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ABSTRACT

A smooth bidirectional evolutionary structural optimization (SBESO), as a bidirectional version of SESO is
proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and
dynamic compliance under the transient load. A weighted function is introduced to regulate the mass and stiffness
matrix of an element, which has the inefficient element gradually removed from the design domain as if it were
undergoing damage. Aiming at maximizing the natural frequency of a structure, the frequency optimization
formulation is proposed using the SBESO technique. The effects of various weight functions including constant,
linear and sine functions on structural optimization are compared. With the equivalent static load (ESL) method,
the dynamic stiffness optimization of a structure is formulated by the SBESO technique. Numerical examples show
that compared with the classic BESO method, the SBESO method can efficiently suppress the excessive element
deletion by adjusting the element deletion rate and weight function. It is also found that the proposed SBESO
technique can obtain an efficient configuration and smooth boundary and demonstrate the advantages over the
classic BESO technique.

KEYWORDS
Topology optimization; smooth bi-directional evolutionary structural optimization (SBESO); eigenfrequency
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1 Introduction

Topology optimization has been widely applied to various engineering field such as submerged,
aeronautics and automobile structures, due to significant improvement of structural performance
[1–3]. In the past four decades, many gradient-or heuristic-based optimization methods have been
developed, including Homogenization, Density, Level Set, Evolutionary Structural Optimization
(ESO) and a Bidirectional Version of ESO (BESO) [4].

ESO and BESO gradually remove the unnecessary region from the structure using binary methods,
such that the resulting structure evolves to clear (0/1) designs along the optimal direction. However,
undue removal of elements can induce an inefficient local optimum and even failure to convergence [5].
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To resolve the issue, Almeida et al. [6] firstly proposed a variant of the ESO procedure called Smooth
ESO (SESO), which gradually removed an unnecessary element for the structure by reducing the values
of the constitutive matrix. SESO is superior to the classical ESO method, which is demonstrated
in those works [7–10]. The benchmark examples reveal that the procedure known as progressive
“soft-kill” produces a clean and smooth boundary and dwindles the checkerboard formation in the
resulting optimal structure. Under dynamic loading, a structural response such as displacements and
internal stresses, are time-varying. Thus, dynamic topology optimization is still confronted with great
challenges such as prohibitively high computational cost and complex sensitivity derivation [4,11].
Although the SESO technique can solve topology optimization problems of 2D elastic structures in a
simple and efficient way, it has not been extended to the topology optimization under dynamic loading
due to above mentioned unresolved challenges.

Published dynamic topology optimization researches mainly focus on three main problems
including eigenfrequency optimization [12–15], dynamic response optimization under steady-state
[16–19] and transient [20–24] excitations. In eigenfrequency optimization, researchers provide an effi-
cient way such as maximization of the specified eigenfrequencies or the bandwidth to avoid structural
resonance. Although certain dynamic characteristics like natural frequency can be tailored to the
designer’s choice, these eigenfrequency optimizations do not directly dominate the structural response
under dynamic loading. To optimize the dynamic response under steady-state forced vibration, a
frequently adopted method is to discretize the frequency range into substantial frequency points
and then minimize the dynamic compliance of structures subjected to external harmonic excitation
[16–18]. One defect of the dynamic compliance problem is a large computational burden due to
the harmonic analysis at each discretized frequency in the loading frequency bands. To efficiently
solve the dynamic response in the frequency domain, the modal decomposition method is used to
remarkably eliminate the computational demand for continuum structures [19]. To tackle the topology
optimization problems of dynamic response in the time domain, two approaches have been developed
including time-integration method scheme like Newmark-β [20,21] and the equivalent static load
(ESL) method [22–24] so far. Generally speaking, the former has some obstacles in engineering
application due to a quite time-consuming modelling, complex and challenging sensitivity analysis.
The latter transforms the dynamic topology optimization problem into a static one with multiple
loading cases, which has been mathematically justified to avoid falling into a local optimum solution
[25]. Therefore, the ESL method is used to perform the topology optimization of transient response
in the present work.

