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ABSTRACT

The problem of investigating the minimum set of landmarks consisting of auto-machines (Robots) in a connected
network is studied with the concept of location number or metric dimension of this network. In this paper, we study
the latest type of metric dimension called as local fractional metric dimension (LFMD) and find its upper bounds
for generalized Petersen networks GP(n, 3), where n ≥ 7. For n ≥ 9. The limiting values of LFMD for GP(n, 3)

are also obtained as 1 (bounded) if n approaches to infinity.
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1 Introduction

The idea of metric dimension (MD) was firstly introduced by Melter et al. [1]. It has various
applications in different areas such as the navigation system, image processing and drug discoveries. A
network consists of nodes that are represented by vertices and connections between different vertices
are denoted by edges. With the help of edges, an agent can change its position from one vertex to
another. Some vertices are referred to as landmarks from which an agent can easily find its location
in the network. The set with the minimum number of landmarks is known as the metric basis, and the
cardinality of the aforesaid set is known as MD [2,3].

Moreover, the concept of MD in integer programming problem (IPP) was studied by Chartrand
et al. [4]. Later on, Oellermann et al. [5,6] produced more refined results of (IPP) through MD.
Fehr et al. [7] also derived various results for different graphs which are used to solve relaxation
problems by using MD. For more results on MD, see [8,9].

The idea of fractional metric dimension (FMD) for different networks flourished through the
work of Arumugam et al. [10]. Moreover, different networks are studied with the help of FMD such
as hierarchical, Cartesian, corona, comb and lexicographic products [11–14]. Yi [15] and Liu et al. [16]
calculated FMD for permutation and generalized Jahangir networks. Moreover, the sharps bounds
of FMD for all the connected networks are studied in [17]. The idea of local fractional metric
dimension (LFMD) came through the work of Aisyah et al. in which they computed the LFMD for
the corona product of networks [18]. Later on, Liu et al. [19] discussed the LFMD for a particular
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class of planar networks called by circular ladders and rotationally symmetric networks. Recently,
Javaid et al. calculated the bounds of LFMD of connected and prism related networks in [20,21].

In this paper, we find local resolving neighborhood sets (LRNs) of generalized Petersen network
GP(n, 3) for n ≥ 5. After that, we calculated the sharp bounds of the local fractional metric dimension
with the help of LRNs. The organization of paper is: Section 1 describes the introduction, Section 2
presents the preliminaries, Section 3 includes the local fractional metric dimensions of the Generalized
Petersen network and Section 4 presents the discussion and conclusion.

2 Preliminaries

Mathematically, a network N consists of vertices set V(N )and edges set E(N ) with property
E(N ) ⊆ V(N ) × V(N ). In the present study, only the simple networks without any loop or parallel
edges are considered. The distance between two vertices is considered as the length (number of edges)
of the shortest path existing between them. For more basic notions, we refer to [22,23].

For any connected graph, y ∈ V(N ) can resolve pair {v, w} ∈ V(N , if d(y, v) �= d(y, w). Let T
be a set which is subset of V(N ) known as resolving set of N if all pair of vertices in N are resolved
by some vertices of T . The cardinality of resolving set is denoted by |T |. The set having minimum
cardinality among all the resolving sets of N is called as metric dimension (MD).

For vw ∈ E(N ), the local resolving neighborhood (LRN) set LR(vw) of vw is defined as LR(vw) =
{x ∈ V(N ) : d(x, v) �= d(x, w)}. A local resolving function (LRF) is a real valued function φ :
V(N ) → [0, 1] such that φ(LR(vw)) ≥ 1 for each LR(vw) of N , where φ (LR (vw)) = ∑

z∈LR(vw)

φ (z).

An LRF g is called minimal if there exists an other function φ : V(N ) → [0, 1] such that φ ≤ g and
φ(u) �= g(u) for at least one u ∈ V , that is not a LRF of N . If |g| = ∑

y∈V(N )

φ (x), then LFMD of N is

defined as

dimlf (N ) = min{|g| : g is a minimal LRF of N }. For more detail, see [1,10,19].

For n ≥ 7, let GP(n, 3) be a generalized Petersen network with vertex set V(GP(n, 3)) = {xi, yj :
1 ≤ i, j ≤ n} and edge set E(GP(n, 3)) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {xiyi : 1 ≤ i ≤ n} ∪ {xnx1} ∪ {yiyi+3 :
1 ≤ i ≤ n − 3} ∪ {yn−2y1, yn−1y2, yny3}, where |V(GP(n, 3))| = 2n, |E(GP(n, 3))| = 3n (see Fig. 1).

Now we present the following important result which will be frequently used in the main results.

Theorem 1: (see [15]) Let N (VN , E(N )) be a connected network and LR(c) be a local resolving
neighborhood for some c ∈ E(N ). If |LR(c)∩Y | ≥ α for all c ∈ E(N ), then, dimlf (N ) ≤ |Y |

α
, where,

α = min{|LR(c)| : c ∈ E(N )}, Y = ∪{LR(c) : |LR(c)| = α}.
Theorem 2: (see [15]) For a connected network N, dimlf (N) = 1 if N is bipartite.

Theorem 3: (see [20]) Let N (VN , E(N )) be a connected network and LR(c) be a local resolving
neighborhood set. Then, |V(N |

γ
≤ dimlf (N ) , where, γ = max{|LR(c)| : c ∈ E(N )} and 2 ≤ γ ≤

|V(N )|.
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Figure 1: Petersen graphs (a) GP(6, 3) and (b) GP(9, 3)

3 Local Fractional Metric Dimension Generalized Petersen Network

This section deals with the main findings of the present studies.

Theorem 4. The LFMD of generalized Petersen network GP(n, 3) for n = 7 is 14
13

≤
dimlf (GP (7, 3)) ≤ 7

5
.

Proof: The LRNs of GP(n, 3) for n = 7 are given by:

LR1 = LR(x1x2) = V(GP(7, 3)) − {x5, y5}, LR2 = LR(x2x3) = V(GP(7, 3)) − {x6, y6},
LR3 = LR(x3x4) = V(GP(7, 3)) − {x7, y7}, LR4 = LR(x4x5) = V(GP(7, 3)) − {x1, y1},
LR5 = LR(x5x6) = V(GP(7, 3)) − {x2, y2}, LR6 = LR(x6x7) = V(GP(7, 3)) − {x3, y3},
LR7 = LR(x7x1) = V(GP(7, 3)) − {x4, y4}, LR8 = LR(y1y4) = V(GP(7, 3)) − {y6},
LR9 = LR(y2y5) = V(GP(7, 3)) − {y7}, LR10 = LR(y3y6) = V(GP(7, 3)) − {y1},
LR11 = LR(y4y7) = V(GP(7, 3)) − {y2}, LR12 = LR(y5y1) = V(GP(7, 3)) − {y3},
LR13 = LR(y6y2) = V(GP(7, 3)) − {y4}, LR14 = LR(y7y3) = V(GP(7, 3)) − {y5},
LR(x1y1) = V(GP(7, 3)) − {y2, y3, y6, y7} = LR(e1),

