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ABSTRACT

The artificial immune system, an excellent prototype for developing Machine Learning, is inspired by the function
of the powerful natural immune system. As one of the prevalent classifiers, the Dendritic Cell Algorithm (DCA)
has been widely used to solve binary problems in the real world. The classification of DCA depends on a data pre-
processing procedure to generate input signals, where feature selection and signal categorization are the main work.
However, the results of these studies also show that the signal generation of DCA is relatively weak, and all of them
utilized a filter strategy to remove unimportant attributes. Ignoring filtered features and applying expertise may
not produce an optimal classification result. To overcome these limitations, this study models feature selection
and signal categorization into feature grouping problems. This study hybridizes Grouping Genetic Algorithm
(GGA) with DCA to propose a novel DCA version, GGA-DCA, for accomplishing feature selection and signal
categorization in a search process. The GGA-DCA aims to search for the optimal feature grouping scheme without
expertise automatically. In this study, the data coding and operators of GGA are redefined for grouping tasks.
The experimental results show that the proposed algorithm has significant advantages over the compared DCA
expansion algorithms in terms of signal generation.
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1 Introduction

The natural immune system assists in recognizing pathogens that can cause destructive infections
in individuals and has certain key characteristics: diversity, distributive, dynamic, adaptivity, and
robustness [1]. Inspired by its function, several researchers mixed the mechanisms of immunity and
computers to propose a collection of bio-inspired algorithms. DCA, one of its prevalent paradigms,
is inspired by the functioning of the dendritic cells in the natural immune system [2]. DCA has been
widely applied in classification [3,4], anomaly detection [5,6], spam filtering [7], distributed and parallel
operations [8], fuzzy clustering, privacy preservation, and earthquake prediction [9]. DCA is designed
for low-dimensional space, and the inputs of DCA correspond to three immune signals respectively,
named pathogen-associated molecular patterns (PAMP), danger signals (DS), and safe signals (SS) [2].
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Generally, the DCA appropriately maps a given problem domain to the input space of DCA in a
pre-processing and initialization phase, which is crucial to obtaining reliable results. Recalling from
the literature review [10], dimensionality reduction and signal categorization are the main works
to generate input signals in the pre-processing and initialization phase. The task of dimensionality
reduction is to create a new feature space with low dimensionality. After dimensionality reduction,
each feature in the new feature space is assigned to a specific signal category, either PAMP, DS, or SS.
Researchers utilized several dimensionality reduction techniques to create a new feature space with
low dimensionalities, such as Principal Component Analysis (PCA) [11], Correlation Coefficient (CC)
[12], Information Gain (IG) [12], Rough Set Theory (RST) [13–15], and Fuzzy Rough Set Theory
(FRST) [16,17]. These approaches filtered weakly important or unimportant features and selected
the most important features with their data-intrinsic methods. However, it is essential to realize that
relevance/importance according to those definitions does not imply membership in the optimal feature
subset, and irrelevance does not mean that a feature can not be in the optimal feature subset [18]. In
addition, machine learning algorithms, such as K-Nearest Neighbors (KNN) [19] and Support Vector
Machine (SVM) [20], are employed for input signal generation. Moreover, Zhou et al. [1] utilized
numerical differential to extract features based on the data changes of the selected features. Among
these methods, some approaches may not generate the optimal feature subset due to ignoring the
effects of those filtered features; moreover, some approaches are unable to describe the relationship
between the attributes and signal categorization.

After dimensionality reduction, each feature in the new feature space is assigned to a specific
signal category, either PAMP, DS, or SS. For signal categorization, researchers focus on building
a mapping between attributes and signal categories. An appropriate mapping relationship helps
achieve good classification results. Several approaches assign a specific signal category to each selected
feature by generating a mapping relationship grounded on expert knowledge; others perform signal
categorization based on the importance ranking of selected features and the importance ranking of
signals. However, the mapping with specialist knowledge may not assign attributes to the most suitable
signal categories. In addition, the mapping based on attributes ranking could not be considered
a coherent and consistent categorization procedure, leading to unsatisfactory classification results.
Several researchers employed a search strategy to find an optimal mapping to overcome the problem.
But the approaches with search strategy exclude the filtered features from the original feature space
and ignore the effects of the filtered features on the performance of DCA. Among these methods,
some algorithms rely on expertise; some establish a mapping in terms of the relationship between
the importance of attributes and signals; others ignore the effects of the filtered features, resulting in
unsatisfactory classification results.

Therefore, this research is motivated by the following question: how to automatically perform
the feature selection and signal categorization, considering all features’ effects for DCA? Inspired
by the research about combinatorial optimization, this study transforms feature selection and signal
categorization into a feature grouping problem. The features from the original data set are divided
into four groups: GroupPAMP, GroupDS, GroupSS, and GroupUN. The GroupUN contains all the features
unselected; the GroupPAMP contains all the features assigned to the signal PAMP; GroupDS contains all
the features assigned to the signal DS; and GroupSS contains all the features assigned to the signal SS.
The grouping problem is a special combinatorial optimization problem where a set V of n items is
usually partitioned into a collection of mutually disjoint subsets (groups) Groupi. So that, the feature
set V = ∪D

i Groupi, and Groupi ∩ Groupj = ∅, i �= j, D = {PAMP, DS, SS, UN}. In literatures, there
were several approaches designed for grouping problems, i.e., Moth Search (MS) [21], Artificial Bee
Colony (ABC) [22], Differential Evolution (DE) [23,24], Genetic Algorithm (GA) [25], Particle Swarm
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Optimization (PSO) [26], Grouping Genetic Algorithm (GGA) [27]. Over the years, those methods
have been broadly used to solve grouping problems, such as parallel machine scheduling problems, job-
shop scheduling problems (JSP), vehicle routing problems, and other grouping problems. The GGA
is an extension of the traditional GA with a special solutions encoding. The GGA utilized a more
natural or intuitive way (group-based encoding scheme) to represent the potential solutions instead
of a machine-based encoding scheme and a permutation-based encoding scheme(i.e., MS, ABC, DE,
GA, and PSO). In literature [28], their experiments illustrated that the GGA, with a group-based
encoding scheme, can obtain better grouping results than permutation-based and machine-based
encoding scheme. Due to its excellent grouping capabilities, this study employs GGA to assign each
feature into a group, either GroupPAMP, GroupDS, GroupSS, or GroupUN. The GGA can simultaneously
optimize consolidation on both feature selection and signal categorization. This study aims to propose
an effective DCA version integrated with GGA, GGA-DCA, to automatically address the feature
selection and signal categorization, taking into all the attributes. To verify the performance of GGA-
DCA, 24 data sets are selected with different feature dimensions, dataset size, and imbalance rate.
Compared with the several state-of-the-art DCA expansion algorithms (e.g., FLA-DCA, GA-PSM,
NIDDCA, and SVM-DCA). Moreover, this study analysis the time complexity and the runtime of the
GGA-DCA and the other state-of-the-art DCA expansion. The well-known classifiers, the K-Nearest
Neighbor (KNN) and the Decision Tree (DT), XGboost, Random Forests (RT), and Extremely
Randomized Trees (ERT), are used as the baseline comparison. Through the experiments, the GGA-
DCA obtains promising results.

This paper is structured as follows: Section 2 describes related work; the DCA is introduced in
Section 3; The novel model, GGA-DCA, is proposed in Section 4; our following experiment setup,
results and analysis are described in Section 5; conclusions and future work are shown in Section 6.

2 Related Work

The classical DCA is proposed by Greensmith et al. [2] which mimics the functioning of the
dendritic cells in the natural immune system. The classical DCA relies on artificial experience for
feature selection and signal categorization. Aiming to overcome the limitations of the manual method,
PCA, CC, IG, RST, and FRST are applied to perform those works.

Gu et al. [11] employed PCA as a feature extraction technique to project the original data onto the
principal subspace. They constructed a low-dimensional space with new features. Due to destroying
the underlying meaning behind the features present, feature extraction techniques are undesirable for
DCA. In [12], the CC and IG were adopted to measure the relevance between attributes and the class.
The features whose relevance degree exceeds a certain threshold were selected. Chelly et al. [13–15]
proposed RST-DCA and RC-DCA by hybridizing the RST and DCA. RST-DCA and RC-DCA
measured the importance of a feature by computing the difference between the positive region of an
original data set and the positive region of the data set without this feature. Based on the importance
of features, REDUCTs and CORE are achieved as candidates of optimal feature subset. Due to the
expensive costs of calculating REDUCTs and CORE, QR-DCA [15] introduced the QuickReduct
algorithm to generate only one REDUCT. RST-DCA assigned only one attribute randomly from a
REDUCT to both PAMP and SS based on expert knowledge, as well as combined the rest features of
REDUCT to represent DS. RC-DCA and QR-DCA assigned attributes of the CORE to both PAMP
and SS based on expert knowledge, as well as combined the rest features of REDUCT to represent DS.

The hybrid DCA versions with RST rely upon crisp data sets. Chelly et al. [16,17] integrated FRST
with DCA to provide feature reduction for both crisp and real-value attributed datasets. In [17], a
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greed search and fuzzy lower approximation were applied to obtain a new DCA version, FLA-DCA.
The FLA-DCA calculates a feature reduction with the same fuzzy-rough dependency degree as the
entire database. In [16], fuzzy boundary region-based DCA (FBR-DCA) was proposed subsequently.
The FBR-DCA utilized a greed search and the fuzzy boundary region to find a feature reduction
with the minimal uncertainty degree based on fuzzy rough set theory. FLA-DCA selected the feature
with the most significant fuzzy-rough dependency degree to form the SS, the second attribute to
form PAMP, and the rest of the reduct attributes are combined and affected to form DS. FBR-DCA
selected the attributes with the slightest uncertainty degree to form the SS, as it is considered the most
informative first feature added to the fuzzy-rough reduct.