The SESO technique provides a mathematical programming tool for engineers and architects who
seek efficient distribution of material in structural boundary value problems during the conceptual
design stage of a project. This paper proposes a bidirectional version of SESO (SBESO), which is
potentialized to solve the topological optimization of vibrating continuum structures for natural
frequencies and dynamic compliance under the transient load. The remainder of the paper is organized
as follows: Section 2 disposes of the formulation of the dynamic problem using SBESO. Section 3
formulates the eigenfrequency optimization problem. Section 4 formulates the dynamic compliance
optimization problem using the ESL method. The numerical results are presented from the proposed
SBESO method in eigenfrequency and dynamic compliance optimization. Finally, concluding remarks
are made in Section 5.
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2 Smooth Bidirectional Evolutionary Structural Optimization (SBESO)

Based on the evolutionary structure optimization method, the mathematical model of structural
dynamics topology optimization is expressed as follows:

Minimize f (x)

s.t. V ∗ −
N∑

i=1

Vixi = 0

M (x) ü (t) + K (x) u (t) = F (t)

xi = 0 or 1 (i = 1, . . . , N) (1)

where f (x) is the objective function, x = [xi]N×1 is the design variable as vectors of element densities
(where xi = 0 denotes a void element and xi = 1 denotes a solid one), V ∗ is the specified volume
fraction and Vi are the volume of element. M(x) and K(x) are the global mass and stiffness matrix.
ü (t) and u (t) are the corresponding acceleration and displacement responses of a structure under the
transient load F (t).

For the traditional BESO method, all the elements are sorted in ascending order in terms of
calculated sensitivity numbers of the objective function to the design variables. Then the elements with
high sensitivity numbers are added to the design domain while those with low sensitivity numbers are
removed from the design domain. This scheme is known as hard kill and can be illuminated as the
following the evolutionary criteria:
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However, simple removal of the elements in the iteration based on Eq. (2b), can always cause
a premature withdrawal of elements, which should not be deleted. It is often seen that a certain
element was wrongly removed to be subjected to Eq. (2b). The obtained solution is non-optimal and
even suffers from a numerical instability called “chessboard” due to the ill-conditioning model of
the stiffness matrix. To address this issue, the bidirectional version of SESO, SBESO is proposed to
organize the elements satisfying Eq. (2) so that q% of these elements are deleted and the remaining
(1 − q%) is returned to the current design domain. This return is followed by a regular function that
weights the mass and stiffness matrixes of elements in the domain �i with a higher sensitivity number.
This methodology presents proper condition numbers for solving the updated system equation in the
next iteration on account that returned elements are significant to the structure.

As shown in Fig. 1, the soft kill scheme employed in the SBESO technique can be illustrated as:
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continuous and differential in the domain �i. The latter function is discontinuous, where the parameter
η0 = 0 represents the degeneration of SBESO to the classic BESO.

Figure 1: Evolutionary optimization criteria for the SBESO method

For the SBESO method, according to Eq. (3), the mass and stiffness matrices of an element are
expressed as:

Mi
j = Ds

i

(
α

i
j

)
Mi−1

j (4)

Ki
j = Ds

i

(
α

i
j

)
Ki−1

j (5)

where Mi
j and Ki

j are the mass and stiffness matrices of the element at the current iteration. Mi−1
j and

Ki−1
j are the mass and stiffness matrices of that at the previous iteration. Particularly, if the element

removal rate q% reaches 100%, the SBESO method degenerates into the traditional BESO method,
and thus the Eqs. (4) and (5) are rewritten as:
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where M0
j and K0

j are the initial mass and stiffness matrices of the element, respectively.

Based on classical FE theory, the structural dynamics governing equation is written as:

Mü (t) + Ku (t) = F (t) (8)

According to Eqs. (6) and (7), the global mass and stiffness matrices of Eq. (8) in the current design
domain of the structure are updated as:
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When the volume constraint is satisfied and the minimum of the objective function is convergent,
the optimal process terminates and the final solution is achieved. The convergence criterion adopted
by Huang et al. [12] is used in this study, and can be expressed as:

error =
∣∣∣∣∣

N′∑
i=1

fk−i+1 −
N′∑
i=1

fk−N′−i+1

∣∣∣∣∣
/ N′∑

i=1

fk−i+1 ≤ ε1 (11)

where error is the relative error of the objective function, and ε1 is the defined convergence tolerance,
N ′ is an integer which is selected as 5 for all examples using the SBESO method in this study.

