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ABSTRACT

The nonlinearity in many problems occurs because of the complexity of the given physical phenomena. The present
paper investigates the non-linear fractional partial differential equations’ solutions using the Caputo operator with
Laplace residual power series method. It is found that the present technique has a direct and simple implementation
to solve the targeted problems. The comparison of the obtained solutions has been done with actual solutions to
the problems. The fractional-order solutions are presented and considered to be the focal point of this research
article. The results of the proposed technique are highly accurate and provide useful information about the actual
dynamics of each problem. Because of the simple implementation, the present technique can be extended to solve
other important fractional order problems.

KEYWORDS
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1 Introduction

The integral and derivative of fractional order are considered to be common topics of fractional
calculus (FC) due to their numerous applications in applied sciences. This topic has gained much
popularity among researchers because of its popularity and significance while modelling various
procedures in nature. For example, these problems are increasingly being applied to equations in fluid
flow, diffusion, polymer physics, electric network rheology, relaxation, reaction-diffusion, diffusive
transport akin to diffusion, turbulence, anomalous diffusion, porous structures, and dynamical
processes in complex systems, as well as a variety of other physical phenomena [1,2]. In the last few
decades, the early theory and development regarding fractional derivatives and fractional differential
equations (FPDEs) have been observed rapidly. The subject is further explained and extended by the
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authors, such as Abbas et al. [3], Hilfer [4], Kilbas et al. [5], and Legnani et al. [6]. The systematic
understanding of FC like uniqueness and existence and theoretic issues related to FPDEs are the core
themes of their work. Other concepts of FC can be read in the papers of Hernández et al. [7] where the
recent advances in the theory of FPDEs are presented. Magin et al. [8] and Mainardi [9] looked into
FC’s applications in interdisciplinary fields like image processing and control theory.

It is very rare to calculate the exact solution of non-linear FPDEs in the literature. Using
linearization, successive, or perturbation methods, only approximate solutions can be obtained.
Iterative Laplace transform method [10], Adomian decomposition method [11], Homotopy analysis
method [12], operational matrix method [13], fractional differential transform method [14], Fourier
transform technique [15], operational calculus method [16], Variational iteration method [17], Sumudu
transform method [18], multistep generalised differential transform method [19], iterative reproducing
kernel method [20], Homotopy perturbation method [21], and Numerical multistep method [22].

In many cases, analytical or exact solutions are very difficult to investigate. Therefore, mathemati-
cians have tried to develop and use several numerical techniques with fractional derivative and integral
operators [23–25]. In this connection, in 2017, Li et al. presented three efficient techniques, namely
the finite difference method, the Galerkin finite element method, and the spectral method, for the
solutions of some FPDEs [26]. Atangana et al. used the fundamental theorem of fractional calculus
along with the Lagrange interpolation polynomial and investigated the solution of the Keller-Segel
model [27] in 2018. In 2020, the shifted Chebyshev polynomials with some assumptions were used to
find the solutions of some FPDEs with variable coefficients [28]. Similarly, in 2020, the finite difference
method and operational matrix method were used to determine the solution of Riez-space FPDEs [29].

Without linearization, perturbation, and discretization, the residual power series method (RPSM)
is an effective and uncomplicated technique for constructing a power series (PS) solution for FPDEs.
Unlike the traditional PS method, the RPS method does not require a recursion relation or comparison
of the coefficients of the related terms. A series of algebraic expressions are obtained to calculate
the PS coefficients. The methodology’s main advantage is that it relies on simpler and more accurate
derivation as compared to other techniques that are based on integration. This method is a different
way of solving FPDEs in theory [30]. The Laplace residual power series method (LRPSM) [31] is a
combination of the Laplace transform (LT) and the RPSM. In the procedure of LRPSM, the first
Laplace transformation is used to simplify the targeted problem into new algebraic equations. The
RPSM is then implemented to obtain the series solution. In the end, the inverse Laplace transform is
applied to attain the required solution. The LRPSM required less calculation with less time and more
accuracy.

In this article, the LRPSM is used to solve the time and space FPDEs. The aim of the study is
to use LRPSM with space-time fractional derivatives of the form to obtain numerical solutions to
nonlinear fractional partial differential equations.

