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ABSTRACT

The doubly resolving sets are a natural tool to identify where diffusion occurs in a complicated network. Many real-
world phenomena, such as rumour spreading on social networks, the spread of infectious diseases, and the spread
of the virus on the internet, may be modelled using information diffusion in networks. It is obviously impractical
to monitor every node due to cost and overhead limits because there are too many nodes in the network, some
of which may be unable or unwilling to send information about their state. As a result, the source localization
problem is to find the number of nodes in the network that best explains the observed diffusion. This problem
can be successfully solved by using its relationship with the well-studied related minimal doubly resolving set
problem, which minimizes the number of observers required for accurate detection. This paper aims to investigate
the minimal doubly resolving set for certain families of Toeplitz graph Tn(1, t), for t ≥ 2 and n ≥ t + 2. We come
to the conclusion that for Tn(1, 2), the metric and double metric dimensions are equal and for Tn(1, 4), the double
metric dimension is exactly one more than the metric dimension. Also, the double metric dimension for Tn(1, 3)
is equal to the metric dimension for n = 5, 6, 7 and one greater than the metric dimension for n ≥ 8.
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1 Introduction and Preliminaries

To understand the abstract structure of graphs, graph invariants can be a powerful tool. Metric
generators in graphs have evolved into a variety of distinct types based on their popularity or
usefulness. As an example, virus propagation in complicated network difficulties can be detected using
the double metric dimension (DMD).

We consider a finite, undirected, and connected graph � with the edge set E� and the vertex set
V�. In a connected graph �, the distance between a pair of distinct vertices, say k and l in �, is the
smallest path length among the lengths of all paths between them and is represented by d(k, l). For
any two distinct vertices j and k in V�, a vertex l ∈ V� resolves the vertices j and k if the condition
d(j, l) �= d(k, l) holds true. Let k be a vertex of � and H� = {hμ|1 ≤ μ ≤ ρ} be an ordered subset
of the vertex set V�, then r(k, H�) is the representation of k with respect to H� which is the ρ-vector
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d(k, hμ)

)ρ

μ=1
, also known as vector of metric coordinates. If each vertex of graph � possesses a unique

vector of metric coordinates with respect to H� then the subset H� is called a resolving set for graph �.
If the subset H� is the resolving set with the minimum number of elements in �, then its count becomes
the metric dimension (MD) of � and can be denoted as dim(�).

It is common in computer science, chemistry, biology, and operations research to structure graph
theory models. In graph theory, the computation of the resolving sets and MD for general graphs is
complex. In various disciplines, such as optimization, pattern recognition, and loran detecting devices,
the MD has gained all the interest due to its applications.

Slater [1], a mathematician, was the first to discover the term MD. This notion was used to describe
the study of the Loran or sonar model station. Another mathematician, Harary, independently
described the concept of MD with the help of Harary et al. [2]. Additionally, this concept cleared the
path for finding the unique recipient of a message on a network. Since then, several studies have been
done on resolving sets, including [3,4]. Many different tasks can be accomplished with resolving sets,
like network discovery and verification [5], strategies for the mastermind games [6], as well as digital
geometry, pattern recognition, and processing of images [7]. The minimum order of a resolving set of
Hamming graphs closely relates to the problem of weighing the coins discussed in [8,9]. Also, there are
numerous applications in different fields, such as chemical structures [10], robotics [11], combinatorial
optimization [12], geographic routing protocols [13] for the theoretical study of the MD.

The MD of any graph is a computationally difficult problem to solve. So, valuable bounds for
different types of graphs have been found. The MD of all connected graphs, as well as the MD of
certain well-known graph families, such as trees, pathways, and complete graphs, were established by
Chartrand et al. [10,14]. For some families of generalized Petersen graphs, MD bounds were studied
in [15]. The MD for chorded cycles and kayak paddles graphs was found to be constant by Ahmad
et al. [16]. Many authors have extensively studied the MD of path-related graphs. The MD of the
Kenser graph was computed by Hui et al. [17]. On the other hand, Alholi et al. [18] also contributed to
this area by finding that the MD is constant. Buczkowski and others [19] presented a generic concept
of k-dimensional graphs. The NP-completeness of the MD for general graphs was demonstrated by
Khuller et al. [11]. The minimum order of a resolving set of Jahangir graphs has also been discussed
in detail by Tomescu et al. [20].

Caceres et al. [21] developed the concept of doubly resolving sets (DRSs) of a graph �, demon-
strating that the MD of the Cartesian product ��� is closely linked to the minimal doubly resolving
sets (MDRSs) of �. Consider the vertices k1, k2, l1, l2 ∈ V�, then any pair of vertices k1, k2 is said to be
doubly resolved by the vertices l1, l2 if the condition d(k1, l1)−d(k1, l2) �= d(k2, l1)−d(k2, l2), holds true.
A subset N� ∈ V� is said to be a DRS, if any two distinct vertices of graph � are doubly resolved by
some two vertices of the subset N�. A MDRS is a DRS having minimum order. The order of MDRS
is denoted by ψ(�) and is termed the DMD of �. Note that if the vertices l1, l2 doubly resolve the
vertices k1, k2 then d(k1, l1) − d(k2, l1) �= 0 or d(k1, l2) − d(k2, l2) �= 0. For all graphs �, any DRS is
obviously a resolving set, with dim(�) ≤ ψ(�). The MDRS problem has been proven to be NP-hard
in the context of general graphs [22]. Furthermore, it was shown in [21] that the upper bound on the
MD of the Cartesian product of � and � can be stated as; dim(���) ≤ dim(�) + ψ(�) − 1.