As a such, in the light of the above discussion, the flowchart of dynamic topology optimization
by SBESO is depicted in Fig. 2 and the topology optimization procedure is given as follows:

Figure 2: Dynamic topology optimization flowchart by SBESO
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Step. 1 Set the algorithm parameters: evolution rate ER, element removal rate q%, target volume
V ∗, filter radius of sensitivity rmin and penalty factor p, and discretize the initial design domain with a
refined finite element mesh;

Step. 2 Perform the dynamic FE analysis on the current design domain to obtain the elemental
and nodal sensitivity numbers, and apply spatial filter scheme to smooth the sensitivity numbers of all
elements;

Step. 3 Determine the target volume at the next iteration according to the evolutionary rate;

Step. 4 Divide the elements satisfying Eq. (2b) into the two sets: q% of these elements with high
sensitivity numbers for removal and (1 − q%) with high sensitivity numbers for return to the structure,
setting each element in domains �i, �GS or �LS;

Step. 5 Add the elements that are within the domain �i, delete the elements within the domain �LS,
and regulate the mass and stiffness matrices of the elements within the domain �GS using the specified
weighted function;

Step. 6 If � = 0, then the steady state arrives at the i-th iteration and update the target volume as
Vi+1 = Vi (1 − ER), else do not update Vi.

Step. 7 Repeat Steps 2–6 until the objective volume (V ∗) is achieved and the convergence criteria
is met.

3 Frequency Optimization
3.1 Problem Statement

When the dynamic response of a structure is dominated by several vibration modes, one method
to diminish excessive vibration is to perform the eigenfrequency topology optimization to prevent the
fundamental frequencies from approaching the working frequency. Therefore, the natural frequency
corresponding to the vibration mode must be increased to avoid the structural resonance.

For undamped vibration systems, the natural frequency ωl and the eigenvector ϕl of mode l are
interrelated to each other by Rayleigh quotient expressed as:

ω2
l = ϕT

l Kϕl

/
ϕT

l Mϕl (12)

Here, the topology optimization problem to maximize the l-th eigenfrequency of a vibrating
structure can be stated as:

Maximize f (x) = ωl

s.t. V ∗ −
N∑

i=1

Vixi = 0

ω2
l = ϕT

l K (x)ϕl

/
ϕT

l M (x)ϕl

xi = 0 or 1 (i = 1, . . . , N) (13)

3.2 Sensitivity Analysis
Substituting Eqs. (9) and (10) into Eq. (12), the Rayleigh quotient is rewritten by:
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According to Eq. (14), considering the material interpolation scheme, the sensitivity of the
objective function can be expressed by:
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The above equation seems that the sensitivity number is dependent on the penalty factor, normally
p ≥ 3, employed in the SIMP model for topology optimization problems. Thus, p = 3 is adopted in
this paper.

3.3 Numerical Example
As shown in Fig. 3, we intend to maximize the first natural frequency of a beam-like structure

for a specified material volume fraction V ∗ = 50%. The beam with dimensions 240 mm × 30 mm
is discretized into 240 × 30 4-node bilinear plane stress elements with same size. The material is
modeled as linear elasticity with Young’s modulus of E = 10 GPa, Poisson’s ratio μ = 0.3, and
mass density ρ = 1 × 103 Kg/m3. The weight function is selected as a linear function. The SBESO
algorithm parameters are as follows: element removal rate q% = 40%–100%, convergence tolerance
ε0 = ε1 = 0.001, sensitivity filtering radius rmin = 5 mm, evolutionary rate ER = 2%.

y

x

240

30

Figure 3: Initial design domain of a beam simply supported at both ends

Fig. 4 illustrates final topologies as well as evolution history of the first natural frequency using
SBESO technique with various element removal rate. It is observed that the decreasing element
removal rate results in an increasingly smooth evolution history. Particularly, the optimal topol-
ogy tends to be identical as the element removal rate gradually decreases. For the classic BESO
method corresponding to q% = 100%, the strong discontinuity during the iteration of the first
natural frequency occurs due to excessive deletion of elements in the structure topology, as shown
in Fig. 4a. In contrast, the SBESO method provides a relatively smooth evolution history of first
natural frequency, as shown in Figs. 4b–4d. Moreover, the SBESO method produces a relatively
stable convergent process compared with the classic BESO method. The optimal natural frequency
obtained from the SBESO method is higher than that from classic BESO method. It is notable that the
evolutionary history corresponding to q% = 40% smoothly iterates without any jump, which occurs in
cases of q% = 70% and 60%, although they share almost the same optimal topology, as shown in
Figs. 4b–4d. It attributes to a high element removal rate, which can generate an instable optimal
process due to improper removal of efficient elements in a single iteration. As such, it demonstrates
that the optimal solution with q% = 40% is more robust when compared with those obtained from
other element removal rates. However, low element removal rate can produce expensive computation
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especially for dynamic optimization. From above analysis, the element removal rate behaves as the step
size in mathematical programming which a strong influence on optimization process.