Dξ

t u(ζ , t) + u(ζ , t)Dρ

ζ
u(ζ , t) = g(ζ ), 0 < ξ , ρ ≤ 1, (1)

where u(ζ , t) is assumed to be a spatial function that vanishes accordingly for ζ < 0 and t < 0, and
are parameters describing the order of the fractional derivatives of ζ and t, respectively. When dealing
with fractional derivatives, Caputo sense [32] is applied.

The generalized LRPSM procedure is presented and then LRPSM algorithm is applied to solve
few numerical problems. The results and the accuracy of the suggested technique is shown by tables
and graphs. The graphical representation is done and the obtained solutions are vary closed to the
actual solutions of each target problem. The fractional order LRPSM solutions provide the analysis of
some useful dynamics of the given FPDE’s. The tables have shown that LRPSM has the higher degree
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accuracy. LRPSM is comparatively a very simple and direct procedure to evaluate the solutions of non-
linear FPDEs and their systems. The proposed required fewer calculations to compute the non-linear
terms in each problem.

The article layout as follows. The fundamental concepts regarding FC are described in Section 2,
the basic methodology is discussed in Section 3, the effectiveness of LRPSM is confirmed by some test
models in Section 4, results and discussion are in Section 5 and the conclusion is given in Section 6.

2 Basic Definitions
2.1 Definition

The Caputo’s derivative of f (t) is given as [33]

CDξ

t f (t) = 1
�(1 − ζ )

∫ t

0

(t − s)−ζ f ′ (s) ds, 0 < ζ ≤ 1.

2.2 Definition
Let T > 0, g ∈ H

1(0, T), and ζ ∈ (0, 1); then the ζ th Caputo-Fabrizio derivative of f is given as

CFDζ f (t) = 1
2

M (ζ )(2 − ζ )

1 − ζ

∫ t

0

f ′ (s) exp [−m (t − s)] ds, (2)

where m = ζ

1−ζ
, and M (ζ ) is a normalizing function depending on ζ , such that M (o) = M (1) = 1.

In [34], Losada and Nieto provided an explicit formula for M (ζ ) as M (ζ ) = 2
2−ζ

. In this case, the
Caputo-Fabrizio derivative Eq. (2) is reduced to

CFDζ f (t) = 1
1 − ζ

∫ t

0

f ′ (s) exp [−m (t − s)] ds. (3)

2.3 Definition
Let f ∈ H1(a, b), a < b and ζ ∈ [0, 1]. The Caputo Atangana-Baleanu fractional derivative [35,36]

of f of order ζ is defined by

ABCDζ f (t) = M (ζ )

1 − ζ

∫ t

a

f ′ (s) Eζ

[
−ζ

(t − s)ζ

1 − ζ

]
ds, (4)

where Eζ (t) is Mittag-Leffler function defined [4,7] Eζ (t) = ∑∞
n=0

tn

�(nζ+1)
and M (ζ ) is a normalizing

function.

2.4 Theorem
(Fractional Taylor’s formula [37]) Let us assume that f (t) has a FPS representation at t = 0 of the

form

f (t) =
∞∑

n=0

bntnξ , 0 < m − 1 < ξ ≤ m, 0 ≤ t < R. (5)

If f (t) ∈ C[0, R] and Dnξ

t f (t) ∈ C(0, R) for n = 0, 1, 2, . . ., then the coefficients bn in the Eq. (1)
can be written as

bn = (Dnξ

t f )(0)

�(nζ + 1)
, (6)

where Dnξ

t = Dξ

t .D
ξ

t · · · Dξ

t (n − times).
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2.5 Theorem
Suppose that f0 has a fractional power series expression of the form at t = t0

u (ζ , t) =
∞∑

θ=0

fθ (ζ ) (t − t0)
θξ , x ∈ I , t0 ≤ t < t0 + R.

If Dθξ

t u(ζ , t), θ = 0, 1, . . . are continuous I × (t0, t0 + R), then the coefficient fθ (ζ ) can be defined
as

fθ (ζ ) = Dθξu(ζ , t0)

�(1 + θξ)
.

2.6 Definition
A PS representation of the form

∞∑
τ=0

pτ (τ − τ0)
τξ = p0 + pτ (τ − τ0)

ξ + pτ (τ − τ0)
2ξ + · · · , (7)

where 0 ≤ n − 1 < ξ ≤ n, τ ≤ τ0 is known as fractional power series (FPS) about τ0, where Pn the
coefficient of the series. If τ0 = 0 then FPS will be reduced to a fractional Maclaurin series at that
point.