Therefore, DRSs are essential for studying the MD of Cartesian product graphs. These results have
inspired us to work on finding the MDRSs. Also, MDRSs themselves have a unique combinatorial
nature that can be seen in their integer programming model, which was shown in [22]. There are several
families of graphs for which the problem of finding the MDRS has been examined. For example,



CMES, 2023, vol.135, no.3 2683

MDRSs of prisms [23], convex polytopes [24], and Hamming graphs [25] have all been studied in
the literature. The family of circulant graphs in [26] was found to have the same MD and MDRS.
The MDRSs for the line graphs of prisms and sunlet graphs were found in [27]. For the first time,
Chen et al. explicitly approximated the upper and lower bounds for the MDRS problem [28]. In [29],
the minimal resolving sets and DMD of the line graph of chorded cycles were examined. Authors
demonstrated that the DMD of L(Ct

n) is exactly one greater than its MD. Ahmad et al. discussed the
problem of finding the minimal resolving set and MDRS for line graphs of kayak paddles graphs [30].
The authors in [31,32] presented some families of convex polytopes with constant DMD. While solving
the MDRS problem, certain families of Harary graphs, layer-sun graphs have also been investigated
in [33,34], respectively. Cocktail, jellyfish and necklace graphs and their line graphs have also been
studied for the MD and MDRS problems, see [35–37].

Our research is the continuation of the literature work mentioned earlier. We have investigated the
DMD for some particular classes of Toeplitz graphs to contribute to our knowledge of this distance-
based parameter in graphs. However, this variant is helpful in many fields, for instance, diffusion over
the network, epidemics in human beings, the origin of a disease outbreak, etc. Using MDRSs, it is
possible to identify the source of diffusion in complicated networks. Attempting to find the source of
an infection in an extensive network might be difficult, but it is still an exciting challenge. For example,
to detect the spread of the virus throughout a network, we need to know when specific nodes in the
network are infected. However, maintaining observer nodes that can report their infection time may
be costly. In addition, the position of a node in the network affects how much information it contains.
Which nodes should we use as observers in order to increase our chances of correctly identifying the
source? Because of its close relationship to another well-known DRS problem, we can reduce the
number of observers required to achieve perfect detection even if the initial time at which an epidemic
spreads is unknown [38,39].

Liu et al. [40] determined the MD of some families of Toeplitz graph Tn(1, t) for n ≥ t + 2 given
in the following theorems:

Theorem 1.1. For n ≥ 4, the metric dimension of Toeplitz graph Tn(1, 2) = 2.
Theorem 1.2. For n ≥ 6, the metric dimension of Toeplitz graph Tn(1, 4) = 2.
Theorem 1.3. For n ≥ 5, the metric dimension of Toeplitz graph Tn(1, 3) = 3.

Detailed discussion of the rest of the article is provided in the following sections:

• Our discussion of Toeplitz graphs in Section 2 included the computation of MDRSs for the
family of Toeplitz graphs Tn(1, 2) for n ≥ 4.

• The MDRSs for the family of Toeplitz graphs Tn(1, 4), for n ≥ 6 were conjectured in Section 3.

• The MDRSs for the family of Toeplitz graph Tn(1, 3) for n ≥ 5, were discussed in Section 4.

• In Section 5, we conclude this article by expressing an opinion.

2 Minimal Doubly Resolving Sets for the Family of Toeplitz Graph Tn(1, 2)

For a graph � with n vertices labelled as {1, 2, . . . , n} its adjacency matrix A is n × n matrix whose
jkth entry is 1 if the vertex j and vertex k joined by an edge and 0 otherwise. An n × n matrix B = bjk

is known as Toeplitz matrix if bjk = bj+1,k+1 for each {j, k = 1, . . . , n − 1}. A simple undirected graph
Tn is Toeplitz graph if matrix n × n which is B = bjk is the symmetric Toeplitz matrix and for all j, k =
{1, . . . , n} satisfied the following: edge j, k is in E� iff bjk = bkj = 1. An n × n matrix B will be labelled
0, 1, . . . , n − 1 which has n distinct diagonals. The main diagonal has bjj = 0 for all j = 1, . . . , n, so
Toeplitz graph has no loop. The diagonals {x1, x2, . . . , xq} containing ones 0 < x1 < x2 < . . . < xq < n.
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The Toeplitz graph Tn < x1, x2, . . . , xq > with vertex set {1, 2, . . . , n} has edge j, k for 1 ≤ j ≤ k ≤ n,
occurs iff k − j = xp for some p, 1 ≤ p ≤ q. Toeplitz graphs are defined as graphs formed from Toeplitz
matrices. Specifically, in this part, we computed the MDRSs for the family of Toeplitz graph Tn(1, 2).
Fig. 1 illustrates the graph T11(1, 2).

e10e9e8e7e6e5e4e3e2e1e0

Figure 1: The Toeplitz graph T11(1, 2)

It follows from Theorem 1.1 that ψ
(
Tn(1, 2)

) ≥ 2, for n ≥ 4. We will also calculate that
ψ

(
Tn(1, 2)

) = 2, for n ≥ 4. To compute the distances between the vertices of the Toeplitz graph Tn(1, 2):
Define Sω(e0) = {e ∈ Tn(1, 2): d(e0, e) = ω}, which is the vertex subset in VTn(1,2) at distance ω from e0.
The Table 1 shows the sets Sω(e0) for Toeplitz graph Tn(1, 2), where n ≥ 4.

Table 1: Sω(e0) for Tn(1, 2)

n ω Sω(e0)

1 ≤ ω ≤ l − 1 {e2ω−1, e2ω}
even l {e2l−1}
odd l {e2l−1, e2l}

Due to the symmetry of Tn(1, 2), where n ≥ 4: d(eω, eν) = d(e0, e|ν−ω|) if 0 ≤ |ν − ω| ≤ n − 1.