LR(x2y2) = V(GP(7, 3)) − {y3, y4, y7, y1} = LR(e2),

LR(x3y3) = V(GP(7, 3)) − {y4, y5, y1, y2} = LR(e3),

LR(x4y4) = V(GP(7, 3)) − {y5, y6, y2, y3} = LR(e4),

LR(x5y5) = V(GP(7, 3)) − {y6, y7, y3, y4} = LR(e5),

LR(x6y6) = V(GP(7, 3)) − {y7, y1, y4, y5} = LR(e6),

LR(x7y7) = V(GP(7, 3)) − {y1, y2, y5, y6} = LR(e7).
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For 1 ≤ m ≤ 14 and 1 ≤ j ≤ 7 LRN are |LR(ej)| = 10 < |LRm|. Furthermore,
7∪

j=1
LR

(
ej

) =
V (GP (7, 3)), | 7∪

j=1
LR

(
ej

) | = 14 and |LRm ∩ 7∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) | = 10. Moreover, 1 ≤ j ≤ 7, LR(ej)

are pairwise nonempty. There exist a minimal LRF ψ : V(GP(7, 3)) → [0, 1] is defined as ψ (y) = 1
10

for each y ∈ 7∪
j=1

LR
(
ej

)
and ψ(y) = 0 for the vertices of GP(7, 3) which are not in

7∪
j=1

LR
(
ej

)
. Therefore,

by theorem 1, dimlf (GP (7, 3)) ≤
14∑

j=1

1
10

= 14
10

. Since |V(GP(7, 3))| = γ = 13, then by Theorem 3 we

have 14
13

≤ dimlf (GP (7, 3)) (as GP(7, 3) is not bipartite network). Therefore, 14
13

≤ dimlf (GP (n, 3)) ≤ 7
5
.

Lemma 1: Let GP(n, 3) be Generalized Petersen network for, n ≡ 3(mod 6) and n ≥ 9. Then, for
1 ≤ i ≤ n − 3, 1 ≤ j ≤ n|LR(ej)| = |LR(ej = yiyi+3)| = 2n − 6 = |LR(yn−2y1)| = |LR(yn−1y2)| =
|LR(yny3)|. Moreover,

n∪
j=1

LR
(
ej

) = {
xp : 1 ≤ p ≤ n

} ∪ {
yq : 1 ≤ q ≤ n

}
and | n∪

j=1
LR

(
ej

) | = α = 2n.

Proof: For, n ≥ 9 and n ≡ 3(mod 6) the local resolving neighborhood of generalized Petersen
network GP(n, 3), for 1 ≤ i ≤ n − 3, 1 ≤ j ≤ n, p, q �= n+3

2
, n+5

2
, n+7

2

LR (yiyi+3) =

⎧⎪⎨
⎪⎩

xp : 1 ≤ p ≤ n

yq : 1 ≤ q ≤ n

with |LR(ej)| = 2n − 6 and
n∪

j=1
LR

(
ej

) = {
xp : 1 ≤ p ≤ n

} ∪ {
yq : 1 ≤ q ≤ n

}
and we have

| n∪
j=1

LR
(
ej

) | = 2n.

Lemma 2: Let GP(n, 3) be generalized Petersen network with n ≡ 3(mod 6) and n ≥ 9, then, for

1 ≤ i ≤ n, 1 ≤ j ≤ n. (a) |LR(ej)| < |LR(xixi+1)| and |LR (xixi+1) ∩
(

n∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) |,

(b) |LR(ej)| < |LR(xiyi)| and |LR (xiyi) ∩
(

n∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) |,

Proof: (a) The local resolving neighborhood for 1 ≤ i ≤ n, 1 ≤ j ≤ n, p, q �= n+3
2

LR (xixi+1) =

⎧⎪⎨
⎪⎩

xp : 1 ≤ p ≤ n

yq : 1 ≤ q ≤ n

with |LR(xixi+1)| = 2n − 2 > 2n − 6 = |LR(ej)|, Therefore, |LR (xixi+1) ∩
(

n∪
j=1

LRej

)
| = 2n − 2 >

|LR
(
ej

) |.
(b) The local resolving neighborhood for 1 ≤ i ≤ n, 1 ≤ j ≤ n,

LR (xiyi) =

⎧⎪⎨
⎪⎩

xp : 1 ≤ p ≤ n

yq : 1 ≤ q ≤ n
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with |LR(xiyi)| = 2n > 2n − 6 = |LR(ej)|, Therefore, |LR (xiyi) ∩
(

n∪
j=1

LRej

)
| = 2n > |LR

(
ej

) |.
Theorem 5: Let GP(n, 3) with n ≡ 3(mod 6) be a generalized Petersen network, where

|V(GP(n, 3))| = 2n and n ≥ 9. Then, 1 ≤ dimlf (GP (n, 3)) ≤ 2n
2n−6

.

Proof:

Case 1: The LRNs of GP(n, 3) for n = 9 are given by:

LR1 = LR(x1x2) = V(GP(9, 3)) − {x6, y6}, LR2 = LR(x2x3) = V(GP(9, 3)) − {x7, y7},
LR3 = LR(x3x4) = V(GP(9, 3)) − {x8, y8}, LR4 = LR(x4x5) = V(GP(9, 3)) − {x9, y9},
LR5 = LR(x5x6) = V(GP(9, 3)) − {x1, y1}, LR6 = LR(x6x7) = V(GP(9, 3)) − {x2, y2},
LR7 = LR(x7x8) = V(GP(9, 3)) − {x3, y3}, LR8 = LR(x8x9) = V(GP(9, 3)) − {x4, y4},
LR9 = LR(x9x1) = V(GP(9, 3)) − {x5, y5}, LR10 = LR(x1y1) = V(GP(9, 3)),

LR11 = LR(x2y2) = V(GP(9, 3)), LR12 = LR(x3y3) = V(GP(9, 3)),

LR13 = LR(x4y4) = V(GP(9, 3)), LR14 = LR(x5y5) = V(GP(9, 3)),

LR15 = LR(x6y6) = V(GP(9, 3)), LR16 = LR(x7y7) = V(GP(9, 3)),

LR17 = LR(x8y8) = V(GP(9, 3)), LR18 = LR(x9y9) = V(GP(9, 3)),

LR(y1y4) = V(GP(9, 3)) − {x6, x7, x8, y6, y7, y8} = LR(e1),

LR(y2y5) = V(GP(9, 3)) − {x7, x8, x9, y7, y8, y9} = LR(e2),

LR(y3y6) = V(GP(9, 3)) − {x8, x9, x1, y8, y9, y1} = LR(e3),

LR(y4y7) = V(GP(9, 3)) − {x9, x1, x2, y9, y1, y2} = LR(e4),

LR(y5y8) = V(GP(9, 3)) − {x1, x2, x3, y1, y2, y3} = LR(e5),

LR(y6y9) = V(GP(9, 3)) − {x2, x3, x4, y2, y3, y4} = LR(e6),

LR(y7y1) = V(GP(9, 3)) − {x3, x4, x5, y3, y4, y5} = LR(e7),

LR(y8y2) = V(GP(9, 3)) − {x4, x5, x6, y4, y5, y6} = LR(e8),

LR(y9y3) = V(GP(9, 3)) − {x5, x6, x7, y5, y6, y7} = LR(e9).