(a) (b)

(c) (d)

Figure 4: Effect of the deletion rate q% on the optimization topology and convergence process (a)
q% = 100% (BESO) (b) q% = 70% (c) q% = 60% (d) q% = 40%

Fig. 5 depicts the effect of various weighted functions on optimal topology and convergence
process with q% = 40%. Like the linear weighted function, the sinusoidal form can achieve the
relatively smooth iterative process, compared with the constant weighted function. These two con-
tinuous weighted functions produce the identical final topology whereas they are different from the
constant weighted function. Despite this, the SBESO using the constant weighted function produces
the slightly high optimal first natural frequency with a similar final topology to the BESO method.
Either the linear or the sinusoidal weighted function monotonously represents the contribution of
returned (1 − q%) of the elements, which are removed in the BESO procedure, to the element mass and
stiffness matrixes by ranking their sensitivity numbers according to Eqs. (3)–(5). However, the constant
weighted function has the returned (1 − q%) of the elements to play the same role on the element mass
and stiffness matrixes. Consequently, the linear or the sinusoidal weighted functions share the common
optimal topology while the constant weighted function generates the similar optimal topology to that
from the BESO method.
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(a) (b)

Figure 5: Effect of various weighted functions on optimal topology and convergence process with
q% = 40% (a) Sinusoidal function (b) Constant function

4 Dynamic Compliance Optimization
4.1 Problem Statement

The topology optimization of dynamic compliance for a structure under transient loading is
formulated with limited available material. The average dynamic compliance over the entire time is
minimized to maximize the stiffness of the structure and can be mathematically expressed as:

Minimize C (x) = 1
m

m∑
r=1

1
2

FT (tr) u (tr)

s.t. V ∗ −
N∑

i=1

Vixi = 0

M (x) ü (tr) + K (x) u (tr) = F (tr)

xi = 0 or 1 (i = 1, . . . , N) (16)

where F (tr) is the external force vector at the r-th time step, and m is the number of time steps. ü (tr)

and u (tr) are the acceleration and displacement vectors at the r-th time step, respectively.

To avoid the complex dynamic sensitivity analysis in the time domain, the ESL method is used
for the dynamic topology optimization problem in this study. The HHT-α scheme is also employed to
solve the structural dynamics problem.

4.2 HHT-α Method
The HHT-α method generalizes from the Newmark-β method, which is employed to calculate the

structural dynamic response under the transient loading. The HHT-α method alters the momentum
equation by a parameter α describing a numerical delay between stiffness and external force vector,
expressed as:

M (x) ü (tr) + (1 − α) K (x) u (tr) + αK (x) u (tr−1) = (1 − α) F (tr) + αF (tr−1) , r = 1, . . . , m (17)
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u(tr) = u(tr−1) + �tu̇(tr−1) + �t2
[
(1/2 − β)ü(tr−1) + βü(tr)

]
(18)

u̇(tr) = u̇(tr−1) + �t
[
(1 − γ )ü(tr−1) + γ ü(tr)

]
(19)

The HHT-α method is adopted along with the finite difference algorithm of the Newmark-β, such
that it degenerates into the Newmark-β when α = 0.

To guarantee that the Newmark-β method is provided with at least second-order accuracy and
unconditional stability, α, β, and γ are subject to the following conditions:

0 ≤ α ≤ 1/3, β = (1 + α)
2
/4, γ = (1 + 2α) / 2 (20)

By substitution of Eq. (17) into Eq. (16b), the discrete momentum equation is acquired as:

M1 (x) ü (tr) + M0 (x) ü (tr−1) + K (x) u (tr−1) − (1 − α) F (tr) − αF (tr−1) = 0 (21)

where

M1(x) = M(x) + (1 − α) β�t2K(x)

M0(x) = (1 − α) (1/2 − β) �t2K(x) (22)

To obtain the dynamic response at every time step, we calculate ü (tr) from Eq. (21) and then
update u (tr) and u̇ (tr) using Eqs. (18) and (19). For initial time step, we compute ü (t0) as ü (t0)

= M (x)
−1

(F (t0) − K (x) u (t0)) from the specified u (t0) and u̇ (t0).

4.3 ELS-Based Computation Flow of Optimization
Equivalent static load refers to the static load that produces the identical displacement field to

that of dynamic analysis. Because the dynamic displacement is computed at every time step, the
ESL set is obtained over the entire time. Total ESL sets are employed as multiple loading to solve
the corresponding static optimization problem, which shares the same optimal solution as original
dynamic optimization problem.