Due to the fact that, in order to calculate the distance between any pair of vertices in VTn(1,2), we
must know the distance d(e0, e) for each e ∈ Tn(1, 2).

Lemma 2.1. Let Tn(1, 2) be the family of Toeplitz graph, then ψ
(
Tn(1, 2)

) = 2 for any even
positive integer n ≥ 4.

Proof. Consider the case n = 2l, where l ≥ 2. We must prove that ψ
(
Tn(1, 2)

) ≤ 2 for any even
positive integer n ≥ 4. So, finding a DRS of order 2 is sufficient. The Table 2 displays the metric
coordinate vectors for all vertices of Tn(1, 2) with respect to the set NTn(1,2) = {e1, en−1}.

It turns out that the value of the first metric coordinate of the vertex e0 from Sω(e0) in Table 2
is 1. Using Table 2, we may check that there exist a pair of vertices f1, f2 ∈ Sω(e0), for some ω ∈
{1, 2, . . . , l}, such as the condition r(f1, NTn(1,2)) − r(f2, NTn(1,2)) �= 0, holds true. Also, there exist the
vertices f1 ∈ Sω(e0) and f2 ∈ Sν(e0) for any ω, ν ∈ {1, 2, . . . , l}, such as ω �= ν, then the condition
r(f1, NTn(1,2)) − r(f2, NTn(1,2)) �= ω − ν, holds true. Therefore, the set NTn(1,2) = {e1, en−1} is the MDRS. As
a result, the Lemma 2.1 holds.

Table 2: The metric coordinate vectors for Tn(1, 2), for any even positive integer n ≥ 4

ω Sω(e0) NTn(1,2) = {e1, en−1}
0 e0 (1, l)
1 ≤ ω ≤ l − 1 e2ω−1 (ω − 1, l − ω)

e2ω (ω, l − ω)

l e2l−1 (l − 1, 0)
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Lemma 2.2. Let Tn(1, 2) be the family of Toeplitz graph, then ψ
(
Tn(1, 2)

) = 2 for any odd positive
integer n ≥ 5.

Proof. Consider the case n = 2l + 1, where l ≥ 2. We must prove that ψ
(
Tn(1, 2)

) ≤ 2 for any
odd positive integer n ≥ 5. So, finding a DRS of order 2 is sufficient. The Table 3 displays the metric
coordinate vectors for all vertices of Tn(1, 2) with respect to the set NTn(1,2) = {e0, en−1}.

It turns out that the value of the first metric coordinate of the vertex e0 from Sω(e0) in Table 3
is 0. Using Table 3, we may check that there exist a pair of vertices f1, f2 ∈ Sω(e0), for some ω ∈
{1, 2, . . . , l}, such as the condition r(f1, NTn(1,2)) − r(f2, NTn(1,2)) �= 0, holds true. Also, there exist the
vertices f1 ∈ Sω(e0) and f2 ∈ Sν(e0) for any ω, ν ∈ {1, 2, . . . , l}, such as ω �= ν, then the condition
r(f1, NTn(1,2)) − r(f2, NTn(1,2)) �= ω − ν, holds true. Therefore, the set NTn(1,2) = {e0, en−1} is the MDRS. As
a result, the Lemma 2.2 holds.

The main theorem is stated below by using Lemmas 2.1 and 2.2.

Table 3: The metric coordinate vectors for Tn(1, 2), for any odd positive integer n ≥ 5

ω Sω(e0) NTn(1,2) = {e0, en−1}
0 e0 (0, l)
1 ≤ ω ≤ l − 1 e2ω−1 (ω, l − ω + 1)

e2ω (ω, l − ω)

l e2l−1 (l, 1)
e2l (l, 0)

Theorem 2.1. Let Tn(1, 2) be the family of Toeplitz graph. Then ψ
(
Tn(1, 2)

) = 2, for n ≥ 4.
Example 2.1. For the Toeplitz graph Tn(1, 2), where n ≥ 4, let us consider the set NT8(1,2) = {e1, e7}.

Now, the vectors of metric coordinates for T8(1, 2) with respect to the set NT8(1,2) are: r(e0|NT8(1,2)) =
(1, 4), r(e1|NT8(1,2)) = (0, 3), r(e2|NT8(1,2)) = (1, 3), r(e3|NT8(1,2)) = (1, 2), r(e4|NT8(1,2)) = (2, 2),
r(e5|NT8(1,2)) = (2, 1), r(e6|NT8(1,2)) = (3, 1), r(e7|NT8(1,2)) = (3, 0). Thus, the set NT8(1,2) is clearly a DRS,
as can be observed.

3 Minimal Doubly Resolving Sets for the Family of Toeplitz Graph Tn(1, 4)

Specifically, in this part, we computed the MDRSs for the family of Toeplitz graph Tn(1, 4). Fig. 2
illustrates the graph T11(1, 4).

e10e9e8e7e6e5e4e3e2e1e0

Figure 2: The Toeplitz graph T11(1, 4)

It follows from Theorem 1.2 that ψ
(
Tn(1, 4)

) ≥ 2, for n ≥ 6. We will also calculate that
ψ

(
Tn(1, 4)

) = 3, for n ≥ 6. To compute the distances between the vertices of the Toeplitz graph Tn(1, 4):
Define Sω(e0) = {e ∈ Tn(1, 4): d(e0, e) = ω}, which is the vertex subset in VTn(1,4) at distance ω from e0.
The Table 4 shows the sets Sω(e0) for Toeplitz graph Tn(1, 4), where n ≥ 6.
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Table 4: Sω(e0) for Tn(1, 4)

n ω Sω(e0)