For 1 ≤ m ≤ 18 and 1 ≤ j ≤ 9 LRN are |LR(ej)| = 12 < |LRm|. Furthermore,
9∪

j=1
LR

(
ej

) =
V (GP (9, 3)), | 9∪

j=1
LR

(
ej

) | = 18 and |LRm ∩ 9∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) | = 12. Moreover, 1 ≤ j ≤ 9, LR(ej)

are pairwise nonempty. There exist a minimal LRF ψ : V(GP(9, 3)) → [0, 1] is defined as ψ (y) = 1
12

for each y ∈ 9∪
j=1

LR
(
ej

)
and ψ(y) = 0 for the vertices of GP(9, 3) which are not in

9∪
j=1

LR
(
ej

)
. Therefore,

by Theorem 1, dimlf (GP (9, 3)) ≤
18∑

j=1

18
12

= 3
2
. Since |V(GP(9, 3))| = γ = 18, then by Theorem 3
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18
18

≤ dimlf (GP (9, 3)) implies 1 ≤ dimlf (GP(9, 3)) (as GP(9, 3) is not bipartite network). Therefore,
1 ≤ dimlf (GP (9, 3)) ≤ 3

2
.

Case 2: The LRNs of GP(n, 3) for n = 15 are given by:

LR1 = LR(x1x2) = V(GP(15, 3)) − {x9, y9}, LR2 = LR(x2x3) = V(GP(15, 3)) − {x10, y10},
LR3 = LR(x3x4) = V(GP(15, 3)) − {x11, y11}, LR4 = LR(x4x5) = V(GP(15, 3)) − {x12, y12},
LR5 = LR(x5x6) = V(GP(15, 3)) − {x13, y13}, LR6 = LR(x6x7) = V(GP(15, 3)) − {x14, y14},
LR7 = LR(x7x8) = V(GP(15, 3)) − {x15, y15}, LR8 = LR(x8x9) = V(GP(15, 3)) − {x1, y1},
LR9 = LR(x9x10) = V(GP(15, 3)) − {x2, y2}, LR10 = LR(x10x11) = V(GP(15, 3)) − {x3, y3},
LR11 = LR(x11x12) = V(GP(15, 3)) − {x4, y4}, LR12 = LR(x12x13) = V(GP(15, 3)) − {x5, y5},
LR13 = LR(x13x14) = V(GP(15, 3)) − {x6, y6}, LR14 = LR(x14x15) = V(GP(15, 3)) − {x7, y7},
LR15 = LR(x15x1) = V(GP(15, 3)) − {x8, y8}, LR16 = LR(x1y1) = V(GP(15, 3)),

LR17 = LR(x2y2) = V(GP(15, 3)), LR18 = LR(x3y3) = V(GP(15, 3)),

LR19 = LR(x4y4) = V(GP(15, 3)), LR20 = LR(x5y5) = V(GP(15, 3)),

LR21 = LR(x6y6) = V(GP(15, 3)), LR22 = LR(x7y7) = V(GP(15, 3)),

LR23 = LR(x8y8) = V(GP(15, 3)), LR24 = LR(x9y9) = V(GP(15, 3)),

LR25 = LR(x10y10) = V(GP(15, 3)), LR26 = LR(x11y11) = V(GP(15, 3)),

LR27 = LR(x12y12) = V(GP(15, 3)), LR28 = LR(x13y13) = V(GP(15, 3)),

LR29 = LR(x14y14) = V(GP(15, 3)), LR30 = LR(x15y15) = V(GP(15, 3)),

LR(y1y4) = V(GP(15, 3)) − {x9, x10, x11, y9, y10, y11} = LR(e1),

LR(y2y5) = V(GP(15, 3)) − {x10, x11, x12, y10, y11, y12} = LR(e2),

LR(y3y6) = V(GP(15, 3)) − {x11, x12, x13, y11, y12, y13} = LR(e3),

LR(y4y7) = V(GP(15, 3)) − {x12, x13, x14, y12, y13, y14} = LR(e4),

LR(y5y8) = V(GP(15, 3)) − {x13, x14, x15, y13, y14, y15} = LR(e5),

LR(y6y9) = V(GP(15, 3)) − {x14, x15, x1, y14, y15, y1} = LR(e6),

LR(y7y10) = V(GP(15, 3)) − {x15, x1, x2, y15, y1, y2} = LR(e7),

LR(y8y11) = V(GP(15, 3)) − {x1, x2, x3, y1, y2, y3} = LR(e8),

LR(y9y12) = V(GP(15, 3)) − {x2, x3, x4, y2, y3, y4} = LR(e9),

LR(y10y13) = V(GP(15, 3)) − {x3, x4, x5, y3, y4, y5} = LR(e10),

LR(y11y14) = V(GP(15, 3)) − {x4, x5, x6, y4, y5, y6} = LR(e11),

LR(y12y15) = V(GP(15, 3)) − {x5, x6, x7, y5, y6, y7} = LR(e12),

LR(y13y1) = V(GP(15, 3)) − {x6, x7, x8, y6, y7, y8} = LR(e13),
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LR(y14y2) = V(GP(15, 3)) − {x7, x8, x9, y7, y8, y9} = LR(e14),

LR(y15y3) = V(GP(15, 3)) − {x8, x9, x10, y8, y9, y10} = LR(e15).

For 1 ≤ m ≤ 30 and 1 ≤ j ≤ 15 LRN are |LR(ej)| = 24 < |LRm|. Furthermore,
15∪

j=1
LR

(
ej

) =
V (GP (15, 3)), | 15∪

j=1
LR

(
ej

) | = 30 and |LRm∩ 15∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) | = 24. Moreover, 1 ≤ j ≤ 15, LR(ej)

are pairwise nonempty. There exist a minimal LRF ψ : V(GP(15, 3)) → [0, 1] is defined as ψ (y) = 1
24

for each y ∈ 15∪
j=1

LR
(
ej

)
and ψ(y) = 0 for the vertices of GP(15, 3) which are not in

15∪
j=1

LR
(
ej

)
. Therefore,

by Theorem 1, dimlf (GP (15, 3)) ≤
30∑

j=1

30
20

= 5
4
. Since |V(GP(15, 3))| = γ = 30, then by Theorem 3

we have 30
30

≤ dimlf (GP (15, 3)) implies 1 ≤ dimlf (GP(15, 3)). As GP(15, 3) is not bipartite network
therefore, 1 ≤ dimlf (GP (15, 3)) ≤ 5

4
.