2.7 Definition
The extension form of PS is

∞∑
n=0

fθ (ζ ) (t − t0)
θξ , (8)

is called multi FPS about t = t0, where fn(ζ ) are the coefficients of multi FPS.

2.8 Theorem
Consider that u(ζ , t) has a many FPS representation at t = t0 of the form

u (ζ , t) =
∞∑

j=0

fj (ζ ) (t − t0)
jξ , ζ ∈ I , t0 ≤ t < t0 + R.

If Djξu(ζ , t), j = 0, 1, 2, . . . are continuous on I × (t0, t0 + R), then fj (ζ ) = Djξ u(ζ ,t0)

�(1+jξ)
.

3 The Methodology of LRPSM

Here, we will go through the procedure that LRPSM takes to solve time and space FPDEs.

Dξ

t u(ζ , t) + u(ζ , t)Dρ

ζ
u(ζ , t) = g(ζ ), 0 < ξ , ρ ≤ 1, (9)

with initial condition (IC)

u(ζ , 0) = f0(ζ ), (10)

We apply the LT to Eq. (9), i.e.,

Lt[Dξ

t u(ζ , t)] = −Lt[L −1
t (U(ζ , s)) Dρ

ζ
L −1

t (U(ζ , s)) − g(ζ )]. (11)

By the fact that Lt[Dξ

t μ(ζ , t)] = sξLt[μ(ζ , t)] − sξ−1μ(ζ , 0) and using the initial condition (IC)
Eq. (10), we rewrite Eq. (11) as
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U (ζ , s) = f0(ζ )

s
− 1

sξ
Lt

[
L −1

t (U (ζ , s)) Dρ

ζ
L −1

t (U (ζ , s)) − g (ζ )
]

(12)

where U(ζ , s) = Lt[u(ζ , t)].

We write the Eq. (12) as the following expansion:

U (ζ , s) =
∞∑

n=0

fn(ζ )

snξ+1
. (13)

The kth-truncated series of Eq. (13) takes the form

Uk (ζ , s) =
k∑

n=0

fn(ζ )

snξ+1
= f0(ζ )

s

k∑
n=1

fn(ζ )

snξ+1
. (14)

As stated in [31], the definition of Laplace Residual (LR) function to Eq. (12) is

LtRes (ζ , s) = U (ζ , s) − f0(ζ )

s
+ 1

sξ
Lt

[
L −1

t (U (ζ , s)) Dρ

ζ
L −1

t (U (ζ , s)) − g (ζ )
]

, (15)

and the kth-LR function of Eq. (15) is

LtResU ,k (ζ , s) = Uk (ζ , s) − f0(ζ )

s
+ 1

sξ
Lt

[
L −1

t (Uk (ζ , s)) Dρ

ζ
L −1

t (Uk (ζ , s)) − g (ζ )
]

,

here are some properties arise in the RPSM [31], to point out some facts:

• LtResk(ζ , s) = 0 and limk→∞ = LtRes(ζ , s) for each s > 0.

• lims→∞ sLtRes(ζ , s) = 0 ⇒ lims→∞ sLtResk(ζ , s) = 0.

• limx→∞ skξ+1LtRes(ζ , s) = lims→∞ skξ+1LtResk(ζ , s) = 0, 0 < ξ ≤ 1, k = 1, 2, 3, . . .

Therefore, to determine the coefficient functions fn(ζ ), we solve recursively, the following system

lim
s→∞

skξ+1LtResk (ζ , s) = 0. 0 < ξ ≤ 1. k = 1, 2, 3, . . .

We apply the inverse LT to Uk(ζ , s), to obtain the kth-approximate solution uk(ζ , t).