≥ 6 1 {e1, e4}
2 ≤ ω ≤ l − 1 {e4ω−6, e4ω−5, e4ω−3, e4ω}

l =
{

{e4l−6, e4l−5, e4l−3}, if n ≡ 0(mod 4);
{e4l−6, e4l−5, e4l−3, e4l}, if n ≡ 1, 2, 3(mod 4).

l + 1 =
{

{e4l−2, e4l−1}, if n ≡ 0, 1(mod 4);
{e4l−2, e4l−1, e4l+1}, if n ≡ 2, 3(mod 4).

l + 2 {e4l+2}, if n ≡ 3(mod 4)

Due to the symmetry of Tn(1, 4), where n ≥ 6: d(eω, eν) = d(e0, e|ν−ω|) if 0 ≤ |ν − ω| ≤ n − 1. Due
to the fact that, in order to calculate the distance between any pair of vertices in VTn(1,4), we must know
the distance d(e0, e) for each e ∈ Tn(1, 4).

Lemma 3.1. ψ
(
Tn(1, 4)

)
> 2, for all n ≥ 6.

Proof. We already know that ψ
(
Tn(1, 4)

) ≥ 2, for n ≥ 6. As a result, it suffices to demonstrate
that no subset NTn(1,4) ⊆ VTn(1,4) of order 2 is a DRS for Tn(1, 4). We can assume that e0 ∈ NTn(1,4)

because of the symmetry of Tn(1, 4). Table 5 lists the non-doubly resolved pair of vertices from VTn(1,4)

that correspond to each of the five distinct forms of set NTn(1,4). Let us explain why the vertices
en−2, en−3 cannot be doubly resolved by any two vertices of the set NTn(1,4) = {e0, eω; ω = n − 1}. It is
clear that for ω = n − 1, we have d(e0, en−2) = d(e0, e|n−2|) = l, d(e0, en−3) = d(e0, e|n−3|) = l + 1,
d(eω, en−2) = d(e0, e|n−2−ω|) = 1 and d(eω, en−3) = d(e0, e|n−3−ω|) = 2. So, d(e0, en−2) − d(e0, en−3) =
d(eω, en−2) − d(eω, en−3) = −1, that is, the set NTn(1,4) = {e0, eω; ω = n − 1} is not a DRS of Tn(1, 4).
The non-doubly resolved pairs of vertices for all the other types of set NTn(1,4) listed in Table 5 can be
verified in the same way.

Table 5: Non-doubly resolved pairs for Tn(1, 4), where n ≥ 6

NTn(1,4) Non-doubly
resolved pairs

{e0, eω}, 1 ≤ ω ≤ n − 4 {en−5, en−1}, for all n
{e0, eω}, ω = n − 3 {en−3, en−2}, if n ≡ 0(mod 4)
{e0, eω}, n − 2 ≤ ω ≤ n − 1 {en−6, en−3}, if n ≡ 0(mod 4)

{e0, eω}, n − 3 ≤ ω ≤ n − 2 =
{

{en−6, en−1}, if n ≡ 1(mod 4);
{en−2, en−1}, if n ≡ 2, 3(mod 4).

{e0, eω}, ω = n − 1 =

⎧⎪⎨
⎪⎩

{en−2, en−1}, if n ≡ 1(mod 4);
{en−3, en−2}, if n ≡ 2(mod 4);
{en−5, en−2}, if n ≡ 3(mod 4).
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Lemma 3.2. Let n ≡ 0(mod 4) and n ≥ 8, we have ψ
(
Tn(1, 4)

) = 3.
Proof. Suppose that n ≡ 0(mod 4) and n ≥ 8. We need to prove that ψ

(
Tn(1, 4)

) ≤ 3, for
n ≥ 8. So, finding a DRS having order 3 is sufficient. Now, from Table 4 using the sets Sω(e0), the
following Table 6 illustrates the metric coordinate vectors for all vertices of Tn(1, 4) with respect to the
set NTn(1,4) = {e0, e2, en−3}, where n = 4l and l ≥ 2 be an integer.

It turns out that the value of the first metric coordinate of the vertex e0 from Sω(e0) in Table 6
is 0. Using Table 6, we may check that there exist a pair of vertices g1, g2 ∈ Sω(e0), for some ω ∈
{1, 2, . . . , l + 1}, such as the condition r(g1, NTn(1,4)) − r(g2, NTn(1,4)) �= 0, holds true. Also, there exist the
vertices g1 ∈ Sω(e0) and g2 ∈ Sν(e0) for any ω, ν ∈ {1, 2, . . . , l + 1} such as ω �= ν, then the condition
r(g1, NTn(1,4)) − r(g2, NTn(1,4)) �= ω − ν, holds true. Therefore, the set NTn(1,4) = {e0, e2, en−3} is the MDRS.
As a result, the Lemma 3.2 holds.