The machine learning algorithms, such as KNN and SVM, are also introduced for DCA to
generate input signals. Mohsin et al. [20] proposed a hybrid DCA version, SVM-DCA. They adopted
SVM to generate a sparse weight matrix of attributes and selected attributes with larger weights to
generate input signals. In [19], KNN was employed to filter features based on the change of the two
data and was integrated with DCA to generate a hybrid KNN-DCA. Compared with C4.5, LibSVM,
Hoeffding Tree, and NaiveBayes, the KNN-DCA and SVM-DCA achieved better classification
results. Zhou et al. [1] proposed a NIDDCA that used numerical differential to calculate the change
of the selected feature as the input signals. Through experimental results for signal extraction, they
achieved a satisfactory result better than other recent DCA-derived classification algorithms on most
datasets. In addition, Elisa et al. [29] utilized a two-stage approach to accomplish feature selection and
signal categorization: first, they filtered some unimportant/irrelevant features; second, they utilized
GA based on partial shuffle mutation (PSM) to present a new DCA version GA-PSM, to find the
optimal mapping.

In summary, those approaches filtered weakly important or unimportant features and selected the
most important features with their data-intrinsic methods. However, the relevance/importance accord-
ing to those definitions does not imply membership in the optimal feature subset [18]. Ignoring those
unimportant/irrelevant attributes may prevent DCA from being able to produce satisfactory results.
For signal categorization, an appropriate mapping relationship is helpful to achieve good classification
results. Those methods attempt to map the attributes ranking, in terms of relevance/importance, to the
ranking of signal categories or just through expert knowledge. Thus, those approaches to establishing
the mapping could not be considered a consistent procedure, leading to unsatisfactory classification
results.

Inspired by solutions to grouping problems, this study transforms feature selection and signal
categorization into a grouping problem of features. The grouping problem is a special combinatorial
optimization problem. Several computational intelligence algorithms, i.e., MS, ABC, DE, GA, PSO,
and GGA, have been applied to solve grouping problems.

Feng et al. [21] proposed a binary MS based on self-learning to solve the multidimensional
knapsack problem. They adopted a simple generic mapping method via transfer function to convert
the real number vector into a binary one. Zhuang et al. [22] introduced an improved ABC to investigate
shop scheduling problems with two sequence-dependent setup times. They encoded the potential
schemes as numerical sequences and achieved encouraging results on the small-scale benchmark
instances. Gao et al. [30] employed DE to solve the JSP with fuzzy execution time and fuzzy completion
time. They encoded potential solutions with real number vectors and then computed the ranks of
each element according to their descending orders. They also proposed a hybrid adaptive differential
evolution algorithm (HADE) [23] to solve the multi-objective JSP with fuzzy processing time and
completion time. They completed the discrete optimization problem through sort and mod operators
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to convert real numbers into binary values 1 or 2. Falkenauer [31] designed a variant of GA, GGA,
that used a group-based solutions representation scheme and variation operators working efficiently
together. Due to the excellent grouping capacity, GGA has been applied to solve various grouping
problems, like bin packing, vehicle routing, JSP, and Clustering [27]. Pakzad-Moghaddam [26] applied
PSO to schedule jobs on uniform parallel processors. They employed a machine-based encoding
scheme as the expression of a particle to lend the PSO to adapt well to the complicated structure
of the grouping problem. They suggested that the approach was efficient and could play a substantial
part in directing real production. Ramos-Figueroa et al. [28] compared the GGA, GA, and PSO for
the grouping problems. Their experiments illustrated that the GGA outperformed PSO and GA in
most cases for grouping problems.

The MS, ABC, DE, GA, and PSO encoded their feasible solutions with integer sequences where
an integer denoted an element. Among those methods, some algorithms utilized orders of elements to
represent their groups; some applied operators (for instance, mod function) to compute the group of
each element; others introduced real number vectors to express the feasible schemes through mapping
function to convert real number vector into integer one. Those algorithms employ a permutation-based
vector to express a feasible solution; thus, they require decoding work to achieve a grouping scheme
corresponding to a feasible solution. However, the GGA applied a more natural or intuitive way, a
group-based representation scheme, to encode their feasible solutions. The solvers’ performance in
tackling grouping problems can be improved by incorporating group-based representation schemes
and suitable variation operators. Due to the excellent grouping capacity of GGA, this study attempts
to apply GGA to synchronously perform feature selection and signal categorization by searching for
the optimal feature grouping solution. The literature review reveals that the GGA is first used for DCA
to generate input signals.

3 Preliminary
3.1 Basic Definition

In algorithm, each data item of DCA contains two inputs: signals and antigens. The antigen is
the identifier of the data item, in other words, the data item IDs. The input signals have only three
signal categories corresponding to the three immune signals mentioned above. Each data item is
transformed into the above three input signals through feature selection and signal categorization. The
DCA maintains a population of detectors, namely DCs. The DCs simulate the function of dendritic
cells in a tissue environment to detect whether a data item is normal or abnormal grounded by its input
signals. Each data item is processed by detectors selected from the population randomly. Finally, the
algorithm synthesizes the detection results generated by DCs to decide the class of each data item.

Definition 1 An antigen is presented as Ag =〈e, t〉. e is the identifier of a certain data item to be
detected, t is the timestamps.

Definition 2 The signal is denoted as Signal =〈PAMP, DS, SS〉, a 3-dimensional real valued tuple.
SS is the safe signal value, DS is the danger signal value, PAMP is the value of pathogen-associated
molecular patterns.

Definition 3 Each DC is a detector, and is expressed as DC = Ags × Signals × T . Signals is the
signal values sampled by the DC, and T is a migration threshold, Ags is a set of antigens.

3.2 The DCA
The DCA is a population-based algorithm inspired by the danger theory. It maintains a popula-

tion of DCs to detect data items, whether the class of data is normal or abnormal. Greensmith and
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Gale defined the algorithm DCA as a function H = A × S × N where A is antigen set, S is signal set,
and N is the population of DCs. The algorithm contains four main phases: the pre-processing and
initialization phase, the detection phase, the context assessment phase, and the classification phase.

The pre-processing and initialization phase: The data is used to describe the object in the real world,
and is presented as Data = {datai|data = 〈Feature1, Feature2, . . . , Featurem〉}. The m, the data size, is
often higher than three. However, the DCA is designed for low-dimensional space. Therefore, the
works of feature selection and signal categorization are required to map the higher-dimensional data
space to lower-dimensional signal space Signals =〈PAMP, DS, SS〉.

The detection phase: DCA utilizes a linear utility function to transform the input signals men-
tioned previously into detection signals, namely the costimulatory molecule signal value (CSM), the
semimature signal value (SEMI), and the mature signal value (MAT). The three interim signals of a
DC are continuous during the process of antigen processing. The linear utility function is shown in
Eq. (1). The w of the function is a weight matrix for DCA.

(CSM, SEMI , MAT) = w × Signals (1)

The context assessment phase: The CSM, SEMI , MAT is used to assess the state of the context
around a DC. As soon as the CSM signal of a DC exceeds the migration threshold, the DC ceases to
detect new antigens, and its context is assessed. If the cumulative SEMI of the DC is more than its
cumulative MAT , the antigens around the DC are considered normal, and vice versa.

The classification phase: In algorithm, a DC can detect many antigens, and an antigen can also be
detected by many DCs. The class of an antigen is voted by all detectors that have caught the antigen.
The abnormality of antigen, namely Mature Context Antigen Value (MCAV ), is calculated as Eq. (2).
A threshold value of MCAV is introduced to represent the probability that an antigen is anomalous. If
the MCAV of an DC exceeds the threshold value mentioned before, the antigen is labeled as abnormal,
and vice versa.

MCAV = DCMAT

DCSEMI + DCMAT

(2)

4 The Hybrid Algorithm: GGA-DCA
4.1 Model Overview

This study attempts to transform the work of feature selection and signal categorization into a
feature grouping task. The grouping task is to divide features into four groups: GroupPAMP, GroupDS,
GroupSS and GroupUN. The features in the GroupUN are not assigned to any signal categories; the features
in GroupPAMP are assigned to PAMP; the features in the GroupDS are assigned to DS; the features in
the GroupSS are assigned to SS. Through grouping features, the features in GroupPAMP, GroupDS, and
GroupSS are the selected features to generate input signals. This study accomplishes the pre-processing
and initialization procedure automatically for DCA through the feature grouping.

Therefore, this study uses a feature grouping process to replace the original work: feature selection
and signal categorization. A novel scheme named GGA-DCA is presented, hybridizing the DCA
with GGA, as shown in Fig. 1. GGA-DCA contains three components, search space, search method
(GGA), and evaluation method (DCA). The search space includes all potential grouping schemes for
generating the input signal of DCA. Aiming to find an optimal grouping scheme, DCA is a part of
the performance evaluation function, and GGA is used as a search engine wrapping around DCA to
find the optimal scheme. The key components, search space, search engine, and evaluation method,
are described below.
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Figure 1: The model of GGA-DCA

4.2 Search Space
As shown in Fig. 2, the work of signal categorization is to establish a mapping relationship between

selected features and signal categories, offered as Eq. (3). Establishing a mapping relation can be
considered as dividing the attributes into different groups.⎛
⎜⎜⎜⎜⎝

Featurei

Featurej

Featurek

Featureh

. . .