The ESL vector feq(tr), can be obtained using the displacement field from Eq. (18) as follows:

feq(tr) = K(x)u(tr) (r = 1, . . . , m) (23)

Once the ESL vector is computed, it is employed in the equilibrium equation as the r-th external
loading for static optimization expressed as:

K (x) us(tr) = feq(tr) (r = 1, . . . , m) (24)

where us(tr) denotes the static displacement response to the r-th external loading. The subscript s
represents static condition.

The ESL optimization consists of an analysis domain and a design domain, as shown in Fig. 6.
The analysis domain performs structural dynamic analysis to obtain the displacement field at each
time step, which is used to calculate ESL sets. Then the ESL sets are transferred to the design domain
for the linear static optimization with multiple loading conditions. The design variables are updated
and returned to the analysis domain to recalculate the displacement field.
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Figure 6: Iterative process of the equivalent static load method

In the design domain for static response optimization, an objective function is defined as that of
responses from various independent static loading conditions. Therefore, based on the ESL method,
the dynamic compliance optimization model described by Eq. (16) is transformed into a static
compliance optimization model with multiple loading conditions as follows:

Minimize C̃ (x) = 1
m

m∑
r=1

1
2

fT
equs (tr)

s.t. V ∗ −
N∑

i=1

Vixi = 0

M (x) ü (tr) + K (x) u (tr) = F (tr)

feq (tr) = F (tr) − M (x) ü (tr)

K (x) us(tr) = feq(tr) (r = 1, . . . , m)

xi = 0 or 1 (i = 1, . . . , N) (25)

Using the SBESO method, the sensitivity number of the static compliance optimization problem
with multiple loading conditions is calculated by:

αi
j =

⎧⎪⎨⎪⎩
1
2

m∑
r=1

uT
j (tr) Ki

juj (tr) xj = 1

0 xj = 0

(26)

According to ESL method, if the number of design variables which are changed more than
a predefined value (ε2) is less than a threshold number, which is defined as the product between
total number of design variables (N) and a predefined percentage (ε3), then the process terminates.
Therefore, this convergence criterion is stated as follows:

countif
(∣∣xk+1

i − xk
i

∣∣ ≥ ε2

) ≤ N × ε3 (27)

where ε2 and ε3 are small values, which are prescribed by the user.

The dynamic compliance optimization problem is solved by SBESO method. The optimization
process using the ESL method is illustrated in Fig. 7 and the procedure are outlined as follows:
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Figure 7: Dynamic compliance optimization process for a structure

Step. 1 Set the initial design variables and parameters.

Step. 2 Perform dynamic response analysis of a structure with respect to the design variables.

Step. 3 Compute the ESL sets at every time step.

Step. 4 Update the design variables according to sensitivity analysis using SBESO technique.

Step. 5 Once the convergent condition in (11) and (27) is simultaneously satisfied with given
amount of material, the optimal process is terminated. Otherwise, go to Step 6.

Step. 6 Update the design, set k = k + 1, and go to Step 2.

4.4 Numerical Example
A long cantilever beam with dimensions 120 mm × 30 mm is depicted in Fig. 8a. The beam is

subjected to a single dynamic load imposed at the middle point of right free edge, as illustrated in
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Fig. 8b. The design domain is meshed into 120 × 30 elements with an isoparametric 4-node. The
objective volume fraction is prescribed to be 50%. The Young’s modulus of the material is E = 2 GPa,
the Poisson’s ratio is μ = 0.3, and the mass density l is ρ = 4.8 × 103 Kg/m3. The weighted function is
adopted as a linear function. The parameters of the SBESO algorithm are as follows: element removal
rate is q = 60%–100%, convergence tolerance ε0 = ε1 = 0.001, ε2 = 0.3 and ε3 = 4%, sensitivity filtering
radius rmin = 3 mm, and penalty factor p = 3.

y
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30

( )f t

 

st /0.33 0.66

10

1

-10

(
)/
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N
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daol cino
m ra
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(a)  (b) 

Figure 8: Long cantilever beam subjected to a single sinusoidal load (a) An initial design domain of a
long cantilever beam (b) dynamic load