Table 6: The metric coordinate vectors for Tn(1, 4), where n = 4l, l ≥ 2

n ω Sω(e0) NTn(1,4) = {e0, e2, en−3}
n ≡ 0(mod 4) 0 e0 (0, 2, l)

1 e1 (1, 1, l − 1)
e4 (1, 2, l − 1)

2 ≤ ω ≤ l − 1 e4ω−6 (ω, ω − 2, l − ω + 2)

e4ω−5 (ω, ω − 1, l − ω + 1)

e4ω−3 (ω, ω, l − ω + 2)

e4ω (ω, ω + 1, l − ω + 1)

l e4l−3 (l, l, 0)
e4l−5 (l, l − 1, 2)
e4l−6 (l, l − 2, 2)

l + 1 e4l−2 (l + 1, l − 1, 1)
e4l−1 (l + 1, l, 2)

Lemma 3.3. Let n ≡ 1(mod 4) and n ≥ 9, we have ψ
(
Tn(1, 4)

) = 3.
Proof. Suppose that n ≡ 1(mod 4) and n ≥ 9. We need to prove that ψ

(
Tn(1, 4)

) ≤ 3, for n ≥ 9.
So, finding a DRS having order 3 is sufficient. Now, from Table 4 using the sets Sω(e0), the following
Table 7 illustrates the metric coordinate vectors for all vertices of Tn(1, 4) in relation to the set NTn(1,4) =
{e0, e2, en−3}, where n = 4l + 1 and l ≥ 2 be an integer.

It turns out that the value of the first metric coordinate of the vertex e0 from Sω(e0) in Table 7
is 0. Using Table 7, we may check that there exist a pair of vertices g1, g2 ∈ Sω(e0), for some ω ∈
{1, 2, . . . , l + 1}, such as the condition r(g1, NTn(1,4)) − r(g2, NTn(1,4)) �= 0, holds true. Also, there exist the
vertices g1 ∈ Sω(e0) and g2 ∈ Sν(e0) for any ω, ν ∈ {1, 2, . . . , l + 1} such as ω �= ν, then the condition
r(g1, NTn(1,4)) − r(g2, NTn(1,4)) �= ω − ν, holds true. Therefore, the set N� = {e0, e2, en−3} is the MDRS. As
a result, the Lemma 3.3 holds.
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Table 7: The metric coordinate vectors for Tn(1, 4), where n = 4l + 1, l ≥ 2

n ω Sω(e0) NTn(1,4) = {e0, e2, en−3}
n ≡ 1(mod 4) 0 e0 (0, 2, l + 1)

1 e1 (1, 1, l)
e4 (1, 2, l)

2 ≤ ω ≤ l e4ω−6 (ω, ω − 2, l − ω + 1)

e4ω−5 (ω, ω − 1, l − ω + 2)

e4ω−3 (ω, ω, l − ω + 1)

e4ω =
{

(ω, ω + 1, l − ω + 1), if ω ≤ l − 1;
(l, l + 1, 2), if ω = l.

l + 1 e4l−2 (l + 1, l − 1, 0)
e4l−1 (l + 1, l, 1)

Lemma 3.4. Let n ≡ 2(mod 4) and n ≥ 6, we have ψ
(
Tn(1, 4)

) = 3.
Proof. Suppose that n ≡ 2(mod 4) and n ≥ 6. We need to prove that ψ

(
Tn(1, 4)

) ≤ 3, for n
≥ 6. So, finding a DRS having order 3 is sufficient. Now, from Table 4 using the sets Sω(e0), the
following Table 8 illustrates the metric coordinate vectors for all vertices of Tn(1, 4) with respect to
the set NTn(1,4) = {e0, e2, en−3}, where n = 4l + 2 and l ≥ 1 be an integer.

Table 8: The metric coordinate vectors for Tn(1, 4), where n = 4l + 2, l ≥ 1

n ω Sω(e0) NTn(1,4) = {e0, e2, en−3}
n ≡ 2(mod 4) 0 e0 (0, 2, l + 1)

1 e1 (1, 1, l − 1)
e4 (1, 2, l)

2 ≤ ω ≤ l − 1 e4ω−6 (ω, ω − 2, l − ω + 2)

e4ω−5 (ω, ω − 1, l − ω + 2)

e4ω−3 (ω, ω, l − ω)

e4ω (ω, ω + 1, l − ω)

l e4l (l, l + 1, 1)
e4l−3 (l, l, 2)
e4l−5 (l, l − 1, 1)
e4l−6 (l, l − 2, 2)

l + 1 e4l+1 (l + 1, l + 1, 2)
e4l−2 (l + 1, l − 1, 1)
e4l−1 (l + 1, l, 0)

It turns out that the value of the first metric coordinate of the vertex e0 from Sω(e0) in Table 8
is 0. Using Table 8, we may check that there exist a pair of vertices g1, g2 ∈ Sω(e0), for some ω ∈
{1, 2, . . . , l + 1}, such as the condition r(g1, NTn(1,4)) − r(g2, NTn(1,4)) �= 0, holds true. Also, there exist the
vertices g1 ∈ Sω(e0) and g2 ∈ Sν(e0) for any ω, ν ∈ {1, 2, . . . , l + 1} such as ω �= ν, then the condition
r(g1, NTn(1,4)) − r(g2, NTn(1,4)) �= ω − ν, holds true. Therefore, the set NTn(1,4) = {e0, e2, en−3} is the MDRS.
As a result, the Lemma 3.4 holds.
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Lemma 3.5. Let n ≡ 3(mod 4) and n ≥ 7, we have ψ
(
Tn(1, 4)

) = 3.
Proof. Suppose that n ≡ 3(mod 4) and n ≥ 7. We need to prove that ψ

(
Tn(1, 4)

) ≤ 3, for n
≥ 7. So, finding a DRS having order 3 is sufficient. Now, from Table 4 using the sets Sω(e0), the
following Table 9 illustrates the metric coordinate vectors for all vertices of Tn(1, 4) with respect to
the set NTn(1,4) = {e0, e2, en−3}, where n = 4l + 3 and l ≥ 1 be an integer.