⎞
⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎝

PAMP
SS
DS
UN

⎞
⎟⎟⎠

f

(3)

Figure 2: Steps of feature selection and signal categorization
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The grouping scheme of the features is a solution to feature selection and signal classifica-
tion, as shown in Fig. 3. In this study, the solution can be denoted as {GroupPAMP (Featurei . . .)

GroupDS,
(
Featurej . . .

)
, GroupSS(Featurek . . .), GroupUN (Featureh . . .)

}
, the Featurei, Featurej, Featurek,

Featureh are the features form original data sets. The solutions can form a search space. Each state
in the space represents a solution to generate input signals. The different grouping schemes of
features represent different solutions for generating input signals. The operators, which determine the
connectivity between the states, transform one state to another by swapping groups of features.

Figure 3: The grouping scheme: A 4-dimensional vector V

4.3 Evaluation Method
In this work, the classification accuracy of DCA is adopted to evaluate the performance of states.

A signal database contributed by a state is performed multiple times, and the average accuracy of
multiple experiments is the performance of a state.

4.4 Search Method: GGA
This study employs GGA as the search engine to find the optimal feature grouping scheme. The

key steps are as described below.

Step 1: Data encoding. In GGA, each chromosome represents a state in the search space. The
nature of the problem determines the chromosome coding [29]. This study uses integers {i, j, k, h,
. . . } to represent independent features separately {Featurei, Featurej, Featurek, Featureh, . . . } from the
original data sets (i, j, k, h are integers, i �= j �= k �= h, and 0 < i, j, k, h ≤ m, m is the amount of the
whole features). This study determines a 4-dimensional vector V = {[i, . . . ], [j, . . . ], [k, . . . ], [h, . . . ]} as
a chromosome. In this study, the order of groups is fixed. The first group is the GroupPAMP, the second
is the GroupDS, the third is the GroupSS, and the last is the GroupUN. The different feature grouping
schemes represent different chromosomes, for exsample, {[i, . . . ], [j, . . . ], [k, . . . ], [h, . . . ]} �= {[j, . . . ],
[i, . . . ], [k, . . . ], [h, . . . ]}.

Step 2: Fitness function. The fitness function of a given chromosome determines its probability of
being chosen to create the next generation [29]. This study adopts the classification accuracy of DCA,
that described in Section 3.2, to evaluate the performance of a chromosome.

fitness(V) = Accuracy(DCA(V)), (4)

where V is a chromosome, fitness (V) is the fitness value of chromosome V. Accuracy(DCA(V)) is the
mean of classification accuracy achieved by DCA running multi-times on a signal database generated
through the chromosome V.

Step 3: Selection function. After computing the fitness for each chromosome in the current
population, the better ones need to be selected as the next generation’s parents by utilizing the roulette
wheel. The cumulative fitness values of all the chromosomes in each iteration are calculated. A
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chromosome is selected with a probability equaling the proportion of its fitness value in the cumulative,
shown in Eq. (5).

RVi = fitness (Vi)
n∑

j=0

f itness
(
Vj

) , (5)

where
n∑

j=0

f itness
(
Vj

)
is the cumulative fitness value of all the chromosomes in each iteration, RVi is

probability of a chromosome Vi.

Step 4: Crossover operator. In this work, the chromosomes with different orders of groups
are unique. To explore the more possible chromosomes around the current one, 1PX (One-point
Crossover) [27] is utilized to swap the groups of two chromosomes randomly. The crossover is
performed on a randomly selected chromosome with a probability Pcross. In this operator, as shown in
Fig. 4, one crossing points (cp1) between 0 and (n−1) are selected randomly to divide both two parents
(p1 and p2) into two segments. The segments on the right of both two parents are the crossing segments
(cs). This study swap cs of p1 and p2 to generate two children(c1 and c2). Because the children c1 and c2
have repeated and missed items (MI), 1PX may generate infeasible solutions. Therefore, using efficient
problem-domain heuristics is crucial to handle such infeasibility. The parents are the chromosomes
with the higher accuracy in the previous generation, and preserving the parents’ grouping is important
to produce good results. Therefore, this study removes the repeated genes in cs. As shown in Fig. 4, the
feature {5} of GroupSS in c1 is repeated with the one in GroupDS, and so is {10} in GroupUN of c2. This
study keeps the duplicate part in c1 and c2 and removes them in cs. Through the crossover operator,
the newly generated children may miss some genes. As shown in Fig. 4, the missing genes(MI) in c1 is
{10}, and MI in c2 is {5}. Based on the group of MI in the parents p1 or p2, the MI is inserted into a
group of children. Suppose that the fitness of p1 is bigger than p2. This study determines the Group of
MI in c1 and c2 based on the original Group in p1. This study inserts MI of c1 into GroupUN, and the
one of c2 into GroupDS.

Figure 4: The crossover operators of GGA-DCA

Step 5: Mutation operator. The operator transforms one chromosome into another by swapping
genes of two existing groups in the chromosome. This study performs mutation with a probability
Pmutation.
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Step 6: Termination conditions. The search process is running iteratively until satisfying one of
the two conditions. The first condition is when the fitness value of a chromosome is more significant
than a threshold. The second condition is when the generations of populations execute up to a certain
number G.

Step 7: Algorithm of GGA-DCA. The search process of GGA for an optimal solution is illustrated
in Algorithm 1. In algorithm, the first step is to initialize a population. For initializing, the data set
features are randomly mapped to the group schemes of P chromosomes in a population to generate
P input signal data sets. After initializing, the fitness values of all chromosomes in the population are
computed and stored in memory. To expand the searching scope, the genetic operators are applied to
the current population to generate the next generation population Pnew. In the third step, chromosomes
are selected from the current population as parents utilizing the roulette wheel method. The crossover
operator is applied to generate children with a probability Pcross, and the children mutate under the
influence of probability Pmutation before appending them to population Pnew. Let Pnew replace the current
population. Repeat the second step and third step until satisfying the termination conditions.

Algorithm 1: GGA-DCA
Input: Train_data
Output: Optimal feature sequence
1: Population = Initial_Population(P)
2: while G > 0 do:
3: for chromosome in Population do:
4: Dataset = Generat_Newdata(Train_data, chromosome)
5: Fitness_value = Accuracy(DCA(Dataset, chromosome))
6: end for
7: P_new = Null
8: Better_ones_p1 = Selection(Population)
9: Better_ones_p2 = Selection(Population)
10: while len(Pnew) < len(Population) do:
11: if rate_random < Pcross then:
12: c1, c2 = Cross(Better_ones_p1,Better_ones_p2)
13: end if
14: if rate_random < Pmutaion then:
15: c1, c2 = Mutation(c1, c2)
16: end if
17: Add_To_Population((c1, c2), Pnew)
18: end while
19: Population = Pnew
20: G = G−1
21: end while

5 Experimentation
5.1 Data Sets

To verify the performance of the proposed GGA-DCA, twenty-four different classification
problems from UCI Machine Learning Repository [32], Keel [33], are used for experiments. Those
data sets, shown in Table 1, are selected according to the level of feature dimensions, the size of
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the dataset, and the level of the imbalance rate. Those data sets are divided into eight categories;
Category 1: balanced small-sized low-dimensional data sets; Category 2: imbalanced small-sized
low-dimensional data sets; Category 3: balanced large-sized low-dimensional data sets; Category 4:
imbalanced large-sized low-dimensional data sets; Category 5: balanced small-sized high-dimensional
data sets; Category 6: imbalanced small-sized high-dimensional data sets; Category 7: balanced
large-sized high-dimensional data sets; Category 8: imbalanced large-sized high-dimensional data
sets. Each category contains three data sets so that the performance of GGA-DCA can be fully
tested by performing classification tasks on these 24 data sets. In this work, non-numerical features
are transformed into numerical features. Before experiments, this study filters the features with a
high percentage of missing values and the features with a single unique value. The data imputation
techniques may not work well for data sets with a high rate of missing values. Thus, this study filters
those features which are missing more than 40% of data. Those features with a single unique value
cannot be useful for machine learning because of their zero variance. Thus, this study counts unique
values for each attribute in a data set. The features with one unique value are filtered. Due to the
significant effect of influential points on the algorithm, this study replaces these influential points
with the mean. Thus, this study utilizes the Z-score method to look for influential points, shown in
Eq. (6). This study filters those features whose zi,j exceeds 2.5.

zi,j = (xi,j − μj)/σ j, (6)

where xi,j is the value of ith data item in jth feature, μj is the mean of the jth feaure, and σ j is the standard
deviation of the jth feature.