Case 3: For 1 ≤ i ≤ n, 1 ≤ j ≤ n and n ≥ 19, LR(ej) = LR(yiyi+3), LR(xixi+1), LR(xiyi). By

Lemmas 1, 2, we have (i) |LR(xixi+1)|, LR (xiyi) ≥ |LR
(
ej

) | = 2n−6 = α, (ii) |LR (xixi+1)∩
n∪

j=1
LR

(
ej

) |,
|LR (xiyi)∩ n∪

j=1
LR

(
ej

) | ≥ |LR
(
ej

) | and
n∪

j=1
LR

(
ej

) = 2n = β. The intersection of LRS having minimum

cardinality is not empty. Therefore, there exist a mimimal local resolving ψ ′ : V(GP(n, 3)) → [0, 1]
such that |ψ ′| < |ψ |, where the minimal LRF ψ : V(GP(n, 3)) → [0, 1] is defined as φ (v) ={

1
α

for v ∈ n∪
j=1

LR
(
ej

)}
.

Therefore, by Theorem 1, dimlf (GP (n, 3)) ≤
β∑

t=1

1
α

= 2n
2n−6

. Since |V(GP(n, 3))| = γ = 2n, then

by Theorem 3 we have 2n
2n

≤ dimlf (GP (n, 3)) implies 1 ≤ dimlf (GP(n, 3)). As GP(n, 3) is not bipartite
network therefore, 1 ≤ dimlf (GP (n, 3)) ≤ 2n

2n−6
.

Lemma 3: Let GP(n, 3) be Generalized Petersen network for, n ≡ 3(mod 6) and n ≥ 11. Then, for
1 ≤ i ≤ n − 3, 1 ≤ j ≤ n|LR(ej)| = |LR(ej = yiyi+3)| = 2n − 6 = |LR(yn−2y1)| = |LR(yn−1y2)| =
|LR(yny3)|. Moreover,

n∪
j=1

LR
(
ej

) = {
xp : 1 ≤ p ≤ n

} ∪ {
yq : 1 ≤ q ≤ n

}
and | n∪

j=1
LR

(
ej

) | = α = 2n.

Proof: For, n ≥ 11 and n ≡ 3(mod 6) the local resolving neighborhood of generalized Petersen
network GP(n, 3), for 1 ≤ i ≤ n − 3, 1 ≤ j ≤ n, p �= n+1

2
, n+5

2
, n+9

2
, q �= n−5

2
, n+5

2
, n+15

2
,

LR (yiyi+3) =
{

xp : 1 ≤ p ≤ n
yq : 1 ≤ q ≤ n

with |LR(ej)| = 2n − 6 and
n∪

j=1
LR

(
ej

) = {
xp : 1 ≤ p ≤ n

} ∪ {
yq : 1 ≤ q ≤ n

}
and we have

| n∪
j=1

LR
(
ej

) | = 2n.

Lemma 4: Let GP(n, 3) be generalized Petersen network with n ≡ 3(mod 6) and n ≥ 11, then, for
1 ≤ i ≤ n, 1 ≤ j ≤ n.

(a) |LR(ej)| < |LR(xixi+1)| and |LR (xixi+1) ∩
(

n∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) |,
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(b) |LR(ej)| < |LR(xiyi)| and |LR (xiyi) ∩
(

n∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) |,

Proof: (a) The local resolving neighborhood for 1 ≤ i ≤ n, 1 ≤ j ≤ n, p, q �= n+3
2

LR (xixi+1) =
{

xp : 1 ≤ p ≤ n
yq : 1 ≤ q ≤ n

with |LR(xixi+1)| = 2n − 2 > 2n − 6 = |LR(ej)|, Therefore, |LR (xixi+1) ∩
(

n∪
j=1

LRej

)
| = 2n − 2 >

|LR
(
ej

) |.
(b) The local resolving neighborhood for 1 ≤ i ≤ n, 1 ≤ j ≤ n,

LR (xiyi) =
{

xp : 1 ≤ p ≤ n
yq : 1 ≤ q ≤ n

with |LR(xiyi)| = 2n > 2n − 6 = |LR(ej)|, Therefore, |LR (xiyi) ∩
(

n∪
j=1

LRej

)
| = 2n > |LR

(
ej

) |.
Theorem 6: Let GP(n, 3)n ≡ 5(mod 6) be a generalized Petersen network, where |V(GP(n, 2))| =

2n and n ≥ 11. Then, 1 ≤ dimlf (GP (n, 3)) ≤ 2n
2n−6

.

Proof:

The LRNs of GP(n, 3) for n = 11 are given by:

LR1 = LR(x1x2) = V(GP(11, 3)) − {x7, y7}, LR2 = LR(x2x3) = V(GP(11, 3)) − {x8, y8},
LR3 = LR(x3x4) = V(GP(11, 3)) − {x9, y9}, LR4 = LR(x4x5) = V(GP(11, 3)) − {x10, y10},
LR5 = LR(x5x6) = V(GP(11, 3)) − {x11, y11}, LR6 = LR(x6x7) = V(GP(11, 3)) − {x1, y1},
LR7 = LR(x7x8) = V(GP(11, 3)) − {x2, y2}, LR8 = LR(x8x9) = V(GP(11, 3)) − {x3, y3},
LR9 = LR(x9x10) = V(GP(11, 3)) − {x4, y4}, LR10 = LR(x10x11) = V(GP(11, 3)) − {x5, y5},
LR11 = LR(x11x1) = V(GP(11, 3)) − {x6, y6}, LR12 = LR(x1y1) = V(GP(11, 3)),

LR13 = LR(x2y2) = V(GP(11, 3)), LR14 = LR(x3y3) = V(GP(11, 3)),

LR15 = LR(x4y4) = V(GP(11, 3)), LR16 = LR(x5y5) = V(GP(11, 3)),

LR17 = LR(x6y6) = V(GP(11, 3)), LR18 = LR(x7y7) = V(GP(11, 3)),

LR19 = LR(x8y8) = V(GP(11, 3)), LR20 = LR(x9y9) = V(GP(11, 3)),

LR21 = LR(x10y10) = V(GP(11, 3)), LR22 = LR(x11y11) = V(GP(11, 3)),

LR(y1y4) = V(GP(11, 3)) − {x6, x8, x10, y2, y3, y8} = LR(e1),

LR(y2y5) = V(GP(11, 3)) − {x7, x9, x11, y3, y4, y9} = LR(e2),

LR(y3y6) = V(GP(11, 3)) − {x8, x10, x1, y4, y5, y10} = LR(e3),

LR(y4y7) = V(GP(11, 3)) − {x9, x11, x2, y5, y6, y11} = LR(e4),
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LR(y5y8) = V(GP(11, 3)) − {x10, x1, x3, y6, y7, y1} = LR(e5),

LR(y6y9) = V(GP(11, 3)) − {x11, x2, x4, y7, y8, y2} = LR(e6),

LR(y7y10) = V(GP(11, 3)) − {x1, x3, x5, y8, y9, y3} = LR(e7),

LR(y8y11) = V(GP(11, 3)) − {x2, x4, x6, y9, y10, y4} = LR(e8),

LR(y9y1) = V(GP(11, 3)) − {x3, x5, x7, y10, y11, y5} = LR(e9),

LR(y10y2) = V(GP(11, 3)) − {x4, x6, x8, y11, y1, y6} = LR(e10),

LR(y11y3) = V(GP(11, 3)) − {x5, x7, x9, y1, y2, y7} = LR(e11).