It turns out that the value of the first metric coordinate of the vertex e0 from Sω(e0) in Table 9
is 0. From Table 9, we may check that there exist a pair of vertices g1, g2 ∈ Sω(e0), for some ω ∈
{1, 2, . . . , l + 2}, such as the condition r(g1, NTn(1,4)) − r(g2, NTn(1,4)) �= 0, holds true. Also, there exist the
vertices g1 ∈ Sω(e0) and g2 ∈ Sν(e0) for any ω, ν ∈ {1, 2, . . . , l + 2} such as ω �= ν, then the condition
r(g1, NTn(1,4)) − r(g2, NTn(1,4)) �= ω − ν, holds true. Therefore, the set NTn(1,4) = {e0, e2, en−3} is the MDRS.
As a result, the Lemma 3.5 holds.

The main theorem is stated below by using Lemmas 3.2–3.5.

Table 9: The metric coordinate vectors for Tn(1, 4), where n = 4l + 3, l ≥ 1

n ω Sω(e0) NTn(1,4) = {e0, e2, en−3}
n ≡ 3(mod 4) 0 e0 (0, 2, l)

1 e1 (1, 1, l + 1)
e4 (1, 2, l − 1)

2 ≤ ω ≤ l e4ω−6 (ω, ω − 2, l − ω + 3)

e4ω−5 (ω, ω − 1, l − ω + 2)

e4ω−3 (ω, ω, l − ω + 2)

e4ω (ω, ω + 1, l − ω)

l + 1 e4l+1 (l + 1, l + 1, 1)

e4l−1 (l + 1, l, 1)
e4l−2 (l + 1, l − 1, 2)

l + 2 e4l+2 (l + 2, l, 2)

Theorem 3.1. Let Tn(1, 4) be the family of Toeplitz graph. Then ψ
(
Tn(1, 4)

) = 3, for n ≥ 6.

4 Minimal Doubly Resolving Sets for the Family of Toeplitz Graph Tn(1, 3)

Specifically, in this part, we computed the MDRSs for the family of Toeplitz graph Tn(1, 3). Fig. 3
illustrates the graph T11(1, 3).

e10e9e8e7e6e5e4e3e2e1e0

Figure 3: The Toeplitz graph T11(1, 3)

It follows from Theorem 1.3 that ψ
(
Tn(1, 3)

) ≥ 3, for n ≥ 5. We will also calculate that

ψ
(
Tn(1, 3)

) =
{

3, for 5 ≤ n ≤ 7;
4, for n ≥ 8.
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To compute the distances between the vertices of the Toeplitz graph Tn(1, 3): Define Sω(e0) = {e ∈
Tn(1, 3): d(e0, e) = ω}, which is the vertex subset in VTn(1,3) at distance ω from e0. The Table 10 shows
the sets Sω(e0) for Toeplitz graph Tn(1, 3), where n ≥ 5.

Table 10: Sω(e0) for Tn(1, 3)

n ω Sω(e0)

≥ 5 1 {e1, e3}
2 ≤ ω ≤ l − 1 {e3ω−4, e3ω−2, e3ω}

l =
⎧⎨
⎩

{e3l−4, e3l−2}, if n ≡ 0(mod 3);
{e3l−4, e3l−2, e3l}, if n ≡ 1(mod 3);
{e3l−4, e3l−2, e3l}, if n ≡ 2(mod 3).

l + 1 =
⎧⎨
⎩

{e3l−1}, if n ≡ 0(mod 3);
{e3l−1}, if n ≡ 1(mod 3);
{e3l−1, e3l+1}, if n ≡ 2(mod 3).

Due to the symmetry of Tn(1, 3), where n ≥ 5: d(eω, eν) = d(e0, e|ν−ω|) if 0 ≤ |ν − ω| ≤ n − 1. Due
to the fact that, in order to calculate the distance between any pair of vertices in VTn(1,3), we must know
the distance d(e0, e) for each e ∈ Tn(1, 3).

Lemma 4.1. ψ
(
Tn(1, 3)

)
> 3, for all n ≥ 5.

Proof. We already know that ψ
(
Tn(1, 3)

) ≥ 3, for n ≥ 5. As a result, it suffices to demonstrate that
no subset NTn(1,3) ⊆ VTn(1,3) of order 3 is a DRS for Tn(1, 3). We can assume that e0 ∈ NTn(1,3) because
of the symmetry of Tn(1, 3). Table 11 lists the non-doubly resolved pair of vertices from VTn(1,3) that
correspond to each of the seven distinct forms of set NTn(1,3). Let us explain why the vertices en−2, en−1

cannot be doubly resolved by any two vertices of the set NTn(1,3) = {e0, eω, eν; ω = 1, ν = n − 2}. It is
clear that for ω = 1, ν = n − 2, we have d(e0, en−2) = d(e0, e|n−2|) = l, d(e0, en−1) = d(e0, e|n−1|) = l + 1,
d(eω, en−2) = d(e0, e|n−2−ω|) = l − 1, d(eω, en−1) = d(e0, e|n−1−ω|) = l, d(eν, en−2) = d(e0, e|n−2−ν|) = 0 and
d(eν, en−1) = d(e0, e|n−1−ν|) = 1. So, d(e0, en−2) − d(e0, en−1) = d(eω, en−2) − d(eω, en−1) = d(eν, en−2) −
d(eν, en−1) = −1, that is, the set NTn(1,3) = {e0, eω, eν; ω = 1, ν = n−2} is not a DRS of Tn(1, 3). The non-
doubly resolved pairs of vertices for all the other types of set NTn(1,3) listed in Table 11 can be verified
in the same way.