4 Numerical Problems
4.1 Problem 1

Consider the time and space FPDE [38]

Dξ

t u(ζ , t) + u(ζ , t)Dρ

ζ
u(ζ , t) = ζ , 0 < ξ , ρ ≤ 1, (16)

with IC

u(ζ , 0) = 1, (17)

exact solution of Eq. (16) at ξ = ρ = 1 is

u(ζ , t) = ζ tanh(t) + sech(t). (18)

We apply the LT to Eq. (16) and using of Eq. (17), i.e.,

U (ζ , s) = 1
s

− 1
sξ

Lt

[
L −1

t (U (ζ , s)) Dρ

ζ
L −1

t (U (ζ , s)) − ζ
]

(19)
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The kth-truncated series of Eq. (19) takes the form

Uk (ζ , s) = 1
s

+
k∑

n=1

fn(ζ )

snξ+1
. (20)

and the kth LR function of Eq. (19)

LtResU ,k (ζ , s) = Uk (ζ , s) − f0(ζ )

s
+ 1

sξ
Lt

[
L −1

t (Uk (ζ , s)) Dρ

ζ
L −1

t (Uk (ζ , s)) − ζ
]

, (21)

Now, to determine fk(ζ ), k = 1, 2, 3, . . ., by putting the kth-truncated series Eq. (20) into the kth

Laplace Residual function Eq. (21), multiply the resulting equation by skξ+1, and then recursively solve
the relation lims→∞[skξ+1Resk(ζ , s)] = 0, k = 1, 2, 3, . . . for fk(ζ ). The first few elements of the sequences
fk(ζ )

f1(ζ ) = ζ ,

f2 (ζ ) = − ζ 1−ρ

�(2 − ρ)
,

f3 (ζ ) = − ζ 2−ρ�(2ξ + 1)

�(1 + ξ)2�(2 − ρ)
,

.... (22)

Putting the values of fn(ζ ), (n ≥ 1) in Eq. (4), we have

U (ζ , s) = f0(ζ )

s
+ f1(ζ )

sξ+1
+ f2(ζ )

s2ξ+1
+ f3(ζ )

s3ξ+1
+ · · · ,

U (ζ , s) = 1
s

+ ζ

sξ+1
−

(
ζ 1−ρ

�(2 − ρ)

)
1

s2ξ+1
−

(
ζ 2−ρ�(2ξ + 1)

�(1 + ξ)2�(2 − ρ)

)
1

s3ξ+1
+ · · · . (23)

Applying inverse LT to Eq. (23), we get

u (ζ , t) = 1 + ζ tξ

�(ξ + 1)
−

(
ζ 1−ρ

�(2 − ρ)

)
t2ξ

�(2ξ + 1)
−

(
ζ 2−ρ�(2ξ + 1)

�(1 + ξ)2�(2 − ρ)

)
t3ξ

�(3ξ + 1)
+ · · · . (24)

putting ξ = ρ = 1 in Eq. (24), we get the solution in closed form

u(ζ , t) = ζ tanh(t) + sech(t). (25)

4.2 Problem 2
Consider the time and space FPDE [38]

Dξ

t u(ζ , t) + u(ζ , t)Dρ

ζ
u(ζ , t) = 1, 0 < ξ , ρ ≤ 1, (26)

with initial condition

u(ζ , 0) = −ζ , (27)

exact solution of Eq. (26) at ξ = ρ = 1 is

u (ζ , t) = 2ζ − 2t + t2

2(t − 1)
. (28)
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We apply the LT to Eq. (26) and making use of Eq. (27) i.e.,

U (ζ , s) = −ζ

s
− 1

sξ
Lt

[
L −1

t (U (ζ , s)) Dρ

ζ
L −1

t (U (ζ , s)) − 1
]

. (29)

The kth-truncated series of Eq. (29) takes the form

Uk (ζ , s) = −ζ

s
+

k∑
n=1

fn(ζ )

snξ+1
. (30)

and the kth LR function of Eq. (29)

LtResU ,k (ζ , s) = Uk (ζ , s) + ζ

s
+ 1

sξ
Lt

[
L −1

t (Uk (ζ , s)) Dρ

ζ
L −1

t (Uk (ζ , s)) − 1
]

. (31)

Now, to determine fk(ζ ), k = 1, 2, 3, . . ., we substitute the kth-truncated series Eq. (30) into the kth

Laplace Residual function Eq. (31), multiply the resulting equation by skξ+1, and then recursively solve
the relation lims→∞[skξ+1Resk(ζ , s)] = 0, k = 1, 2, 3, . . . for fk(ζ ). First few elements of the sequences
fk(ζ )

f1 (ζ ) =
(

�(2 − ρ) − ζ 2−ρ

�(2 − ρ)

)
,

f2 (ζ ) = −
(

ζ 3−2ρ�(3 − ρ)

�(2 − ρ)
+ ζ 3−2ρ − ζ 1−ρ�(2 − ρ)