For 1 ≤ m ≤ 22 and 1 ≤ j ≤ 11 LRN are |LR(ej)| = 16 < |LRm|. Furthermore,
11∪

j=1
LR

(
ej

) =
V (GP (11, 2)), | 11∪

j=1
LR

(
ej

) | = 22 and |LRm ∩ 11∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) | = 16. Moreover, 1 ≤ j ≤ 11,

LR(ej) are pairwise nonempty. There exist a minimal LRF ψ : V(GP(14, 2)) → [0, 1] is defined as

ψ (y) = 1
16

for each y ∈ 11∪
j=1

LR
(
ej

)
and ψ(y) = 0 for the vertices of GP(11, 3) which are not in

14∪
j=1

LR
(
ej

)
.

Therefore, by Theorem 1, dimlf (GP (11, 3)) ≤
22∑

j=1

1
16

= 11
8

. Since |V(GP(11, 3))| = γ = 22, then by

Theorem 3 we have 22
22

≤ dimlf (GP (11, 3)) implies 1 ≤ dimlf (GP(11, 3)). As GP(11, 3) is not bipartite
network therefore, 1 ≤ dimlf (GP (11, 3)) ≤ 11

8
.

Case 2: The LRNs of GP(n, 3) for n = 17 are given by:

LR1 = LR(x1x2) = V(GP(17, 3)) − {x10, y10}, LR2 = LR(x2x3) = V(GP(17, 3)) − {x11, y11},
LR3 = LR(x3x4) = V(GP(17, 3)) − {x12, y12}, LR4 = LR(x4x5) = V(GP(17, 3)) − {x13, y13},
LR5 = LR(x5x6) = V(GP(17, 3)) − {x14, y14}, LR6 = LR(x6x7) = V(GP(17, 3)) − {x15, y15},
LR7 = LR(x7x8) = V(GP(17, 3)) − {x16, y16}, LR8 = LR(x8x9) = V(GP(17, 3)) − {x17, y17},
LR9 = LR(x9x10) = V(GP(17, 3)) − {x1, y1}, LR10 = LR(x10x11) = V(GP(17, 3)) − {x2, y2},
LR11 = LR(x11x12) = V(GP(17, 3)) − {x3, y3}, LR12 = LR(x12x13) = V(GP(17, 3)) − {x4, y4},
LR13 = LR(x13x14) = V(GP(17, 3)) − {x5, y5}, LR14 = LR(x14x15) = V(GP(17, 3)) − {x6, y6},
LR15 = LR(x15x16) = V(GP(17, 3)) − {x7, y7}, LR16 = LR(x16x17) = V(GP(17, 3)) − {x8, y8},
LR17 = LR(x17x1) = V(GP(17, 3)) − {x9, y9}, LR18 = LR(x1y1) = V(GP(17, 3)),

LR19 = LR(x2y2) = V(GP(17, 3)), LR20 = LR(x3y3) = V(GP(17, 3)),

LR21 = LR(x4y4) = V(GP(17, 3)), LR22 = LR(x5y5) = V(GP(17, 3)),

LR23 = LR(x6y6) = V(GP(17, 3)), LR24 = LR(x7y7) = V(GP(17, 3)),

LR25 = LR(x8y8) = V(GP(17, 3)), LR26 = LR(x9y9) = V(GP(17, 3)),

LR27 = LR(x10y10) = V(GP(17, 3)), LR28 = LR(x11y11) = V(GP(17, 3)),

LR29 = LR(x12y12) = V(GP(17, 3)), LR30 = LR(x13y13) = V(GP(17, 3)),
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LR31 = LR(x14y14) = V(GP(17, 3)), LR32 = LR(x15y15) = V(GP(17, 3)),

LR33 = LR(x16y16) = V(GP(17, 3)), LR34 = LR(x17y17) = V(GP(17, 3)),

LR(y1y4) = V(GP(17, 3)) − {x9, x11, x13, y6, y11, y16} = LR(e1),

LR(y2y5) = V(GP(17, 3)) − {x10, x12, x14, y7, y12, y17} = LR(e2),

LR(y3y6) = V(GP(17, 3)) − {x11, x13, x15, y8, y13, y1} = LR(e3),

LR(y4y7) = V(GP(17, 3)) − {x12, x14, x16, y9, y14, y2} = LR(e4),

LR(y5y8) = V(GP(17, 3)) − {x13, x15, x17, y10, y15, y3} = LR(e5),

LR(y6y9) = V(GP(17, 3)) − {x14, x16, x1, y11, y16, y4} = LR(e6),

LR(y7y10) = V(GP(17, 3)) − {x15, x17, x2, y12, y17, y5} = LR(e7),

LR(y8y11) = V(GP(17, 3)) − {x16, x1, x3, y13, y1, y6} = LR(e8),

LR(y9y12) = V(GP(17, 3)) − {x17, x2, x4, y14, y2, y7} = LR(e9),

LR(y10y13) = V(GP(17, 3)) − {x1, x3, x5, y15, y3, y8} = LR(e10),

LR(y11y14) = V(GP(17, 3)) − {x2, x4, x6, y16, y4, y9} = LR(e11),

LR(y12y15) = V(GP(17, 3)) − {x3, x5, x7, y17, y5, y10} = LR(e12),

LR(y13y16) = V(GP(17, 3)) − {x4, x6, x8, y1, y6, y11} = LR(e13),

LR(y14y17) = V(GP(17, 3)) − {x5, x7, x9, y2, y7, y12} = LR(e14),

LR(y15y1) = V(GP(17, 3)) − {x6, x8, x10, y3, y8, y13} = LR(e15),

LR(y16y2) = V(GP(17, 3)) − {x7, x9, x11, y4, y9, y14} = LR(e16),

LR(y17y3) = V(GP(17, 3)) − {x8, x10, x12, y5, y10, y15} = LR(e17).