Table 11: Non-doubly resolved pairs for Tn(1, 3), where n ≥ 5

NTn(1,3) Non-doubly resolved pairs

{e0, eω, eν}, 1 ≤ ω < ν ≤ n − 3 {en−4, en−1}
{e0, eω, eν}, 2 ≤ ω ≤ 3, n − 2 ≤ ν ≤ n − 1 {en−5, en−3}
{e0, eω, eν}, ω = 1, ν = n − 2 {en−2, en−1}
{e0, eω, eν}, ω = 1, ν = n − 1 {en−4, en−2}
{e0, eω, eν}, ω = 2m − 2 (where 3 ≤ m ≤ 4), ν = n − 2 {en−2, en−1}

(Continued)
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Table 11 (continued)

NTn(1,3) Non-doubly resolved pairs

{e0, eω, eν},
ω = 2m − 1 (where 3 ≤ m ≤ 4), n − 2 ≤ ν ≤ n − 1

{en−5, en−3}

{e0, eω, eν}, ω = 2m − 2 (where 3 ≤ m ≤ 4), ν = n − 1 {en−4, en−2}

Lemma 4.2. Let n ≡ 0(mod 3) for n ≥ 6, we have ψ
(
Tn(1, 3)

) =
{

3, for n = 6;
4, for n > 6.

Proof. Suppose that n ≡ 0(mod 3) and n ≥ 6. Then, in the case n ≡ 0(mod 3) and n = 6, the MDRS
for T6(1, 3) is NTn(1,3) = {e0, e1, e2}. Now, for the case n ≡ 0(mod 3) and n > 6, we need to prove that
ψ

(
Tn(1, 3)

) ≤ 4. So, finding a DRS having order 4 is sufficient. From Table 10 using the sets Sω(e0),
the following Table 12 illustrates the metric coordinate vectors for all vertices of Tn(1, 3) with respect
to the set NTn(1,3) = {e0, e1, e2, en−2}, where n = 3l, and l ≥ 3 be an integer.

It turns out that the value of the first metric coordinate of the vertex e0 from Sω(e0) in Table 12
is 0. Using Table 12, we may check that there exist a pair of vertices h1, h2 ∈ Sω(e0) for some ω ∈
{1, 2, . . . , l + 1} such as the condition r(h1, NTn(1,3)) − r(h2, NTn(1,3)) �= 0, holds true. Also, there exist the
vertices h1 ∈ Sω(e0) and h2 ∈ Sν(e0) for any ω, ν ∈ {1, 2, . . . , l + 1} such as ω �= ν, then the condition
r(h1, NTn(1,3))−r(h2, NTn(1,3)) �= ω−ν, holds true. Therefore, the set NTn(1,3) = {e0, e1, e2, en−2} is the MDRS.
AS a result, the Lemma 4.2 holds.

Table 12: The metric coordinate vectors for Tn(1, 3), where n = 3l, l ≥ 3

n ω Sω(e0) NTn(1,3) = {e0, e1, e2, en−2}
n ≡ 0(mod 3) 0 e0 (0, 1, 2, l)

1 e1 (1, 0, 1, l − 1)
e3 (1, 2, 1, l − 1)

2 ≤ ω ≤ l − 1 e3ω−4 (ω, ω − 1, ω − 2, l − ω + 2)

e3ω−2 (ω, ω − 1, ω, l − ω)

e3ω (ω, ω + 1, ω, l − ω)

l e3l−2 (l, l − 1, l, 0)
e3l−4 (l, l − 1, l − 2, 2)

l + 1 e3l−1 (l + 1, l, l − 1, 1)

Lemma 4.3. Let n ≡ 1(mod 3) for n ≥ 7, we have

ψ
(
Tn(1, 3)

) =
{

3, for n = 7;
4, for n > 7.

Proof. Suppose that n ≡ 1(mod 3) and n ≥ 7. Then, in the case n ≡ 1(mod 3) and n = 7, the MDRS
for T7(1, 3) is NTn(1,3) = {e1, e2, e5}. Now, for the case n ≡ 1(mod 3) and n > 7, we need to prove that
ψ

(
Tn(1, 3)

) ≤ 4. So, finding a DRS having order 4 is sufficient. From Table 10 using the sets Sω(e0),
the following Table 13 illustrates the metric coordinate vectors for all vertices of Tn(1, 3) with respect
to the set NTn(1,3) = {e0, e1, e2, en−2}, where n = 3l + 1, and l ≥ 3 be an integer.
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It turns out that the value of the first metric coordinate of the vertex e0 from Sω(e0) in Table 13
is 0. Using Table 13, we may check that there exist a pair of vertices h1, h2 ∈ Sω(e0) for some ω ∈
{1, 2, . . . , l + 1} such as the condition r(h1, NTn(1,3)) − r(h2, NTn(1,3)) �= 0, holds true. Also, there exist the
vertices h1 ∈ Sω(e0) and h2 ∈ Sν(e0) for any ω, ν ∈ {1, 2, . . . , l + 1} such as ω �= ν, then the condition
r(h1, NTn(1,3))−r(h2, NTn(1,3)) �= ω−ν, holds true. Therefore, the set NTn(1,3) = {e0, e1, e2, en−2} is the MDRS.
AS a result, the Lemma 4.3 holds.

Table 13: The metric coordinate vectors for Tn(1, 3), where n = 3l + 1, l ≥ 3

n ω Sω(e0) NTn(1,3) = {e0, e1, e2, en−2}
n ≡ 1(mod 3) 0 e0 (0, 1, 2, l + 1)

1 e1 (1, 0, 1, l)
e3 (1, 2, 1, l)

2 ≤ ω ≤ l − 1 e3ω−4 (ω, ω − 1, ω − 2, l − ω + 1)

e3ω−2 (ω, ω − 1, ω, l − ω + 1)

e3ω (ω, ω + 1, ω, l − ω + 1)

l e3l (l, l + 1, l, 1)
e3l−2 (l, l − 1, l, 1)
e3l−4 (l, l − 1, l − 2, 1)

l + 1 e3l−1 (l + 1, l, l − 1, 0)

Lemma 4.4. Let n ≡ 2(mod 3) for n ≥ 5, we have

ψ
(
Tn(1, 3)

) =
{

3, for n = 5;
4, for n > 5.