�(2 − ρ)2

)
,

f3 (ζ ) = −
(

ζ 4−3∗ρ�(4 − 2ρ)�(3 − ρ)

�(2 − ρ)�(3 − 2ρ)�(4 − 3ρ)
+ ζ 4−3ρ�(4 − 2ρ)

�(2 − ρ)2�(4 − 3ρ)

−
(

ζ 2−2ρ�(3 − ρ)�(2 − ρ) − ζ 4−3ρ

�(3 − 2ρ)�(2 − ρ)2

)
�(2ξ + 1)

�(ξ + 1)2
+ ζ 4−3ρ

�(2 − ρ)2�(3 − 2ρ)
(32)

+ζ 4−3ρ − ζ 2−2ρ�(2 − ρ)

�(2 − ρ)3

)
,

....

Putting the values of fn(ζ ), (n ≥ 1) in Eq. (30), we have

U (ζ , s) = f0(ζ )

s
+ f1(ζ )

sξ+1
+ f2(ζ )

s2ξ+1
+ f3(ζ )

s3ξ+1
+ · · · ,

U (ζ , s) = −ζ

s
+

(
�(2 − ρ) − ζ 2−ρ

�(2 − ρ)

)
1

sξ+1
−

(
ζ 3−2ρ�(3 − ρ)

�(2 − ρ)
+ ζ 3−2ρ − ζ 1−ρ�(2 − ρ)

�(2 − ρ)2

)
1

s2ξ+1

−
(

ζ 4−3ρ�(4 − 2ρ)�(3 − ρ)

�(2 − ρ)�(3 − 2ρ)�(4 − 3ρ)
+ ζ 4−3ρ�(4 − 2ρ)

�(2 − ρ)2�(4 − 3ρ)

−
(

ζ 2−2ρ�(3 − ρ)�(2 − ρ) − ζ 4−3ρ

�(3 − 2ρ)�(2 − ρ)2

)
�(2ξ + 1)

�(ξ + 1)2
+ ζ 4−3ρ

�(2 − ρ)2�(3 − 2ρ)

+ζ 4−3ρ − ζ 2−2ρ�(2 − ρ)

�(2 − ρ)3

)
1

s3ξ+1
+ · · · . (33)

Applying inverse LT to Eq. (33), we get
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u (ζ , t) = −ζ +
(

�(2 − ρ) − ζ 2−ρ

�(2 − ρ)

)
tξ

�(ξ + 1)
−

(
ζ 3−2ρ�(3 − ρ)

�(2 − ρ)
+ ζ 3−2ρ − ζ 1−ρ�(2 − ρ)

�(2 − ρ)2

)
t2ξ

�(2ξ + 1)

−
(

ζ 4−3∗ρ�(4 − 2ρ)�(3 − ρ)

�(2 − ρ)�(3 − 2ρ)�(4 − 3ρ)
+ ζ 4−3ρ�(4 − 2ρ)

�(2 − ρ)2�(4 − 3ρ)

−
(

ζ 2−2ρ�(3 − ρ)�(2 − ρ) − ζ 4−3ρ

�(3 − 2ρ)�(2 − ρ)2

)
�(2ξ + 1)

�(ξ + 1)2
+ ζ 4−3ρ

�(2 − ρ)2�(3 − 2ρ)

+ζ 4−3ρ − ζ 2−2ρ�(2 − ρ)

�(2 − ρ)3

)
t3ξ

�(3ξ + 1)
+ · · · . (34)

Putting ξ = ρ = 1 in Eq. (34), we get the solution in closed form

u (ζ , t) = −ζ + (1 − ζ ) t + (−2ζ + 1)t2

2
+ (−6ζ + 3)t3

6
+ · · · ,

= −
(

ζ − t + η2

2

) (
1 + t + t2 + · · · ) ,

= (2ζ − 2t + η2)

2(t − 1)
. (35)

4.3 Problem 3
Consider the time and space FPDE [38]

Dξ

t u(ζ , t) + u(ζ , t)Dρ

ζ
u(ζ , t) = 0, 0 < ξ , ρ ≤ 1, (36)

with IC

u(ζ , 0) = ζ + 1, (37)

exact solution of Eq. (36) at ξ = ρ = 1 is

u (ζ , t) = 1 + ζ

1 + t
. (38)