For 1 ≤ m ≤ 34 and 1 ≤ j ≤ 17 LRN are |LR(ej)| = 28 < |LRm|. Furthermore,
17∪

j=1
LR

(
ej

) =
V (GP (17, 3)), | 17∪

j=1
LR

(
ej

) | = 34 and |LRm ∩ 17∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) | = 28. Moreover, 1 ≤ j ≤ 17,

LR(ej) are pairwise nonempty. There exist a minimal LRF ψ : V(GP(17, 3)) → [0, 1] is defined as

ψ (y) = 1
28

for each y ∈ 17∪
j=1

LR
(
ej

)
and ψ(y) = 0 for the vertices of GP(17, 3) which are not in

17∪
j=1

LR
(
ej

)
.

Therefore, by Theorem 1, dimlf (GP (17, 3)) ≤
34∑

j=1

1
24

= 17
14

.

dimlf (GP (17, 3)) ≤ 17
14

.

Case 3: For 1 ≤ i ≤ n, 1 ≤ j ≤ n and n ≥ 23, LR(ej) = LR(yiyi+3), LR(xixi+1), LR(xiyi). By

Lemmas 3, 4, we have (i) |LR(xixi+1)|, LR(xiyi) ≥ |LR(ej)| = 2n − 6 = α, (ii) |LR (xixi+1) ∩ n∪
j=1

LR
(
ej

) |,
|LR (xiyi)∩ n∪

j=1
LR

(
ej

) | ≥ |LR
(
ej

) | and
n∪

j=1
LR

(
ej

) = 2n = β. The intersection of LRS having minimum
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cardinality is not empty. Therefore, there exist a mimimal local resolving ψ ′ : V(GP(n, 3)) → [0, 1]
such that |ψ ′| < |ψ |, where the minimal LRF ψ : V(GP(n, 3)) → [0, 1] is defined as φ (v) ={

1
α

for v ∈ n∪
j=1

LR
(
ej

)}
.

Therefore, by Theorem 1, dimlf (GP (n, 3)) ≤
β∑

t=1

1
α

= 2n
2n−6

. Since |V(GP(n, 3))| = γ = 2n, then

by Theorem 3 we have 2n
2n

≤ dimlf (GP (n, 3)) implies 1 ≤ dimlf (GP(n, 3)). As GP(n, 3) is not bipartite
network therefore, 1 ≤ dimlf (GP (n, 3)) ≤ 2n

2n−6
.

Lemma 5: Let GP(n, 3) be Generalized Petersen network for, n ≡ 1(mod 6) and n ≥ 13. Then, for
1 ≤ i ≤ n − 3, 1 ≤ j ≤ n |LR(ej)| = |LR(ej = yiyi+3)| = 2n − 6 = |LR(yn−2y1)| = |LR(yn−1y2)| =
|LR(yny3)|. Moreover,

n∪
j=1

LR
(
ej

) = {
xp : 1 ≤ p ≤ n

} ∪ {
yq : 1 ≤ q ≤ n

}
and | n∪

j=1
LR

(
ej

) | = α = 2n.

Proof: For, n ≥ 13 and n ≡ 3(mod 6) the local resolving neighborhood of generalized Petersen
network GP(n, 3), for 1 ≤ i ≤ n − 3, 1 ≤ j ≤ n, p �= n+3

2
, n+5

2
, n+7

2
, q �= n−3

2
, n+5

2
, n+13

2
,

LR (yiyi+3) =
{

xp : 1 ≤ p ≤ n
yq : 1 ≤ q ≤ n

with |LR(ej)| = 2n − 6 and
n∪

j=1
LR

(
ej

) = {
xp : 1 ≤ p ≤ n

} ∪ {
yq : 1 ≤ q ≤ n

}
and we have

| n∪
j=1

LR
(
ej

) | = 2n.

Lemma 6: Let GP(n, 3) be generalized Petersen network with n ≡ 3(mod 6) and n ≥ 13, then, for

1 ≤ i ≤ n, 1 ≤ j ≤ n. (a) |LR(ej)| < |LR(xixi+1)| and |LR (xixi+1) ∩
(

n∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) |,

(b) |LR(ej)| < |LR(xiyi)| and |LR (xiyi) ∩
(

n∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) |,

Proof: (a) The local resolving neighborhood for 1 ≤ i ≤ n, 1 ≤ j ≤ n, p, q �= n+3
2

LR (xixi+1) =
{

xp : 1 ≤ p ≤ n
yq : 1 ≤ q ≤ n

with |LR(xixi+1)| = 2n − 2 > 2n − 6 = |LR(ej)|, Therefore, |LR (xixi+1) ∩
(

n∪
j=1

LRej

)
| = 2n − 2 >

|LR
(
ej

) |.
(b) The local resolving neighborhood for 1 ≤ i ≤ n, 1 ≤ j ≤ n,

LR (xiyi) =
{

xp : 1 ≤ p ≤ n
yq : 1 ≤ q ≤ n

with |LR(xiyi)| = 2n > 2n − 6 = |LR(ej)|, Therefore, |LR (xiyi) ∩
(

n∪
j=1

LRej

)
| = 2n > |LR

(
ej

) |.
Theorem 6: Let GP(n, 3) with n ≡ 3(mod 6) be a generalized Petersen network, where

|V(GP(n, 3))| = 2n and n ≥ 13. Then, 1 ≤ dimlf (GP (n, 3)) ≤ 2n
2n−6

.
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Proof:

The LRNs of GP(n, 3) for n = 13 are given by:

LR1 = LR(x1x2) = V(GP(13, 3)) − {x8, y8}, LR2 = LR(x2x3) = V(GP(13, 3)) − {x9, y9},
LR3 = LR(x3x4) = V(GP(13, 3)) − {x10, y10}, LR4 = LR(x4x5) = V(GP(13, 3)) − {x11, y11},
LR5 = LR(x5x6) = V(GP(13, 3)) − {x12, y12}, LR6 = LR(x6x7) = V(GP(13, 3)) − {x13, y13},
LR7 = LR(x7x8) = V(GP(13, 3)) − {x1, y1}, LR8 = LR(x8x9) = V(GP(13, 3)) − {x2, y2},
LR9 = LR(x9x10) = V(GP(13, 3)) − {x3, y3}, LR10 = LR(x10x11) = V(GP(13, 3)) − {x4, y4},
LR11 = LR(x11x12) = V(GP(13, 3)) − {x5, y5}, LR12 = LR(x12x13) = V(GP(13, 3)) − {x6, y6},
LR13 = LR(x13x1) = V(GP(13, 3)) − {x7, y7}, LR14 = LR(x1y1) = V(GP(13, 3)),