Table 1: Description of data sets

Category Data set Ref. Attributes Instances Imbalance rate Source

Category 1 Breast Cancer Wisconsin BCW 11 700 1.9 UCI
Cervical Cancer Behavior
Risk

CCBR 19 72 2.4 UCI

Hepatitis Domain HE 20 155 1.2 UCI
Category 2 Yeast (Imbalanced: 2 vs. 4) Yeast2 8 514 9.1 Keel

Abalone (Imbalanced: 18
vs. 9)

Abalone18v9 8 731 16.4 UCI

Glass Identification Glass 9 214 11.6 Keel
Category 3 Titanic Titanic 3 2201 2.1 Keel

German Credit Data GCD 20 1000 2.3 UCI
Mushroom Mushroom 23 5644 1.1 Keel

Category 4 Yeast (Imbalanced: 3) Yeast3 8 1484 8.1 Keel
Abalone (Imbalanced: 19) Abalone19 8 4174 129.4 Keel
Page Blocks Classification
(Imbalanced: 0)

PBC0 10 5472 8.8 Keel

Category 5 Divorce Predictors DP 54 170 1 UCI
Sonar Sonar 60 208 1.1 UCI
Musk1 Musk1 168 476 1.3 Keel

Category 6 KDD Cup (Imbalanced:
land vs. satan)

KDDls 41 805 75.7 Keel

(Continued)
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Table 1 (continued)

Category Data set Ref. Attributes Instances Imbalance rate Source

KDD Cup (Imbalanced:
guess passwd vs. satan)

KDDgps 41 821 30 Keel

KDD Cup (Imbalanced:
land vs. portsweep)

KDDlp 41 1061 49.5 Keel

Category 7 Spambase SP 57 4601 1.5 UCI
Elephant Elephant 231 1391 1.2 Keel
Tiger Tiger 231 1220 1.2 Keel

Category 8 KDD Cup (Imbalanced:
rootkit-imap vs. back)

KDDrvb 41 2225 100.1 Keel

Insurance Company
Benchmark (COIL 2000)

ICB2000 85 9822 15.8 Keel

Musk2 Musk2 168 6598 5.5 Keel

5.2 Experiment Setup
In this work, two experiments are performed to study the feasibility and superiority of the pro-

posed approach. In the first experiment, GGA-DCA and state-of-the-art DCA expansion algorithms
(NIDDCA [1], FLA-DCA [17], GA-PSM [29], and the SVM-DCA [20]) perform classification tasks
on the 24 data sets. For the purpose of baseline comparison, the well-known classifiers, the KNN, the
DT, the XGboost, the RF, and the ERT, also perform classification tasks on the 24 data sets. Each
data set is divided into two disjoint sets: training (80%) and testing (20%). In all experiments, ten
independent runs of each algorithm are conducted based on the 10-fold cross-validation method. To
evaluate the performance of the above approaches, the accuracy, precision, specificity, F-measure, and
the area under the curve (AUC), are calculated for all the data sets. Accuracy is a proportion of the
correct predictions on all items. Precision is a proportion of positive items on all cases labeled normal.
The specificity is the percentage of positive cases on all correct cases. F-measure is a harmonic mean
of precision and recall. All experiments are performed on a laptop with Intel Core i7-5600U 2.6 GHz-
8 GB RAM-HP running Windows 10. Those approaches are implemented in Python using PyCharm.

Accuracy = TP + TN
TP + TN + FP + FN

(7)

Precision = TP
TP + FP

(8)

specificity = TP
TP + FN

(9)

F − measure = 2 × Precision × reacall
Precision + reacall

(10)

5.3 Parameters Description
In this work, the size of the DC poll is 100, and each antigen samples up to 10 data items.

The migration threshold is the combination of the weight values and the max signal values using
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Eq. (1). For classification, this study adopts the proportion of the abnormal items in a data set as the
threshold of MCAV. The weights of DCA are adjusted through the feedback adjustment method of
NIDDCA [1]. The iterations (G) and the population size of GGA-DCA using GGA are both 10 in
each experiment. The probability Pcross is set in [0.5, 0.8], and the probability Pmutation is set in [0.1, 0.2].
The parameters of GA-PSM are the same as GGA-DCA.

5.4 Complexity Analysis
The GGA-DCA wraps a search task around the DCA. The runtime of DA-DCA depends on the

iteration number of GGA, the chromosome number of each generation, and the runtime of DCA.
The calculation of the runtime is performed phase by phase. According to work in Gu et al. [34], the
runtime complexity of DCA is bounded by O(n2), the n is the data size. Thus, this study focus on
the runtime of the whole GGA-DCA. The Table 2 shows the detail of all the primitive operations of
the GGA-DCA. In Table 2, each line contains one operation and the number of times that operation
is executed corresponding to Algorithm 1. The runtime complexity of the GGA-DCA is calculated as
follows:

T(n) = P + G + P × G × (1 + n + n × n + P + P + P × 2 + Pcross × P + Pmutation × P + P × 2) (11)

where P is the population’s size, G is the number of iterations, n is the data size, Pcross is the probability
of two chromosomes using a crossover operator, Pmutation is the probability of two chromosomes using
a mutation operator. In this study, the P and the G are in the same magnitude. This study utilizes P
instead of G. The GGA performs crossover operator and mutation operator with probability Pcross and
Pmutation, respectively. This study merely focus on the worst-case scenario, which occurs if Pcross = 1 and
Pmutation = 1. Therefore, the runtime is calculated as follows:

T(n) = 2 × P + P2(1 + P + n + n × n + P + P + P × 2 + Pcross × P + Pmutation × P + P × 2)

⇒ P = G, 2 × P � P2

T(n) = P2(1 + 9 × P + n + n2)

⇒ n2 � 1 + 9 × P + n

T(n) = O(P2 × n2) (12)

Table 2: Details of primitive operations of Algorithm 1, where P is the size of the population, and G
is the number of iterations

Line No. Description Times

1 P = Initial_Population(m) P
2 While loop G
3 For loop P × G
4 Generat_Newdata(Train_data, chromosome) n × G × P
5 Fitness_value = Accuracy(DCA(Dataset, chromosome)) n × n × G × P
6 Save Fitnessi P × G × P
7 For loop P × G × P
8 Selection p1 and p2 P × 2 × G × P

(Continued)
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Table 2 (continued)

Line No. Description Times

9 c1, c2 = Cross(p1, p2) with probability Pcross Pcross × P × G × P
10 Mutation(c1, c2) with probability Pmutation Pmutation × P × G × P
11 Add c1, c2 to P P × 2 × G × P

As shown in Eq. (12), GGA-DCA has a worse case runtime complexity of O(P2 × N2). To further
verify the performance of GGA-DCA, we calculated the running time of the DCA versions performing
classification on the 24 data sets. In this study, three experiments are performed to calculate the running
time of the DCA version on 24 data sets. In each experiment, a data set is selected from eight data
categories. Fig. 5 illustrates that the GGA-DCA does not maintain the runtime advantage on all
the data sets. The reason is that the GGA-DCA performs a search task, and this study focuses on
how DCA can automatically find the optimal signal generation scheme. GGA-DCA does not have
an advantage over SVM-DAC in terms of runtime. However, when performing classification on the
data sets with large data size and high-dimensional feature space, e.g., Mushroom, Elephant, Tiger,
ICB2000, and Musk2, the proposed GGA-DCA is superior to other algorithms (NIDDCA, FLA-
DCA, and GA-PSM) in terms of runtime. In light of the performance improvement offered by the
GGA-DCA, the additional time consumption is deemed acceptable.

Figure 5: (Continued)
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Figure 5: Mean execution time (in seconds) acquired by DCA versions (e.g., GGA-DCA, NIDDCA,
FLADCA, GA-PSM, SVM-DCA)

5.5 Results Analysis and Comparison
For all the data sets, this study computes the mean and standard deviations of the accuracy

obtained by the ten algorithms (GGA-DCA, NIDDCA, FLA-DCA, SVM-DCA, GA-PSM, KNN,
DT, XGboost, RF, and ERT), and the results are shown in Table 3. The Table 4 shows the mean
and standard deviations of precision obtained by those ten algorithms. Moreover, the specificity,
F-Measure, and AUC of the ten algorithms are also calculated based on the 24 data sets, and the
results are respectively presented in Tables 5, 6 and 7. The number in bold represents the best result
among the then algorithms in all the tables.

Table 3: Mean accuracy with standard deviation acquired by the ten algorithms
Category Data set GGA-DCA NIDDCA FLA-DCA GA-PSM SVM-DCA KNN DT XGboost RF ERT
Category
1

BCW 99.3 ± 0.4 90.3 ± 0.7 89.7 ± 1.5 90.8 ± 1.0 83.7 ± 1.4 93.4 ± 2.6 92.8 ± 3.2 95.8 ± 2.1 96.0 ± 2.2 95.5 ± 2.2
CCBR 84.3 ± 1.5 72.9 ± 4.0 68.0 ± 5.2 72.5 ± 4.6 68.7 ± 4.0 86.2 ± 10.7 83.5 ± 15.0 89.1 ± 10.1 82.0 ± 8.9 80.7 ± 12.3
HE 88.9 ± 1.0 58.4 ± 1.8 55.2 ± 1.8 57.9 ± 3.4 55.2 ± 1.9 58.7 ± 10.5 58.1 ± 10.0 51.7 ± 9.9 63.2 ± 11.9 58.8 ± 1.0

Category
2

Yeast2 99.1 ± 0.3 77.6 ± 1.7 73.7 ± 1.8 77.9 ± 1.9 73.7 ± 1.8 94.5 ± 1.9 95.1 ± 3.0 95.9 ± 2.0 96.1 ± 3.0 95.1 ± 2.6
Abalone 90.4 ± 0.1 89.7 ± 0.6 89.1 ± 0.4 89.4 ± 0.4 87.7 ± 0.9 94.4 ± 18 91.9 ± 2.0 94.6 ± 9.0 94.9 ± 1.7 94.8 ± 1.6
Glass 85.9 ± 3.0 83.8 ± 1.3 82.0 ± 1.5 83.8 ± 1.3 76.8 ± 1.9 81.3 ± 3.9 72.8 ± 8.9 81.7 ± 9.5 83.6 ± 8.1 80.8 ± 6.6