Fig. 9 shows the effect of element removal rate on the optimal topology and evolutionary process
considering a single load case. It is found that BESO and SBESO procedures have almost the same
mass distribution towards the clamped and free edges of the beam. Compared with the optimal
topology from the BESO technique (q% = 100%), the SBESO scheme with the element removal rate
of q% = 80% can obtain a better configuration with clearer and smoother borders while the BESO
design has some areas with rough boundaries and undesirable islands. The unexpected island featured
with small hole forms due to redundant element removal using the BESO technique. In addition, it
is unfavorable for manufacturing. For the element removal rate of q% = 60%, additional beam-like
members with nearly equal width are introduced to build the bridge between the clamped and free
edges of the structure, which is greatly conducive to lessening the vertical deflection of the structure.
Although the BESO method is convergent prior to the SBESO method, the latter provides the stable
evolutionary history and has a slightly low value for mean dynamic compliance. The present example
verifies that the SBESO method can achieve the optimal design of a structure with robust optimization
process when compared with the BESO method. Most importantly, the presented numerical results
demonstrate that the SESO technique base on the ESL method is efficient and robust in dynamic
topology optimization problems in the time domain.

Another example is shown in Fig. 10, where multiple load cases are considered for the dynamic
optimization problem. All parameters for the structure and optimization are identical to those used
for the single load case as illustrated in Fig. 8. For multiple load cases, the optimization problem
can be formulated as minimization of total dynamic compliance caused by each load. As such the
optimization problem considering multiple load cases can be defined as follows
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Figure 9: Effect of element removal rate on the optimal topology and convergence process for a long
beam under a single sinusoidal load (a) q% = 100% (BESO) (b) q% = 80% (c) q% = 60%

y

x

120

30

( )f t

( )f t

Figure 10: Long cantilever beam subjected to multiple load cases
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Minimize C̃ (x) =
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1
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M (x) ü (tr) + K (x) u (tr) = F
 (tr)

feq,
 (tr) = F
 (tr) − M (x) ü (tr)

K (x) us(tr) = feq,
(tr) (r = 1, . . . , m; 
 = 1, 2)

xi = 0 or 1 (i = 1, . . . , N)

(28)

The resulting optimized solution together with convergent history using BESO scheme is pre-
sented in Fig. 11a, while the resulting improved solutions together with convergent history using
SBESO scheme in Figs. 11b and 11c under multiple load cases. It is noted that the topology obtained
from BESO scheme is significantly different from those obtained from SBESO scheme aside from
right part of design domain. The dynamic compliance of the BESO solution (q% = 100%) and SBESO
solution (q% = 80% and q% = 60%) are equal to 0.316, 0.292 and 0.281 Nm, respectively. Thus, the
dynamic compliance decrease for SBESO scheme are 7.6% in the scenario of q% = 80% and 11.1%
in the scenario of q% = 60% relative to that for BESO scheme. It can attribute to the fact that the
SBESO solutions provide relatively thick beam-like members. It is evident that the optimized topology
obtained from SBESO scheme with element removal rate of 60% is preferable due to higher dynamic
stiffness and smoother boundary.

0 10 20 30 40 50 60 70 80
0.2

0.3

0.4

0.5

0
Number of iteration

ecnailp
moc

c i
many

D
m·

N/
C

BESO

0 10 20 30 40 50 60 70
0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70
Number of iteration

ecnailp
moc

ci
man y

D
m·

N/
C

SBESO

(a) (b)

Figure 11: (Continued)
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Figure 11: Effect of element removal rate on the optimal topology and convergence process for a long
beam under multiple load cases (a) q% = 100% (BESO) (b) q% = 80% (c) q% = 60%

5 Conclusion

In this study, we propose a variant of SESO, called SBESO, to solve the topology optimization
of eigenfrequency and dynamic compliance in the time domain. The SBESO technique is based on
the philosophy that the unnecessary region for a structure has the corresponding elements smoothly
removed by gradually reducing those stiffness and mass matrixes. The main observations of this study
are as follows:

• Various weighted functions significantly influence the optimal process and configuration.
Among the analyzed weighted functions, the sine and linear function yield the smoother
iterative history while the constant function is a more radical one. It seems that the smooth
weighted function contributes to regulating the optimal process.

• The element removal rate is a key parameter in dynamic optimization, because a low value
results in a high computational burden and a high value instability in the structure due to the
overdue removal of elements in a single iteration. This element removal rate functions similarly
to the step size in mathematical programming influencing the optimal process.

• The element removal occurs smoothly using the SBESO procedure, not radically as the classic
BESO behaves. The benchmark examples indicated that SBESO can generate efficient structure
form and smooth boundary for continuum structures in contrast to those produced by the
BESO method.

Therefore, it is anticipated that the development of the present SBESO technique for free and
forced vibration problems can tackle dynamic topology optimization of continuum structures in an
effective and powerful way.
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