Proof. Suppose that n ≡ 2(mod 3) and n ≥ 5. Then, in the case n ≡ 1(mod 3) and n = 5, the MDRS
for T5(1, 3) is NTn(1,3) = {e1, e2, e4}. Now, for the case n ≡ 2(mod 3) and n > 5, we need to prove that
ψ

(
Tn(1, 3)

) ≤ 4. So, finding a DRS having order 4 is sufficient. From Table 10 using the sets Sω(e0),
the following Table 14 illustrates the metric coordinate vectors for all vertices of Tn(1, 3) with respect
to the set NTn(1,3) = {e0, e1, e2, en−2}, where n = 3l + 2, and l ≥ 2 be an integer.

It turns out that the value of the first metric coordinate of the vertex e0 from Sω(e0) in Table 14
is 0. Using Table 14, we may check that there exist a pair of vertices h1, h2 ∈ Sω(e0) for some ω ∈
{1, 2, . . . , l + 1} such as the condition r(h1, NTn(1,3)) − r(h2, NTn(1,3)) �= 0, holds true. Also, there exist the
vertices h1 ∈ Sω(e0) and h2 ∈ Sν(e0) for any ω, ν ∈ {1, 2, . . . , l + 1} such as ω �= ν, then the condition
r(h1, NTn(1,3))−r(h2, NTn(1,3)) �= ω−ν, holds true. Therefore, the set NTn(1,3) = {e0, e1, e2, en−2} is the MDRS.
As a result, the Lemma 4.4 holds.

The main theorem is stated below by using Lemmas 4.2–4.4.
Theorem 4.1. Let Tn(1, 3) be the family of Toeplitz graph, then

ψ
(
Tn(1, 3)

) =
{

3, for 5 ≤ n ≤ 7;
4, for n ≥ 8.
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Table 14: The metric coordinate vectors for Tn(1, 3), where n = 3l + 2, l ≥ 2

n ω Sω(e0) NTn(1,3) = {e0, e1, e2, en−2}
n ≡ 2(mod 3) 0 e0 (0, 1, 2, l)

1 e1 (1, 0, 1, l + 1)
e3 (1, 2, 1, l − 1)

2 ≤ ω ≤ l − 1 e3ω−4 (ω, ω − 1, ω − 2, l − ω + 2)

e3ω−2 (ω, ω − 1, ω, l − ω + 2)

e3ω (ω, ω + 1, ω, l − ω)

l e3l (l, l + 1, l, 0)
e3l−2 (l, l − 1, l, 2)
e3l−4 (l, l − 1, l − 2, 2)

l + 1 e3l+1 (l + 1, l, l + 1, 1)
e3l−1 (l + 1, l, l − 1, 1)

5 Application

Recently, some applications of DRSs can be seen to localizing the epidemic source in different
complex networks such as social networks, epidemics in human beings and the origin of a disease
outbreak, etc. (see [38,39]). In particular, we consider a network to reduce the number of observers
using the DRSs in order to achieve the perfect detection of an epidemic source.

Let us assume, a social network arranged in the form of Toeplitz network T11(1, 3), where the
node set VT11(1,3) = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} represents the people and the edge set ET11(1,3) =
{e0e1, e1e2, e2e3, e3e4, e4e5, e5e6, e6e7, e7e8, e8e9, e9e10} ∪ {e0e3, e1e4, e2e5, e3e6, e4e7, e5e8, e6e9, e7e10} between the
nodes represents the links between the people. If the observers are placed throughout the network, and
the inter-node distances are reliable and known, a direct solution can be found. But, the entire process
would be very costly and time taking.

So, what are the fewest number of observers required to account epidemic source with an unknown
starting time and irregular transmission delays among the nodes? Such that each node has a unique
representation depending upon minimum distances from the observer nodes. In order to reduce the
number of observers, we employed the MDRS NT11(1,3) = {e0, e1, e2, e9} of the Toeplitz network T11(1, 3).

By using the Lemma 4.4 and Theorem 4.1, we placed the observers only on the nodes e0, e1, e2, e9.
It is clear from Table 14 and Fig. 4 that each node has a unique representation and epidemic
propagation will be optimal by placing observers at the nodes e0, e1, e2, e9. This scenario explains the
applicability of DRSs in source localization problems.

Figure 4: DRS in T11(1, 3)
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6 Conclusion

This study is concerned with the concept of calculating MDRSs of graphs using an integer
linear programming formulation that has been proposed earlier in the literature. In this article, we
theoretically establish the MDRSs for the certain families of Toeplitz graphs Tn(1, t) for t = 2, 3, 4
and n ≥ t + 2. We observed that the MD and DMD are equal for the Toeplitz graphs Tn(1, 2). Also,
the DMD for the Toeplitz graphs Tn(1, 4) is exactly one greater than its MD. In the case of Tn(1, 3),
the DMD is equal to the MD for n = 5, 6, 7 and is exactly one greater than its MD for n ≥ 8. In
future work, certain classes of subdivision graphs of circulant graphs Cn(1, k) will be investigated for
the MDRS problem.

This research work may lead to the following open problem.
Open Problem 6.1. Investigate the minimal doubly resolving sets for the family of the generalized

Toeplitz graphs Tn(1, t) for all values of t and n ≥ t + 2.
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