Category
3

Titanic 79.1 ± 0.3 75.6 ± 0.4 75.1 ± 0.2 75.6 ± 0.2 74.9 ± 0.4 74.1 ± 3.9 79.0 ± 1.2 78.7 ± 1.2 78.6 ± 2.0 79.0 ± 1.2
GCD 78.6 ± 0.9 53.3 ± 2.4 53.5 ± 2.0 57.7 ± 1.5 50.8 ± 3.2 58.5 ± 7.1 71.0 ± 2.8 75.6 ± 2.4 73.7 ± 2.7 72.4 ± 3.9
Mushroom 99.5 ± 0.0 82.5 ± 2.0 84.1 ± 0.8 87.6 ± 0.9 78.6 ± 2.7 94.2 ± 0.1 94.3 ± 0.0 94.2 ± 0.0 94.1 ± 0.0 93.5 ± 0.0

Category
4

Yeast3 96.0 ± 0.2 78.3 ± 0.7 77.1 ± 0.4 80.6 ± 0.4 74.8 ± 0.9 93.2 ± 1.1 92.5 ± 1.5 94.3 ± 1.3 94.6 ± 1.6 94.4 ± 1.0
Abalone19 98.6 ± 0.1 90.0 ± 0.2 90.5 ± 0.0 90.9 ± 0.1 89.4 ± 0.2 99.2 ± 0.3 98.4 ± 3.0 99.2 ± 3.0 99.2 ± 4.0 99.2 ± 0.4
PBC0 98.2 ± 0.1 82.2 ± 1.5 83.4 ± 0.8 86.5 ± 0.8 78.3 ± 2.2 95.6 ± 0.6 96.6 ± 0.6 97.5 ± 0.2 97.3 ± 0.4 97.2 ± 0.6

Category
5

DP 96.0 ± 0.4 86.8 ± 1.9 86.8 ± 2.5 86.9 ± 2.5 85.5 ± 1.7 97.6 ± 3.9 96.4 ± 3.9 97.6 ± 3.9 97.6 ± 3.9 98.2 ± 2.7
Sonar 83.4 ± 1.3 81.7 ± 3.0 76.6 ± 2.6 81.6 ± 2.7 69.5 ± 3.3 84.1 ± 4.3 71.7 ± 10.2 83.6 ± 9.3 81.3 ± 7.7 83.2 ± 7.4
Musk1 89.6 ± 0.5 80.7 ± 1.0 80.1 ± 0.6 82.2 ± 1.7 78.1 ± 2.0 88.0 ± 2.73 78.3 ± 4.0 89.8 ± 5.0 86.7 ± 6.4 89.4 ± 4.3

Category
6

KDDls 97.3 ± 0.0 79.3 ± 0.4 78.6 ± 0.2 80.2 ± 0.3 80.4 ± 0.2 99.8 ± 0.2 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.2 100.0 ± 0.0
KDDgps 98.0 ± 0.1 89.2 ± 0.8 79.8 ± 0.4 81.1 ± 0.4 79.3 ± 0.3 99.9 ± 0.2 100.0 ± 0 99.8 ± 0.2 100.0 ± 0.0 99.9 ± 0.2
KDDlp 99.2 ± 0.1 83.2 ± 1.5 82.0 ± 0.5 85.3 ± 1.1 76.4 ± 3.0 99.9 ± 0.3 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.3 100.0 ± 0.0

Category
7

SP 94.7 ± 1.5 89.6 ± 0.3 89.3 ± 0.1 90.8 ± 0.3 88.2 ± 0.7 80.6 ± 3.0 91.6 ± 11 95.4 ± 0.9 90.3 ± 1.2 94.5 ± 1.3
Elephant 97.6 ± 0.2 84.7 ± 1.3 83.8 ± 0.7 87.2 ± 1.0 84.1 ± 1.0 99.7 ± 0.5 100.0 ± 0.0 100.0 ± 0.0 98.2 ± 1.6 97.5 ± 1.5
Tiger 95.9 ± 0.6 86.4 ± 0.8 85.7 ± 0.2 88.1 ± 0.2 85.0 ± 0.6 99.8 ± 0.3 100.0 ± 0 100.0 ± 0 96.4 ± 1.5 94.9 ± 3.0

Category
8

KDDrvb 99.4 ± 0.0 85.2 ± 0.6 84.7 ± 0.5 86.6 ± 1.5 83.7 ± 0.6 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.1 99.9 ± 0.1
ICB2000 93.93 ± 0.0 90.5 ± 0.3 90.2 ± 0.3 91.6 ± 0.4 89.1 ± 0.5 93.7 ± 0.3 89.6 ± 7.8 93.2 ± 5.0 92.7 ± 5.3 92.4 ± 0.3
Musk2 90.9 ± 0.6 83.1 ± 1.0 81.0 ± 2.0 86.4 ± 0.7 80.0 ± 1.0 96.9 ± 0.53 88.2 ± 0.7 93.3 ± 1.1 95.5 ± 1.3 96.1 ± 0.6
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Table 4: Mean precision with standard deviation acquired by the ten algorithms
Category Data set GGA-DCA NIDDCA FLA-DCA GA-PSM SVM-DCA KNN DT XGboost RF ERT

Category
1

BCW 97.9 ± 1.3 89.5 ± 2.0 88.2 ± 2.5 90.5 ± 1.2 85.5 ± 2.1 94.2 ± 6.4 90.5 ± 8.3 92.6 ± 7.5 93.7 ± 7.3 92.5 ± 7.5
CCBR 67.8 ± 2.4 72.9 ± 4.0 68.1 ± 5.2 72.5 ± 4.6 71.4 ± 9.8 69.5 ± 45.5 71.9 ± 32.4 81.1 ± 32 61.2 ± 43.1 66.1 ± 44.3
HE 98.2 ± 0.0 59.4 ± 1.6 56.8 ± 1.4 59.1 ± 2.8 56.8 ± 1.4 70.8 ± 14.9 63.3 ± 10.7 55.4 ± 7.9 65.5 ± 14.5 63.5 ± 11.3

Category
2

Yeast2 97.39 ± 1.5 74.9 ± 7.1 72.7 ± 6.9 79.2 ± 4.6 69.7 ± 8.7 91.1 ± 13.6 74.32 ± 16.4 82.2 ± 13.3 92.2 ± 12.0 85.2 ± 16.7
Abalone 7.4 ± 0.1 5.4 ± 0.7 4.8 ± 0.4 5.1 ± 0.4 3.9 ± 0.5 6.6 ± 19.9 27.9 ± 19.3 54.6 ± 34.1 39.6 ± 48.6 19.9 ± 39.8
Glass 86.4 ± 0.02 84.4 ± 4.8 82.2 ± 4.0 83.5 ± 6.1 76.4 ± 4.5 89.2 ± 11.2 60.3 ± 11.9 74.6 ± 13.7 84.5 ± 11.7 84.6 ± 14.8

Category
3

Titanic 60.1 ± 0.3 57.1 ± 0.3 59.4 ± 0.4 60.3 ± 0.4 59.2 ± 0.6 77.8 ± 18.5 93.1 ± 4.0 90.7 ± 4.1 89.7 ± 8.8 93.1 ± 4.0
GCD 76.6 ± 0.7 53.2 ± 2.5 54.1 ± 1.9 57.4 ± 1.9 50.5 ± 3.6 77.0 ± 5.5 78.5 ± 2.2 80.2 ± 1.6 80.0 ± 1.9 79.3 ± 2.1
Mushroom 99.93 ± 0.0 82.5 ± 2.1 83.5 ± 0.6 87.3 ± 1.1 78.4 ± 2.4 89.9 ± 0.15 89.7 ± 0.0 89.6 ± 0.0 86.8 ± 0.0 90.1 ± 0.0

Category
4

Yeast3 73.2 ± 0.9 33.7 ± 0.8 32.3 ± 0.4 36.2 ± 0.4 30.4 ± 0.8 84.6 ± 10.5 67.6 ± 9.7 76.4 ± 6.8 85.1 ± 9.8 87.1 ± 9.1
Abalone19 0.0 ± 0.0 5.2 ± 0 5.4 ± 0 5.6 ± 0.1 4.8 ± 0.1 0.0 ± 0.0 4.49 ± 9.1 4.9 ± 14.9 0.0 ± 0.0 0.0 ± 0.0
PBC0 84.9 ± 0.4 82.1 ± 2.0 83.7 ± 2.0 86.3 ± 1.6 79.0 ± 3.0 89.8 ± 2.4 83.8 ± 4.8 89.2 ± 2.6 89.5 ± 3.7 89.7 ± 3.3

Category
5

DP 94.8 ± 0.5 87.5 ± 2.3 86.1 ± 4.2 87.0 ± 2.3 85.0 ± 3.4 99.8 ± 0.3 95.3 ± 5.6 99.8 ± 0.1 99.8 ± 0.1 99.9 ± 0.0
Sonar 76.3 ± 1.5 80.7 ± 4.0 76.6 ± 3.0 83.1 ± 2.6 69.9 ± 3.9 88.0 ± 6.9 73.4 ± 12.4 84.6 ± 11.9 86.6 ± 10.4 87.9 ± 10.7
Musk1 80.7 ± 0.9 80.3 ± 2.3 80.5 ± 2.0 82.3 ± 2.3 79.1 ± 2.3 90.9 ± 5.1 74.2 ± 6.1 89.7 ± 6.8 90.9 ± 7.2 86.6 ± 8.0