LR15 = LR(x2y2) = V(GP(13, 3)), LR16 = LR(x3y3) = V(GP(13, 3)),

LR17 = LR(x4y4) = V(GP(13, 3)), LR18 = LR(x5y5) = V(GP(13, 3)),

LR19 = LR(x6y6) = V(GP(13, 3)), LR20 = LR(x7y7) = V(GP(13, 3)),

LR21 = LR(x8y8) = V(GP(13, 3)), LR22 = LR(x9y9) = V(GP(13, 3)),

LR23 = LR(x10y10) = V(GP(13, 3)), LR24 = LR(x11y11) = V(GP(13, 3)),

LR25 = LR(x12y12) = V(GP(13, 3)), LR26 = LR(x13y13) = V(GP(13, 3)),

LR(y1y4) = V(GP(13, 3)) − {x8, x9, x10, y5, y9, y13} = LR(e1),

LR(y2y5) = V(GP(13, 3)) − {x9, x10, x11, y6, y10, y1} = LR(e2),

LR(y3y6) = V(GP(13, 3)) − {x10, x11, x12, y7, y11, y2} = LR(e3),

LR(y4y7) = V(GP(13, 3)) − {x11, x12, x13, y8, y12, y3} = LR(e4),

LR(y5y8) = V(GP(13, 3)) − {x12, x13, x1, y9, y13, y4} = LR(e5),

LR(y6y9) = V(GP(13, 3)) − {x13, x1, x2, y10, y1, y5} = LR(e6),

LR(y7y10) = V(GP(13, 3)) − {x1, x2, x3, y11, y2, y6} = LR(e7),

LR(y8y11) = V(GP(13, 3)) − {x2, x3, x4, y12, y3, y7} = LR(e8),

LR(y9y12) = V(GP(13, 3)) − {x3, x4, x5, y13, y4, y8} = LR(e9),

LR(y10y13) = V(GP(13, 3)) − {x4, x5, x6, y1, y5, y9} = LR(e10),

LR(y11y1) = V(GP(13, 3)) − {x5, x6, x7, y2, y6, y10} = LR(e11),

LR(y12y2) = V(GP(13, 3)) − {x6, x7, x8, y3, y7, y11} = LR(e12),

LR(y13y3) = V(GP(13, 3)) − {x7, x8, x9, y4, y8, y12} = LR(e13).

For 1 ≤ m ≤ 26 and 1 ≤ j ≤ 13 LRN are |LR(ej)| = 20 < |LRm|. Furthermore,
13∪

j=1
LR

(
ej

) =
V (GP (13, 3)), | 13∪

j=1
LR

(
ej

) | = 26 and |LRm ∩ 13∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) | = 20. Moreover, 1 ≤ j ≤ 13,
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LR(ej) are pairwise nonempty. There exist a minimal LRF ψ : V(GP(13, 2)) → [0, 1] is defined as

ψ (y) = 1
20

for each y ∈ 13∪
j=1

LR
(
ej

)
and ψ(y) = 0 for the vertices of GP(13, 3) which are not in

13∪
j=1

LR
(
ej

)
.

Therefore, by Theorem 1, dimlf (GP (13, 3)) ≤
26∑

j=1

1
20

= 13
10

. Since |V(GP(13, 3))| = γ = 26, then by

Theorem 3 we have 26
26

≤ dimlf (GP (13, 3)) implies 1 ≤ dimlf (GP(13, 3)). As GP(13, 3) is not bipartite
network, therefore, 1 ≤ dimlf (GP (13, 3)) ≤ 13

10
.

Case 2: The LRNs of GP(n, 3) for n = 19 are given by:

LR1 = LR(x1x2) = V(GP(19, 3)) − {x11, y11}, LR2 = LR(x2x3) = V(GP(19, 3)) − {x12, y12},
LR3 = LR(x3x4) = V(GP(19, 3)) − {x13, y13}, LR4 = LR(x4x5) = V(GP(19, 3)) − {x14, y14},
LR5 = LR(x5x6) = V(GP(19, 3)) − {x15, y15}, LR6 = LR(x6x7) = V(GP(19, 3)) − {x16, y16},
LR7 = LR(x7x8) = V(GP(19, 3)) − {x17, y17}, LR8 = LR(x8x9) = V(GP(19, 3)) − {x18, y18},
LR9 = LR(x9x10) = V(GP(19, 3)) − {x19, y19}, LR10 = LR(x10x11) = V(GP(19, 3)) − {x1, y1},
LR11 = LR(x11x12) = V(GP(19, 3)) − {x2, y2}, LR12 = LR(x12x13) = V(GP(19, 3)) − {x3, y3},
LR13 = LR(x13x14) = V(GP(19, 3)) − {x4, y4}, LR14 = LR(x14x15) = V(GP(19, 3)) − {x5, y5},
LR15 = LR(x15x16) = V(GP(19, 3)) − {x6, y6}, LR16 = LR(x16x17) = V(GP(19, 3)) − {x7, y7},
LR17 = LR(x17x18) = V(GP(19, 3)) − {x8, y8}, LR18 = LR(x18x19) = V(GP(19, 3)) − {x9, y9},
LR19 = LR(x19x1) = V(GP(19, 3)) − {x10, y10},
LR20 = LR(x1y1) = V(GP(19, 3)),

LR21 = LR(x2y2) = V(GP(19, 3)), LR22 = LR(x3y3) = V(GP(19, 3)),

LR23 = LR(x4y4) = V(GP(19, 3)), LR24 = LR(x5y5) = V(GP(19, 3)),

LR25 = LR(x6y6) = V(GP(19, 3)), LR26 = LR(x7y7) = V(GP(19, 3)),

LR27 = LR(x8y8) = V(GP(19, 3)), LR28 = LR(x9y9) = V(GP(19, 3)),

LR29 = LR(x10y10) = V(GP(19, 3)), LR30 = LR(x11y11) = V(GP(19, 3)),

LR31 = LR(x12y12) = V(GP(19, 3)), LR32 = LR(x13y13) = V(GP(19, 3)),

LR33 = LR(x14y14) = V(GP(19, 3)), LR34 = LR(x15y15) = V(GP(19, 3)),

LR35 = LR(x16y16) = V(GP(19, 3)), LR36 = LR(x17y17) = V(GP(19, 3)),

LR37 = LR(x18y18) = V(GP(19, 3)), LR38 = LR(x19y19) = V(GP(19, 3)),

LR(y1y4) = V(GP(19, 3)) − {x11, x12, x13, y8, y12, y16} = LR(e1),

LR(y2y5) = V(GP(19, 3)) − {x12, x13, x14, y9, y13, y17} = LR(e2),

LR(y3y6) = V(GP(19, 3)) − {x13, x14, x15, y10, y14, y18} = LR(e3),

LR(y4y7) = V(GP(19, 3)) − {x14, x15, x16, y11, y15, y19} = LR(e4),
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LR(y5y8) = V(GP(19, 3)) − {x15, x16, x17, y12, y16, y1} = LR(e5),