We apply the LT to Eq. (36) and making use of Eq. (37), i.e.,

U (ζ , s) = ζ + 1
s

− 1
sξ

Lt

[
L −1

t (U (ζ , s)) Dρ

ζ
L −1

t (U (ζ , s))
]

(39)

The kth-truncated series of Eq. (39) takes the form

Uk (ζ , s) = ζ + 1
s

+
k∑

n=1

fn(ζ )

snξ+1
. (40)

and the kth Laplace Residual function of Eq. (39)

LtResU ,k (ζ , s) = Uk (ζ , s) + ζ + 1
s

+ 1
sξ

Lt

[
L −1

t (Uk (ζ , s)) Dρ

ζ
L −1

t (Uk (ζ , s))
]

, (41)

Now, to determine fk(ζ ), k = 1, 2, 3, . . ., we substitute the kth-truncated series Eq. (40) into the kth

LR function Eq. (41), multiply the resulting equation by skξ+1, and then solve recursively the relation
lims→∞[skξ+1Resk(ζ , s)] = 0, k = 1, 2, . . . for fk(ζ ). The first few elements of the sequences fk(ζ ) as
follows:
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f1 (ζ ) = −
(

ζ 2−ρ + ζ 1−ρ

�(2 − ρ)

)
,

f2 (ζ ) =
(

�(3 − ρ)ζ 3−2ρ + �(3 − ρ)ζ 2−2ρ

�(2 − ρ)�(3 − 2ρ)
+ ζ 3−2ρ + ζ 2−2ρ

�(2 − ρ)2

)
, (42)

....

Putting the values of fn(ζ ), (n ≥ 1) in Eq. (40), we have

U (ζ , s) = f0(ζ )

s
+ f1(ζ )

sξ+1
+ f2(ζ )

s2ξ+1
+ · · · ,

U (ζ , s) = ζ + 1
s

−
(

ζ 2−ρ + ζ 1−ρ

�(2 − ρ)

)
1

sξ+1

+
(

�(3 − ρ)ζ 3−2ρ + �(3 − ρ)ζ 2−2ρ

�(2 − ρ)�(3 − 2ρ)
+ ζ 3−2ρ + ζ 2−2ρ

�(2 − ρ)2

)
1

s2ξ+1
+ · · · . (43)

Applying inverse LT, we get

u (ζ , t) = ζ + 1 −
(

ζ 2−ρ + ζ 1−ρ

�(2 − ρ)

)
tξ

�(ξ + 1)

+
(

�(3 − ρ)ζ 3−2ρ + �(3 − ρ)ζ 2−2ρ

�(2 − ρ)�(3 − 2ρ)
+ ζ 3−2ρ + ζ 2−2ρ

�(2 − ρ)2

)
t2ξ

�(2ξ + 1)
+ · · · , (44)

putting ξ = ρ = 1, the solution in closed form is

u (ζ , t) = 1 + ζ

1 + t
. (45)

5 Results and Discussion

Figs. 1 and 2 present the 2D and 3D plots of the Exact and LRPSM solutions at different fractional
order’s of Example 4.1. The exact and LRPSM solutions in integer order are in closed contact with
each other. It is observed that the fractional solutions are convergent towards integer order solution,
which confirmed the validity of the suggested method for fractional order problems. Tables 1, 2 and
4 discuss the absolute error associated with LRPSM solution at different time level and spaces of
Examples 4.1, 4.2 and 4.3. It is noted that as the fractional-orders approach to integer order, the
method’s accuracy is increased. This phenomenon supports the applicability of LRPSM to fractional-
order solutions. The tables have confirmed the convergence of the fractional solutions towards integer
order solutions. In Table 3, the LRPSM solutions are compared with ADM solutions. The solutions
comparison has shown that LRPSM has greater accuracy as compared to ADM. Figs. 3 and 4 show
the 2D and 3D plots of exact and LRPSM solutions at different fractional orders of Example 4.2. Also,
Figs. 5 and 6 provide the 2D and 3D plots of the exact and LRPSM fractional solutions of Example
4.3, respectively. The overall discussion of the graphs and tables reveals that the LRPSM solutions
are more accurate and effective. The overall comparison of LRPSM and exact solutions provided the
sufficient and closed relation with each other. The convergence of fractional solutions towards the
integer order solution is observed. Table 5 represents the list nomenclatures that have been used to
abbreviate various kinds of important names in the paper.
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Figure 1: 2D plots for exact and LRPSM solution of Example 4.1 for different values of ξ