Category
6

KDDls 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 96.1 ± 0.1 99.5 ± 0.1 99.5 ± 0.1 99.4 ± 0.2 99.5 ± 0.1
KDDgps 62.3 ± 1.8 85.8 ± 4.5 7.1 ± 0.0 7.9 ± 0.0 11.5 ± 0.2 98.1 ± 5 99.7 ± 0.1 98.1 ± 4.9 99.7 ± 0.1 99.7 ± 0.1
KDDlp 71.5 ± 2.2 86.6 ± 7.6 79.4 ± 8.5 85.6 ± 6.7 74.7 ± 7.4 96.2 ± 10.0 99.5 ± 0.1 99.52 ± 0.1 99.46 ± 0.2 99.52 ± 0.1

Category
7

SP 89.4 ± 1.3 89.6 ± 0.7 89.2 ± 0.6 90.8 ± 0.5 88.3 ± 1.1 83.8 ± 3.5 89.5 ± 1.6 94.3 ± 1.3 94.9 ± 1.5 94.7 ± 1.3
Elephant 95.9 ± 0.3 84.1 ± 1.3 84.1 ± 1.4 87.4 ± 1.6 84.6 ± 1.2 99.7 ± 0.5 100.0 ± 0.0 100.0 ± 0.0 99.4 ± 0.9 98.2 ± 1.5
Tiger 95.6 ± 1.1 86.7 ± 1.0 85.9 ± 0.8 87.5 ± 0.9 84.7 ± 1.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 96.6 ± 2.1 96.1 ± 3.1

Category
8

KDDrvb 66.0 ± 2.8 80.8 ± 5.7 88.6 ± 6.5 88.1 ± 9.8 85.4 ± 10.1 99.5 ± 0.1 99.5 ± 0.1 99.5 ± 0.1 99.4 ± 0.2 99.4 ± 0.2
ICB2000 12.5 ± 3.4 38.7 ± 0.9 30.4 ± 1.0 40.3 ± 1.4 27.3 ± 1.4 31.9 ± 11.9 13.4 ± 3.8 24.8 ± 12.3 17.8 ± 7.9 17.5 ± 7.7
Musk2 90.93 ± 5.4 82.9 ± 2.0 80.0 ± 2.0 87.0 ± 1.3 79.7 ± 2.0 97.6 ± 2.0 65.8 ± 3.3 89.3 ± 3.5 96.3 ± 1.9 96.3 ± 1.6

Table 5: Mean specificity with standard deviation acquired by the ten algorithms
Category Data set GGA-DCA NIDDCA FLA-DCA GA-PSM SVM-DCA KNN DT XGboost RF ERT

Category
1

BCW 98.9 ± 0.7 94.3 ± 1.0 93.6 ± 1.3 94.8 ± 0.6 91.6 ± 1.2 97.7 ± 2.3 95.5 ± 3.5 96.6 ± 2.9 97.3 ± 2.6 96.6 ± 2.8
CCBR 82.6 ± 1.8 87.6 ± 3.0 85.0 ± 4.0 87.3 ± 4.0 85.3 ± 4.0 99.7 ± 0.1 86.1 ± 18.0 95.7 ± 8.0 95.8 ± 8.0 95.7 ± 8.0
HE 98.8 ± 0.0 36.4 ± 0.4 29.3 ± 4.0 35.3 ± 7.5 29.2 ± 4.1 79.8 ± 11.4 54.2 ± 18.9 41.3 ± 16.2 62.7 ± 11.3 54.2 ± 17.8

Category
2

Yeast2 99.72 ± 0.2 96.5 ± 1 96.1 ± 0.9 97.1 ± 0.7 95.6 ± 1.2 99.1 ± 1.5 97.1 ± 1.4 97.8 ± 1.7 99.1 ± 1.4 98.4 ± 1.9
Abalone 90.3 ± 0.1 94.8 ± 0.7 94.2 ± 0.4 94.5 ± 0.4 92.7 ± 1.0 99.8 ± 0.5 95.1 ± 2.2 98.2 ± 1.3 100.0 ± 0.0 100.0 ± 0.0
Glass 92.0 ± 1.1 90.8 ± 2.3 89.4 ± 2 90.4 ± 3.1 85.6 ± 2.2 95.5 ± 4.7 75.9 ± 8.9 86.1 ± 8.2 93.4 ± 5 92.6 ± 7.1

Category
3

Titanic 69.1 ± 0.4 64.0 ± 0.5 76.5 ± 0.3 77.4 ± 0.4 76.4 ± 0.6 96.2 ± 3.3 98.6 ± 0.8 98.1 ± 0.8 97.7 ± 2.3 98.6 ± 0.8
GCD 28.6 ± 3.0 33.0 ± 2.2 32.8 ± 2 37.0 ± 1.5 30.9 ± 2.6 60.3 ± 8.6 48.3 ± 8.1 49.9 ± 5.9 51.3 ± 6.5 50.3 ± 4.8
Mushroom 99.93 ± 0.0 88.4 ± 1.5 89.2 ± 0.4 91.8 ± 0.7 85.4 ± 1.8 92.7 ± 0.1 93.5 ± 0.0 93.5 ± 0.0 95.4 ± 0.0 95.6 ± 0.0

Category
4

Yeast3 95.5 ± 0.2 75.6 ± 1.0 74.2 ± 0.5 78.2 ± 0.5 71.8 ± 1.0 98.7 ± 8.4 95.9 ± 1.7 97.1 ± 1.2 98.5 ± 1.0 98.6 ± 1.3
Abalone19 99.37 ± 0.0 90.1 ± 0.1 90.7 ± 0.0 91.0 ± 0.1 89.5 ± 0.2 100.0 ± 0.0 99.1 ± 0.3 99.9 ± 0.0 100.0 ± 0.0 99.9 ± 0.1
PBC0 97.9 ± 0.1 97.5 ± 0.3 97.8 ± 0.2 98.2 ± 0.2 97.3 ± 0.4 99.1 ± 0.2 98.1 ± 0.8 98.8 ± 0.4 98.8 ± 0.0 98.9 ± 0.4

Category
5

DP 95.06 ± 0.4 87.6 ± 1.8 86.7 ± 3.5 87.2 ± 2.2 85.5 ± 2.7 99.9 ± 0.3 95.4 ± 5.4 99.9 ± 0 99.9 ± 0 99.9 ± 0
Sonar 64.2 ± 2.9 79.0 ± 3.4 74.1 ± 2.6 80.5 ± 3.0 66.7 ± 3.4 86.2 ± 4.1 66.1 ± 17.5 79.3 ± 18.9 84.5 ± 12.9 85.7 ± 12.8
Musk1 81.6 ± 1.0 84.3 ± 1.5 84.2 ± 1.1 85.8 ± 1.6 82.8 ± 1.9 93.6 ± 3.7 78.7 ± 7.0 92.2 ± 5.3 93.6 ± 4.5 89.2 ± 7.1

Category
6

KDDls 98.6 ± 0.0 80.3 ± 0.4 79.6 ± 0.2 81.2 ± 0.3 81.5 ± 0.2 99.9 ± 0.2 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
KDDgps 98.0 ± 0.1 99.5 ± 0.1 80.9 ± 0.3 82.3 ± 0.3 79.2 ± 0.3 99.9 ± 0.0 100.0 ± 0.0 99.94 ± 0.2 100.0 ± 0.0 100.0 ± 0.0
KDDlp 99.2 ± 0.01 99.6 ± 0.2 99.4 ± 0.2 99.6 ± 0.2 99.3 ± 0.2 99.9 ± 0.3 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Category
7

SP 92.4 ± 1.3 93.0 ± 0.4 92.7 ± 0.3 93.8 ± 0.2 92.0 ± 0.7 92.1 ± 4.4 93.2 ± 1.1 96.3 ± 1.0 97.2 ± 1.0 96.7 ± 0.8
Elephant 94.9 ± 0.4 81.6 ± 1.4 81.3 ± 1.3 85.1 ± 1.6 81.7 ± 1.2 99.6 ± 0.6 100.0 ± 0.0 100.0 ± 0.0 99.3 ± 1.1 98.5 ± 1.8
Tiger 96.47 ± 0.9 89.0 ± 0.8 88.3 ± 0.5 89.8 ± 0.6 87.4 ± 0.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 97.3 ± 1.7 97.0 ± 2.6

Category
8

KDDrvb 99.48 ± 0.0 99.7 ± 0.0 99.8 ± 0.0 99.8 ± 0.1 99.8 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
ICB2000 99.9 ± 0.0 89.9 ± 0.4 92.9 ± 0.3 92.0 ± 0.4 91.7 ± 0.6 99.3 ± 0.3 94.5 ± 0.8 98.6 ± 0.4 98.1 ± 0.4 97.7 ± 0.4
Musk2 98.2 ± 0.0 96.3 ± 0.4 95.6 ± 0.4 97.3 ± 0.3 95.6 ± 0.5 99.6 ± 0.3 95.3 ± 0.6 98.6 ± 0.5 99.4 ± 0.2 99.4 ± 0.2
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Table 6: Mean F-Measure with standard deviation acquired by the ten algorithms
Category Data set GGA-DCA NIDDCA FLA-DCA GA-PSM SVM-DCA KNN DT XGboost RF ERT

