions.
The rainfall data of the period from 1998 to 2018 was obtained from five gauge stations in Hoa Binh
Province. This study used the inverse distance weighted approach to create a rainfall map (Fig. 3o).

5 Methodology

The methodological framework of the present study included many steps (Fig. 4): (1) Condition-
ing factor: Initially, flash flood inventory of the area was prepared based on the available record
and field survey. A spatial map of flood locations was generated using ArcGIS. Flood conditioning
factors were selected based on the local topographic and geo-environmental conditions. (2) Flash flood
inventory databased: The collected data of 88 flash flood events were split in 70:30 ratio for training
and validation. (3) Modeling process: three models namely DL, CFWNB and AB_CFWNB were
generated by using a training dataset. (4) Validation and comparison of the models: Statistical methods
were used to evaluate the performance of the models. Results were compared and finally, the best model
was selected for the generation of a flash flood susceptibility map. (5) Flash flood susceptibility map:
It was assessed in this step by utilizing the parameters generated during the model establishing phase.
These metrics were applied to all pixels in the research space’s flash flood area and categorized to
estimate susceptible classes using ArcGIS’s naturally breaking classification technique—a convenient
approach for defining flood risk susceptibility classes.

6 Results

The importance of the flood conditioning factors was evaluated using feature selection based
on IGR, and the results are presented in Table 1. It could be observed that the highest average
merit is for elevation factor (0.207), followed by geomorphology (0.184), land-use (0.184), rainfall
(0.111), aspect (0.107), drainage density (0.093), elevation difference (0.062), slope (0.048), lithology
(0.035), weathering crust (0.029), curvature (0.027), SPI (0.016). In contrast, the two regulatory factors
(structural region, TWI) have very small mean values. Therefore, it can be stated that topography and
geomorphology are the most important factors in flood modeling in this study.

Table 1: Importance of the flood conditioning factors using the IGR feature selection method

No. Flood conditioning factors Average merit

1 Elevation 0.207
2 Geomorphology 0.184
3 Land-use 0.184
4 Rainfall 0.111
5 Aspect 0.107
6 Drainage density 0.093
7 Elevation difference 0.062
8 Slope 0.048
9 Lithology 0.035

(Continued)
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Table 1 (continued)

No. Flood conditioning factors Average merit

10 Weathering crust 0.029
11 Curvature 0.027
12 SPI 0.016
13 Structural zone 0.007
14 TWI 0.003

6.1 Validation and Evaluation of the Models
The standard statistical metrics were used to validate and evaluate the performance of the studied

models DL, CFWNB, AB-CFWNB) (Table 2). Results indicated that performance of the DL model is
the best in terms of TP (55), TN (55), FP (9), FN (4), PPV (85.938%), NPV (93.220%), SST (93.220%),
SPF (85.938%), ACC (89.431%), MAE (0.203), RMSE (0.279) training dataset. Similarly on testing
dataset performance of, the DL model is better TP (22), TN (24), FP (3), FN (3), PPV (88.889%),
NPV (88.889%), SST (88.899%), SPF (88.899%), ACC (88.462%), MAE (0.234), RMSE (0.352) in
comparison to other models (RMSE = 0.424 of CFWNB model and 0.394 of AB_CFWNB).

Table 2: Accuracy analysis of the models

No. Parameters Training Testing

DL CFWNB AB_CFWNB DL CFWNB AB_CFWNB

1 TP 55 46 53 22 18 20
2 TN 55 44 48 24 20 21
3 FP 9 18 11 3 8 6
4 FN 4 15 11 3 7 6
5 PPV (%) 85.938 71.875 82.813 88.000 69.231 76.923
6 NPV (%) 93.220 74.576 81.356 88.889 74.074 77.778
7 SST (%) 93.220 75.410 82.813 88.000 72.000 76.923
8 SPF (%) 85.938 70.968 81.356 88.889 71.429 77.778
9 ACC (%) 89.431 73.171 82.114 88.462 71.698 77.358
10 K 0.279 0.464 0.642 0.736 0.433 0.547
11 MAE 0.203 0.294 0.239 0.234 0.310 0.320
12 RMSE 0.279 0.442 0.338 0.352 0.424 0.394

The DL model on testing data also has the highest K value (0.736) in comparison to CFWNB
(0.433) and AB_CFWNB (0.547).

The RMSE analysis on training and testing data sets also indicate that the DL model is having
lowest values in both the cases in comparison to other two models (Figs. 5 and 6).
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Figure 5: RMSE analysis of the models using the training dataset

Figure 6: RMSE analysis of the models using the validation dataset
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The AUC values obtained from the confusion matrix of the model’s results (Fig. 7). The DL model
is having highest values (Training: 0.972, Testing: 0.88) on training and testing datasets in comparison
to CFWNB (0.829, 0.809), and AB_CFWNB (0.923, 0.85), models. It can be seen that AUC values
of all the three studied models are good (AUC > 0.8) but of DL model is the best in the prediction of
flood susceptibility.

Figure 7: ROC analysis of the models: (a) training dataset and (b) validation dataset

6.2 Construction of Flash Flood Susceptibility Maps
The flash flood susceptibility values were estimated from the application of three validated models.

These values were reclassified into five classes (very low, low, moderate, high, and very high) using the
natural break classification method to develop flash flood susceptibility maps for each studied ML
model (Fig. 8). The high and extremely high flash flood susceptibility zones along studied sections of
the road by three models are 38.1% (DL), 40.8% (CFWNB) and 39.8% (AB_CFWNB) (Fig. 9).