LR(y6y9) = V(GP(19, 3)) − {x16, x17, x18, y13, y17, y2} = LR(e6),

LR(y7y10) = V(GP(19, 3)) − {x17, x18, x19, y14, y18, y3} = LR(e7),

LR(y8y11) = V(GP(19, 3)) − {x18, x19, x1, y15, y19, y4} = LR(e8),

LR(y9y12) = V(GP(19, 3)) − {x19, x1, x2, y16, y1, y5} = LR(e9),

LR(y10y13) = V(GP(19, 3)) − {x1, x2, x3, y17, y2, y6} = LR(e10),

LR(y11y14) = V(GP(19, 3)) − {x2, x3, x4, y18, y3, y7} = LR(e11),

LR(y12y15) = V(GP(19, 3)) − {x3, x4, x5, y19, y4, y8} = LR(e12),

LR(y13y16) = V(GP(19, 3)) − {x4, x5, x6, y1, y5, y9} = LR(e13),

LR(y14y17) = V(GP(19, 3)) − {x5, x6, x7, y2, y6, y10} = LR(e14),

LR(y15y18) = V(GP(19, 3)) − {x6, x7, x8, y3, y7, y11} = LR(e15),

LR(y16y19) = V(GP(19, 3)) − {x7, x8, x9, y4, y8, y12} = LR(e16),

LR(y17y1) = V(GP(19, 3)) − {x8, x9, x10, y5, y9, y13} = LR(e17),

LR(y18y2) = V(GP(19, 3)) − {x9, x10, x11, y6, y10, y14} = LR(e18),

LR(y19y3) = V(GP(19, 3)) − {x10, x11, x12, y7, y11, y15} = LR(e19).

For 1 ≤ m ≤ 38 and 1 ≤ j ≤ 19 LRN are |LR(ej)| = 32 < |LRm|. Furthermore,
19∪

j=1
LR

(
ej

) =
V (GP (19, 3)), | 19∪

j=1
LR

(
ej

) | = 38 and |LRm ∩ 19∪
j=1

LR
(
ej

) | ≥ |LR
(
ej

) | = 32. Moreover, 1 ≤ j ≤ 19,

LR(ej) are pairwise nonempty. There exist a minimal LRF ψ : V(GP(19, 3)) → [0, 1] is defined as

ψ (y) = 1
32

for each y ∈ 19∪
j=1

LR
(
ej

)
and ψ(y) = 0 for the vertices of GP(19, 3) which are not in

19∪
j=1

LR
(
ej

)
.

Therefore, by Theorem 1, dimlf (GP (19, 3)) ≤
38∑

j=1

1
20

= 19
16

. Since |V(GP(19, 3))| = γ = 38, then by

Theorem 3 we have 38
38

≤ dimlf (GP (19, 3)) implies 1 ≤ dimlf (GP(19, 3)). As GP(19, 3) is not bipartite
network therefore, 1 ≤ dimlf (GP (19, 3)) ≤ 19

16
.

Case 3: For 1 ≤ i ≤ n, 1 ≤ j ≤ n and n ≥ 25, LR(ej) = LR(yiyi+3), LR(xixi+1), LR(xiyi). By

Lemma 5, 6, we have (i) |LR(xixi+1)|, LR(xiyi) ≥ |LR(ej)| = 2n − 6 = α, (ii) |LR (xixi+1) ∩ n∪
j=1

LR
(
ej

) |,
|LR (xiyi)∩ n∪

j=1
LR

(
ej

) | ≥ |LR
(
ej

) | and
n∪

j=1
LR

(
ej

) = 2n = β. The intersection of LRS having minimum

cardinality is not empty. Therefore, there exist a mimimal local resolving ψ ′ : V(GP(n, 3)) → [0, 1]
such that |ψ ′| < |ψ |, where the minimal LRF ψ : V(GP(n, 3)) → [0, 1] is defined as φ (v) ={

1
α

for v ∈ n∪
j=1

LR
(
ej

)}
.
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Therefore, by Theorem 1, dimlf (GP (n, 3)) ≤
β∑

t=1

1
α

= 2n
2n−6

. Since |V(GP(n, 3))| = γ = 2n, then

by Theorem 3 we have 2n
2n

≤ dimlf (GP (n, 3)) implies 1 ≤ dimlf (GP(n, 3)). As GP(n, 3) is not bipartite
network therefore, 1 ≤ dimlf (GP (n, 3)) ≤ 2n

2n−6
.

Theorem 7. The LFMD of generalized Petersen network GP(n, 3) for n ≥ 8 and n ≡ 0(mod 2) is 1.

Proof: As generalized Petersen network GP(n, 3) for n ≥ 8 and n ≡ 0(mod 2) is bipartite network.
Therefore, by Theorem 2 we have dimlf (GP(n, 3)) = 1.

Table 1: Upper and lower bounds of LFMD of generalized petersen GP(n, 3) network for, n = 7, n ≥ 9
for n ≡ 3(mod 6), n ≥ 11 for n ≡ 5(mod 6), and n ≥ 13 for n ≡ 1(mod 6)

GP(n, 3) Upper bounds of LFMD Lower bounds of LFMD

n = 7 7
5

14
13

n ≥ 9 2n
2n−6

1
n ≥ 11 2n

2n−6
1

n ≥ 13 2n
2n−6

1

Table 2: Limiting values of LFMD of generalized petersen GP(n, 3) network for, n ≥ 9 for n ≡
3(mod 6), n ≥ 11 for n ≡ 5(mod 6), and n ≥ 13 for n ≡ 1(mod 6)

GP(n, 3) Limiting values of upper bound of LFMD Comment

n ≥ 9 lim
n→∞

2n
2n−6

= 1 Bounded

n ≥ 11 lim
n→∞

2n
2n−6

= 1 Bounded

n ≥ 13 lim
n→∞

2n
2n−6

= 1 Bounded

4 Discussion and Conclusion

In this paper, we have investigated the LFMD generalized Petersen network GP(n, 3) for n ≥ 7
with the exact value of lower and upper bounds. We have also checked the bounded and unbounded
behavior of networks and found that for n ≥ 8 and n ≡ 0(mod 2)GP(n, 3) is bipartite Network
having LFMD is 1. The details of computed values of LFMD are given in Tables 1 and 2. Even
before the aforementioned tables, we illustrate Theorem 5 with the help of a example finding LFMD
for the generalized Petersen graph with n = 9. By Fig. 1b and Theorem 5 (Case A), it can be
observed that the LRN sets of thee edges y1y4, y2y5, y3y6, y4y7, y5y8, y7y8, y8y2, y9y3 have the cardinality
of 12 which is minimum among all the other LRNs. Moreover, the union of these LRNs is equal
to the order of GP(n, 3). The cardinality of the other LRNs with the intersection of this union
is larger or equal to 12. By Theorem 1, dimlfGP (9, 3) ≤ 18

12
= 3

2
. In addition, the cardinality of

LRNs with maximum cardinality is 18 consequently by Theorem 3, dimlfGP (9, 3) ≥ 18
18

= 1. Therefore,
1 ≤ dimlfGP (9, 3) ≤ 3

2
.
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