Category
1

BCW 98.5 ± 0.6 86.5 ± 1.9 85.0 ± 2.2 86.6 ± 1.3 77.7 ± 2.0 89.0 ± 4.1 88.5 ± 4.9 93.0 ± 4.2 93.1 ± 4.3 92.5 ± 4.4
CCBR 76.72 ± 2 61.4 ± 4.5 56.1 ± 6.7 60.8 ± 5.7 56.4 ± 6.3 57.3 ± 39.7 70.6 ± 28.8 73.5 ± 29.6 50.4 ± 35.1 50.7 ± 34.6
HE 96.2 ± 1.0 66.4 ± 1.0 64.7 ± 1.0 66.2 ± 1.8 64.7 ± 1.0 50.8 ± 14.4 61.2 ± 7.3 56.6 ± 10.0 63.2 ± 17.1 61.5 ± 10.0

Category
2

Yeast2 95.7 ± 1.7 84.1 ± 0.6 50.0 ± 0.9 48.6 ± 0.5 52.8 ± 0.5 63.7 ± 15.3 73.5 ± 17.9 77.5 ± 13.2 75.5 ± 18.5 71.3 ± 15.2
Abalone 13.7 ± 1.7 4.6 ± 0.3 4.3 ± 0.2 4.5 ± 0.2 3.8 ± 0.3 4.9 ± 14.8 29.27 ± 21.1 36.4 ± 21.8 32.4 ± 27.8 10.6 ± 21.3
Glass 80.9 ± 0.7 78.2 ± 2.1 75.9 ± 2.0 78.0 ± 2.5 69.6 ± 2.4 66.9 ± 7.3 62.1 ± 14 73.0 ± 13.7 72.4 ± 13.6 66.6 ± 13.1

Category
3

Titanic 75.1 ± 1.2 72.1 ± 0.1 64.6 ± 0.2 65.0 ± 0.2 64.4 ± 0.4 38.9 ± 15.1 53.4 ± 3.5 53.3 ± 3.4 53.5 ± 3.4 53.4 ± 3.5
GCD 86.2 ± 0.5 60.9 ± 2.3 61.5 ± 1.8 65.0 ± 1.5 58.4 ± 3.2 65.4 ± 6.5 79.0 ± 2.3 82.6 ± 2.1 81.0 ± 2.1 80.0 ± 3.1
Mushroom 98.9 ± 0.0 77.8 ± 2.5 79.4 ± 0.9 83.8 ± 1.1 73.2 ± 3.1 91.4 ± 0.1 92.5 ± 0.0 91.6 ± 0.0 92.3 ± 0.0 92.6 ± 0.0

Category
4

Yeast3 11.0 ± 0.4 50.0 ± 0.9 48.6 ± 0.5 52.7 ± 0.5 46.3 ± 0.9 59.9 ± 9.6 65.3 ± 7.1 72.7 ± 6.2 71.37 ± 9.5 68.9 ± 6.8
Abalone19 0.5 ± 0.0 9.4 ± 0.1 10.0 ± 0.7 10.2 ± 0.1 8.9 ± 0.2 16.7 ± 21.7 0.0 ± 0.0 4.3 ± 8.7 4.9 ± 14.5 0.0 ± 0.0
PBC0 91.3 ± 0.2 48.1 ± 2.5 50.3 ± 1.4 56.3 ± 1.9 42.4 ± 3.1 74.7 ± 4.0 82.7 ± 3.0 87.0 ± 1.4 86.3 ± 2.1 85.3 ± 4.0

Category
5

DP 95.5 ± 0.2 86.3 ± 1.8 86.0 ± 2.7 86.3 ± 2.4 84.8 ± 1.8 96.7 ± 4.6 95.8 ± 4.1 96.7 ± 4.6 96.7 ± 4.6 97.4 ± 2.9
Sonar 86.1 ± 0.9 82.0 ± 2.9 77.2 ± 2.3 82.3 ± 2.5 70.5 ± 3.1 84.0 ± 4.1 73.7 ± 8.7 84.9 ± 7.4 81.0 ± 7.5 82.9 ± 7.9
Musk1 88.8 ± 0.5 77.9 ± 1.2 77.4 ± 0.6 79.6 ± 1.8 75.4 ± 2.1 84.8 ± 3.6 75.1 ± 44.9 87.5 ± 6.0 83.4 ± 9.1 86.5 ± 6.0

Category
6

KDDls 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 93.7 ± 11 99.0 ± 0.1 99.0 ± 0.1 95.7 ± 10 99.0 ± 0.1
KDDgps 76.3 ± 1.5 33.8 ± 2.6 11.9 ± 0.2 12.7 ± 0.2 20.0 ± 0.3 98.3 ± 2.7 99.3 ± 0.0 97.4 ± 3.6 99.3 ± 0 98.1 ± 3.3
KDDlp 83.4 ± 1.5 16.8 ± 1.6 14.7 ± 1.2 18.7 ± 2.1 11.1 ± 1.8 97.0 ± 6 99.0 ± 0.1 99.0 ± 0.1 95.7 ± 10 99.0 ± 0.1

Category
7

SP 93.6 ± 1.2 86.7 ± 0.4 86.3 ± 0.2 88.1 ± 0.3 85.0 ± 0.8 71.2 ± 4.3 88.8 ± 1.4 93.6 ± 1.1 86.2 ± 1.8 93.3 ± 1.5
Elephant 97.9 ± 0.1 85.2 ± 1.2 84.5 ± 0.8 87.7 ± 1.0 84.9 ± 0.9 99.2 ± 0.4 99.5 ± 0.1 99.5 ± 0.0 97.8 ± 1.5 97.1 ± 1.4
Tiger 94.9 ± 0.7 84.6 ± 8.2 83.7 ± 2.7 86.3 ± 0.3 83.0 ± 0.7 99.3 ± 0.4 100.0 ± 0.0 100.0 ± 0.0 95.4 ± 1.7 93.1 ± 3.6

Category
8

KDDrvb 79.5 ± 2 9.7 ± 0.9 10.2 ± 0.8 11.5 ± 1.8 9.3 ± 1.2 99.0 ± 0.1 99.0 ± 0.1 99.0 ± 0.1 95.7 ± 10.0 95.7 ± 10
ICB2000 56 ± 0.2 55.4 ± 0.95 37.0 ± 0.6 54.2 ± 1.3 34.5 ± 1.1 7.2 ± 2.4 12.7 ± 3.8 10.2 ± 6.3 8.9 ± 4.8 10.6 ± 5.8
Musk2 75.0 ± 1.3 59.8 ± 1.8 56.1 ± 2.7 65.9 ± 1.2 54.7 ± 1.9 88.8 ± 2.0 55.3 ± 4.1 74.1 ± 5.3 82.8 ± 5.6 85.7 ± 2.7

Table 7: Mean AUC with standard deviation acquired by the ten algorithms

Category Data set GGA-DCA NIDDCA FLA-DCA GA-PSM SVM-DCA KNN DT XGboost RF ERT
Category
1

BCW 0.98 ± 0.006 0.85 ± 0.064 0.88 ± 0.016 0.89 ± 0.011 0.81 ± 0.015 0.91 ± 0.03 0.91 ± 0.033 0.95 ± 0.02 0.95 ± 0.021 0.95 ± 0.022

CCBR 0.81 ± 0.015 0.70 ± 0.034 0.66 ± 0.050 0.69 ± 0.043 0.66 ± 0.044 0.75 ± 0.195 0.81 ± 0.18 0.83 ± 0.166 0.71 ± 0.166 0.72 ± 0.176

HE 0.89 ± 0.100 0.57 ± 0.022 0.54 ± 0.025 0.57 ± 0.041 0.53 ± 0.024 0.61 ± 0.103 0.57 ± 0.107 0.51 ± 0.101 0.63 ± 0.115 0.58 ± 0.103
Category
2

Yeast2 0.97 ± 0.015 0.62 ± 0.017 0.59 ± 0.012 0.62 ± 0.015 0.59 ± 0.020 0.76 ± 0.091 0.87 ± 0.12 0.88 ± 0.103 0.84 ± 0.114 0.81 ± 0.096

Abalone 0.53 ± 0.000 0.49 ± 0.004 0.49 ± 0.002 0.49 ± 0.002 0.49 ± 0.003 0.51 ± 0.057 0.65 ± 0.138 0.64 ± 0.109 0.55 ± 0.074 0.54 ± 0.074

Glass 0.84 ± 0.004 0.82 ± 0.014 0.80 ± 0.016 0.82 ± 0.014 0.75 ± 0.019 0.75 ± 0.043 0.71 ± 0.105 0.79 ± 0.105 0.79 ± 0.098 0.75 ± 0.084
Category
3

Titanic 0.80 ± 0.002 0.78 ± 0.005 0.77 ± 0.001 0.72 ± 0.002 0.72 ± 0.004 0.61 ± 0.06 0.68 ± 0.017 0.68 ± 0.017 0.68 ± 0.019 0.68 ± 0.017

GCD 0.88 ± 0.003 0.53 ± 0.022 0.52 ± 0.019 0.57 ± 0.013 0.51 ± 0.026 0.59 ± 0.074 0.64 ± 0.033 0.68 ± 0.023 0.67 ± 0.031 0.66 ± 0.037

Mushroom 0.99 ± 0.000 0.81 ± 0.021 0.83 ± 0.008 0.86 ± 0.009 0.77 ± 0.027 0.93 ± 0.04 0.93 ± 0.000 0.92 ± 0.000 0.94 ± 0.000 0.95 ± 0.000
Category
4