Figure 2: 3D plots exact and LRPSM solution of Example 4.1 for different values of ξ
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Table 1: Absolute Error (AE) for different times and spaces of Example 4.1

t ζ AE at ξ = ρ = 0.5 AE at ξ = ρ = 0.7 AE at ξ = ρ = 0.9 AE at ξ = ρ = 1

0.2 1.547471725 ×10−2 5.929622809 ×10−3 1.211474741 ×10−3 1.66667 ×10−9

0.4 3.377538834 ×10−2 1.248095530 ×10−2 2.497361834 ×10−3 2.33333 ×10−9

0.01 0.6 5.251026905 ×10−2 1.909389588 ×10−2 3.786907904 ×10−3 2.00000 ×10−9

0.8 7.145473987 ×10−2 2.573550349 ×10−2 5.078019823 ×10−3 1.66667 ×10−9

1 9.052369674 ×10−2 3.239411093 ×10−2 6.370013095 ×10−3 2.33333 ×10−9

0.2 1.540758992 ×10−2 9.767460497 ×10−3 2.832920738 ×10−3 1.309333 ×10−6

0.4 4.345131868 ×10−2 2.462522892 ×10−2 6.668790065 ×10−3 1.317667 ×10−6

0.05 0.6 7.334389807 ×10−2 4.004032035 ×10−2 1.056982054 ×10−2 1.326000 ×10−6

0.8 0.1040238760 5.570672050 ×10−2 1.449846305 ×10−2 1.334333 ×10−6

1 0.1351013616 7.151740735 ×10−2 1.844251126 ×10−2 1.342667 ×10−6

0.2 2.89111730 ×10−3 6.18076440 ×10−3 2.610104023 ×10−3 2.1014667 ×10−5

0.4 2.783094332 ×10−2 2.397812731 ×10−2 8.071310653 ×10−3 2.1280333 ×10−5

0.1 0.6 5.59856207 ×10−2 4.317538941 ×10−2 1.375500821 ×10−2 2.1546000 ×10−5

0.8 8.53246215 ×10−2 6.298330555 ×10−2 1.953186031 ×10−2 2.1811667 ×10−5

1 0.1151215528 8.312924610 ×10−2 2.536006207 ×10−2 2.2077333 ×10−5

Table 2: Absolute Error (AE) for different times and spaces of Example 4.2

t ζ AE at ξ = ρ = 0.5 AE at ξ = ρ = 0.7 AE at ξ = ρ = 0.9 AE at ξ = ρ = 1

0.2 9.783254129 ×10−2 3.041738403 ×10−2 5.585918942 ×10−3 3.0000 ×10−9

0.4 7.816277292 ×10−2 2.332577660 ×10−2 4.178733371 ×10−3 1.0000 ×10−9

0.01 0.6 4.936203814 ×10−2 1.448539702 ×10−2 2.579866758 ×10−3 1.0000 ×10−9

0.8 1.270700930 ×10−2 4.343826185 ×10−3 8.515810999 ×10−4 3.0000 ×10−9

1 3.114377418 ×10−2 6.863807506 ×10−3 9.756686665 ×10−4 5.0000 ×10−9

0.2 0.2101487567 8.252714158 ×10−2 1.844959799 ×10−2 1.97370000 ×10−6

0.4 0.1693089322 6.272596400 ×10−2 1.357378055 ×10−2 6.5790000 ×10−7

0.05 0.6 9.619426598 ×10−2 3.540019718 ×10−2 7.710973462 ×10−3 6.5790000 ×10−7

0.8 6.88088047 ×10−3 2.384783989 ×10−3 1.191825756 ×10−3 1.97370000 ×10−6

1 0.1391892618 3.538120260 ×10−2 5.826427340 ×10−3 3.29000000 ×10−6

0.2 0.2886918116 0.1249493949 3.018437865 ×10−2 3.33333000 ×10−5

0.4 0.2347545351 9.404629866 ×10−2 2.176028113 ×10−2 1.11111000 ×10−5

1 0.6 0.1189245304 4.687155107 ×10−2 1.106710623 ×10−2 1.11112000 ×10−5

0.8 5.693954892 ×10−2 1.282208411 ×10−2 1.115755320 ×10−3 3.33334000 ×10−5

1 0.2933045613 8.314396606 ×10−2 1.442633714 ×10−2 5.55560000 ×10−5
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Table 3: Absolute Error (AE) comparison of LRPSM and ADM [39] for Example 4.2