Figure 8: (Continued)
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Figure 8: Flash flood susceptibility maps using ML models: (a) DL, (b) CFWNB and (c) AB-CFWNB

Figure 9: (Continued)
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Figure 9: Analysis of FR on the susceptibility maps using the models: (a) Frequence ratio, (b)
Percentage of class pixels, (c) Percentage of flash flood pixels

The flash flood susceptibility map that the models built were verified by using the Frequency Ratio
(FR) as well as the proportion of landslide pixels for every risk class. The FR results from the three
models were pretty similar. However, in the high-susceptibility level, the FR-value of the DL model
differed significantly from that of the CFWNB and AB-CFWNB models. Besides, the percentage of
flood pixels produced by the models did not distinguish considerably. However, the percentage of class
pixels differed slightly.

Table 3 shows the results of the density analysis on the flash flood susceptibility maps. The
statistical metrics indicate that the performance of the established models is adequate and acceptable.
In addition, compared to other models, the map created by DL models is the most reliable, as they
gained the greatest values of FR, percent class, and percent LS on the high and very high class.

Table 3: Analysis of density on the flash flood susceptibility maps using the models

Influencing Class FR %CLASS %LS

DL Verry low (0–0.15) 0.21 32.43 6.82
Low (0.15–0.374) 0.552 14.41 7.95
Moderate (0.374–0.619) 0.768 11.83 9.09
High (0.619–0.851) 2.18 13.03 28.41
Verry high (0.851–1) 1.687 28.29 47.73

CFWNB Verry low (0–0.149) 0.356 25.52 9.09
Low (0.149–0.368) 0.6 17.04 10.23
Moderate (0.368–0.591) 1.246 16.41 20.45
High (0.591–0.803) 0.835 17.68 14.77
Verry high (0.803–0.999) 1.947 23.35 45.45

AB-CFWNB Verry low (0.001–0.111) 0.188 30.3 5.68
Low (0.111–0.33) 0.571 15.91 9.09
Moderate (0.33–0.61) 1.333 16.19 21.59
High (0.61–0.854) 1.31 15.62 20.45
Verry high (0.854–0.999) 1.964 21.99 43.18
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7 Discussion

Despite the fact that flash floods have become more common in hilly locations, there are few
literature reviews on flash flood risk in the transportation industry in Vietnam. In this study, we
created new ML models (DL, CFWNB, AB-CFWNB) to produce flash flood susceptibility maps for
the NH6 route. The findings of the inquiry have aided the possible implementation of a new machine
learning technique to design and map flash-flood risk for a transportation system in Vietnam’s Hoa
Binh region. The three models all operate admirably in modeling and mapping the NH6 flash flood
susceptibility estimation, in which the DL model was found to be the most accurate. DL is the model
commonly used to create landslide susceptibility maps, as well as flood susceptibility maps [6,16,24].
Bui et al. [31] applied a number of models to create flash flood sensitivity maps for Lao Cai Province in
Vietnam. At the same time, DL (AUC = 0.96) showed outperformance than MLP-NN (AUC = 0.926)
and SVM (AUC = 0.936). It is due to that DL with many hidden layers is capable of exploiting the
complicated hidden issue in the GIS dataset. During the deep network training-process, a hierarchical
structure is used to build the high-level characteristics that are most adapted for classification tasks.
Therefore, the DL model has better flexibility and generalizability. It can be seen that DL appears to
be a potential new method for predicting flash floods in flood-prone locations. However, using DL to
estimate flash flood susceptibility is still limited in the transport industry. The proposed approach and
results can be used to encourage flood hazard mitigation plans along the NH6 in the province of Hoa
Binh. The findings could help to improve the use of ML models in hazard identification. Furthermore,
the flash-flood risk map can provide better data for flood hazard management, particularly for
transportation routes.

It is noteworthy that this study did not consider the dynamics caused by humans such as
deforestation, terrain changes, infrastructure improvement, or environmental issues. These factors may
bring an effect on natural hydrological processes and, as a result, the frequency of floods, particularly
flash floods in residential regions which can cause serious damage to people and property. Another
limitation of this study is not enough dynamic assessment of varying situations linked to physiological
symptoms, fluid volumes, orientation, erode, deposition, water drainage obstruction, and other factors
in flood modeling and their impact on land and flood mitigation. Nevertheless, it is necessary to
develop more studies into flash flood estimation, and mapping by employing different combinations
of artificial intelligence models in diverse places with high quality geographical information to produce
improved flash flood hazard maps.

8 Concluding Remarks

Vietnam is a hilly mountainous country facing flash flood problems affecting normal life besides
loss of property, infrastructure and communication disruption in most of the provinces. The flash
flood problem in hilly areas is more severe due to the sudden triggering of landslides causing damage
to hilly roads, other infrastructures and houses located in the path of a flash flood on the slopes and in
the valleys. Therefore, in the hilly terrain, accurate prediction of flash flood susceptible areas will help
properly plan and maintain roads and other infrastructure facilities. In the present study, three novel
ML models were applied to develop flash flood susceptibility maps along part of the NH-6, a hilly
road section passing through Hoa Binh province of Vietnam. The results revealed that all the models
performed well (AUC > 0.80) in predicting flash flood susceptibility zones, but the performance of the
DL model is the best (AUC: 0.972, RMSE: 0.352). Therefore, it can be concluded that the DL model
can be used for the accurate prediction of flash flood susceptibility zones not only in the study area
but also in other hilly areas. The limitation of the study is that we could not use time series rainfall data
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in the models. In future studies, we will refine the models’ performance with more input parameters
in the present study and new ensemble DL models.
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