Yeast3 0.86 ± 0.006 0.66 ± 0.004 0.66 ± 0.002 0.68 ± 0.002 0.65 ± 0.004 0.73 ± 0.056 0.80 ± 0.051 0.84 ± 0.046 0.80 ± 0.059 0.79 ± 0.054

Abalone19 0.50 ± 0.001 0.52 ± 0.001 0.52 ± 0.001 0.52 ± 0.001 0.52 ± 0.001 0.50 ± 0.000 0.52 ± 0.045 0.52 ± 0.075 0.50 ± 0.000 0.50 ± 0.001

PBC0 0.92 ± 0.018 0.66 ± 0.012 0.67 ± 0.007 0.70 ± 0.010 0.63 ± 0.015 0.82 ± 0.028 0.90 ± 0.030 0.92 ± 0.020 0.91 ± 0.030 0.90 ± 0.030
Category
5

DP 0.96 ± 0.002 0.86 ± 0.018 0.86 ± 0.024 0.87 ± 0.025 0.85 ± 0.017 0.97 ± 0.041 0.96 ± 0.038 97.56 ± 0.041 0.97pm0.041 0.98 ± 0.028
Sonar 0.88 ± 0.013 0.81 ± 0.029 0.76 ± 0.027 0.81 ± 0.028 0.69 ± 0.034 0.84 ± 0.0447 0.71 ± 0.104 0.83 ± 0.097 0.81 ± 0.076 0.83 ± 0.075

Musk1 0.90 ± 0.004 0.80 ± 0.010 0.79 ± 0.006 0.81 ± 0.017 0.77 ± 0.020 0.87 ± 0.028 0.78 ± 0.041 0.89 ± 0.051 0.85 ± 0.072 0.88 ± 0.043
Category
6

KDDls 0.49 ± 0.000 0.49 ± 0.000 0.49 ± 0.000 0.49 ± 0.006 0.49 ± 0.003 0.97 ± 0.074 1.00 ± 0.000 1.00 ± 0.000 0.97 ± 0.075 1.00 ± 0.000

KDDgps 0.98 ± 0.007 0.60 ± 0.009 0.52 ± 0.000 0.52 ± 0.000 0.55 ± 0.001 0.99 ± 0.001 1.00 ± 0.000 0.99 ± 0.025 1.00 ± 0.000 0.99 ± 0.030

KDDlp 0.99 ± 0.000 0.55 ± 0.005 0.54 ± 0.004 0.55 ± 0.007 0.52 ± 0.006 0.99 ± 0.001 1.00 ± 0.000 1.00 ± 0.000 97.5 ± 0.075 1.00 ± 0.000
Category
7

SP 0.94 ± 0.010 0.88 ± 0.003 0.88 ± 0.002 0.90 ± 0.003 0.87 ± 0.007 0.77 ± 0.030 0.91 ± 0.01 0.95 ± 0.010 0.88 ± 0.015 0.93 ± 0.016

Elephant 0.97 ± 0.001 0.84 ± 0.012 0.83 ± 0.008 0.87 ± 0.010 0.84 ± 0.009 0.99 ± 0.005 1.00 ± 0.000 1.00 ± 0.00 0.98 ± 0.016 0.97 ± 0.015

Tiger 0.96 ± 0.600 0.86 ± 0.007 0.85 ± 0.002 0.87 ± 0.002 0.84 ± 0.007 0.99 ± 0.004 1.00 ± 0.000 1.00 ± 0.000 0.96 ± 0.015 0.94 ± 0.032
Category
8

KDDrvb 0.99 ± 0.000 0.52 ± 0.003 0.52 ± 0.002 0.53 ± 0.006 0.52 ± 0.004 1.00 ± 0.000 1.00 ± 0.000 1.00 ± 0.000 0.97 ± 0.075 0.97 ± 0.075

ICB2000 0.53 ± 0.017 0.69 ± 0.005 0.63 ± 0.004 0.69 ± 0.007 0.62 ± 0.007 0.51 ± 0.007 0.53 ± 0.020 0.52 ± 0.021 0.52 ± 0.017 0.52 ± 0.022

Musk2 0.84 ± 0.038 0.71 ± 0.010 0.69 ± 0.016 0.75 ± 0.007 0.69 ± 0.011 0.91 ± 0.016 0.72 ± 0.024 0.81 ± 0.035 0.86 ± 0.038 0.88 ± 0.022

The Tables 3–7 show that the proposed GGA-DCA consistently achieves better performance on
the 24 data sets compared with DCA versions (e.g., NIDDCA, FLA-DCA, SVM-DCA, and GA-
PSM). We can conclude that the proposed GGA-DCA is superior to the state-of-the-art DCA versions
(e.g., NIDDCA, FLA-DCA, SVM-DCA, and GA-PSM) over all the UCI and Keel data sets in a
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statistically significant manner. Moreover, the Table 3 also shows that the GGA-DCA obtains better
classification accuracy compared with those machine learning algorithms, e.g., KNN, DT, XGboost,
RF, and ERT, on those data sets with low-dimensional feature space (e.g., BCW, CCBR, HE, Yeast2,
Abalone, Glass, Titanic, GDD, Yeast3, and PBC0). When performing classification on those data sets
with high-dimensional feature space (e.g., Musk2, Tiger, and Elephant), the proposed GGA-DCA
has not obtained the same satisfactory results as machine learning algorithms. However, our method
maintains the same advantage as those machine learning algorithms in terms of AUC.

To better analyze the results, this study tests the following hypotheses using the t-test to analyze
whether significant differences exist in the experiments between the GGA-DCA and other signal
acquisition algorithms of DCA (called “Comparisons”) under the condition z = 0.05.

H0 : μGGA−DCA = μComparisons

H0 : μGGA−DCA ± μComparisons (14)

The Table 8 shows the t-test results on accuracy. When the degree of freedom is nine, and the
significance level of the t-test is 0.05, the critical t-value is 2.262. Therefore, if the result is below 2.262,
we can conclude that H0; otherwise, we can determine that significant differences exist. The Table 8
illuminates all the t-value exceeds 2.262. We can conclude that in terms of classification accuracy,
our algorithm GGA-DCA and the other signal acqusition algorithms of DCA exhibit significant
differences on all the test problems. This accordingly proves once again, from a statistical point of view,
that our algorithm is the best in all test problems compared with the DCA expansion algorithms.

Table 8: t-test results of the signal acquisition algorithms of DCA on accuracy

Category Data set GGA-DCA NIDDCA FLA-DCA GA-PSM SVM-DCA

Category 1 BCW - 47.9157 60.0471 52.8680 25.8835
CCBR - 6.50704 7.0018 7.0719 8.7406
HE - 78.2049 34.3254 24.8921 33.3283

Category 2 Yeast2 - 32.2691 49.3114 32.7919 47.7141
Abalone - 3.7366 7.5889 5.7975 9.8027
Glass - 2.6940 8.6605 2.9715 10.8121

Category 3 Titanic - 26.2637 48.1639 40.1102 27.7611
GCD - 30.2491 34.9082 38.2404 25.7767
Mushroom - 23.8558 55.7381 41.2815 23.1552

Category 4 Yeast3 - 65.1644 126.8233 112.3292 63.1638
Abalone19 - 159.4095 238.6075 175.9318 109.3993
PBC0 - 31.9973 54.3658 42.3448 27.6673

Category 5 DP - 11.2283 8.8496 8.9713 15.8397
Sonar - 2.0293 9.3825 1.7648 12.2132
Musk1 - 21.9602 30.3061 14.3279 15.8293

Category 6 KDDls - 204.5178 234.7499 116.5525 182.2177
KDDgps - 36.8735 158.6763 127.6900 134.5714
KDDlp - 30.8391 74.9685 32.7716 21.5856

Category 7 SP - 44.0675 107.0000 48.1708 27.9601
Elephant - 29.4309 53.1809 29.5649 38.6331
Tiger - 38.0717 93.3053 61.5919 47.6568

Category 8 KDDrvb - 70.8401 80.9871 27.0485 75.9500
ICB2000 - 26.7584 41.9830 15.6973 26.2586
Musk2 - 25.2447 18.2440 21.6173 27.8823
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6 Conclusion

This study firstly provides formal definitions of the DCA, such as DCs, inputs, and outputs,
to make researchers understand the algorithm better. The works of feature selection and signal
categorization are analyzed. Inspired by the grouping problems, this study models those works into
a feature grouping problem. By searching for the optimal grouping scheme, this study automatically
accomplishes feature selection and signal categorization without any expertise. The GGA is introduced
to perform the searching task without expertise, making the algorithm more adaptive to apply to
more fields. This study mixes the GGA and DCA to form a novel DCA version, GGA-DCA, to
automatically accomplish feature selection and signal categorization. This study redefined crossover
and mutation in GGA and let it find the optimal grouping with the most less time for DCA. The
classification results from experiments indicate that GGA-DCA generally finds the optimal grouping
schemes and keeps the algorithm lightweight in terms of running time without expertise.

The future works include two parts. Firstly, more search methods will be explored to perform
feature selection and signal categorization, such as Monarch Butterfly Optimization (MBO) [35],
Elephant Herding Optimization (EHO) [36], Krill Herd (KH) [37], and three-phase search approach
with dynamic population size (TPSDP) [38]. Secondly, other metrics will be attempted to measure
the performance of a feature grouping. The F-measure is the weighted harmonic average of precision
and recall, which can measure the performance better. Hence, the F-measure is the next evaluation
indicator for GGA-DCA.
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