t ζ LRPSM ADM

0.3 2.0 ×10−9 2.9798 ×10−9

0.01 0.6 1.0 ×10−9 6.0101 ×10−9

0.9 4.0 ×10−9 9.04041 ×10−9

0.3 1.31580 ×10−6 1.80921 ×10−6

0.05 0.6 6.5790 ×10−7 3.78289 ×10−6

0.9 2.63160 ×10−6 5.75658 ×10−6

0.3 2.222220 ×10−5 2.77778 ×10−5

0.1 0.6 1.111120 ×10−5 6.11111 ×10−5

0.9 4.444450 ×10−5 9.44444 ×10−5

Table 4: Absolute Error (AE) for different times and spaces of Example 4.3

t ζ AE at ξ = ρ = 0.5 AE at ξ = ρ = 0.7 AE at ξ = ρ = 0.9 AE at ξ = ρ = 1

0.2 4.979224126 ×10−2 2.269449293 ×10−2 5.514676025 ×10−3 1.1880000 ×10−6

0.4 8.334590765 ×10−2 3.527902196 ×10−2 7.863510967 ×10−3 1.3860000 ×10−6

0.01 0.6 0.1153348541 4.711902873 ×10−2 9.994458235 ×10−3 1.5840000 ×10−6

0.8 0.1472311811 5.894558247 ×10−2 1.207522865 ×10−2 1.7820000 ×10−6

1 0.1793811380 7.095505279 ×10−2 1.415128281 ×10−2 1.9800000 ×10−6

0.2 6.236701377 ×10−2 3.941705892 ×10−2 1.274588648 ×10−2 1.42857000 ×10−4

0.4 0.1077711942 6.705855054 ×10−2 2.023437703 ×10−2 1.66667000 ×10−4

0.05 0.6 0.1435445188 9.198944737 ×10−2 2.687576822 ×10−2 1.90476000 ×10−4

0.8 0.1729787028 0.1162794147 3.331413454 ×10−2 2.14286000 ×10−4

1 0.1968479851 0.1404973461 3.972410448 ×10−2 2.38095000 ×10−4

0.2 4.042725784 ×10−2 3.259267367 ×10−2 1.253809850 ×10−2 1.09090900 ×10−3

0.4 7.39329309 ×10−2 6.312390645 ×10−2 2.311313478 ×10−2 1.27272700 ×10−3

0.1 0.6 8.73204114 ×10−2 8.86309024 ×10−2 3.227722400 ×10−2 1.45454500 ×10−3

0.8 8.52448893 ×10−2 0.1121969429 4.108477061 ×10−2 1.63636400 ×10−3

1 6.88013028 ×10−2 0.1346907447 4.982174851 ×10−2 1.81818200 ×10−3
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Figure 3: 2D plots for exact and LRPSM solution of Example 4.2 for different values of ξ

Figure 4: 3D plots for exact and LRPSM solution of Example 4.2 for different values of ξ
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Figure 5: 2D plots for exact and LRPSM solution of Example 4.3 for different values of ξ

Figure 6: 3D plots for exact and LRPSM solution of Example 4.3 for different values of ξ
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Table 5: Nomenclature

IC Initial conditions
LT Laplace transform
LR Laplace residual
LRPSM Laplace residual power series method
FPDEs Fractional partial deferential equation
AE Absolute error
ADM Adomian decomposition method

6 Conclusion

The present article is related to the approximate analytical solutions of some nonlinear fractional
partial differential equations using the Laplace residual power series method. The fractional deriva-
tives in each targeted problem are represented by the Caputo operator. First, the proposed scheme
is discussed for the general nonlinear problem and the few nonlinear problems related to nonlinear
fractional partial differential equations are solved by using the proposed method. The obtained results
are compared with the exact solution of each problem. The fractional order solutions are analyzed by
using the suggested method successfully. It is observed that the present technique is the most suitable
tool for the solutions of nonlinear fractional partial differential equations and possesses a higher
degree of accuracy. In conclusion, this new hybrid technique is straightforward to solve the nonlinear
fractional problems and can be used effectively in other branches of applied sciences.
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