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ABSTRACT

The structure and function of brain networks have been altered in patients with end-stage renal disease (ESRD).
Manifold regularization (MR) only considers the pairing relationship between two brain regions and cannot
represent functional interactions or higher-order relationships between multiple brain regions. To solve this issue,
we developed a method to construct a dynamic brain functional network (DBFN) based on dynamic hypergraph
MR (DHMR) and applied it to the classification of ESRD associated with mild cognitive impairment (ESRDaMCI).
The construction of DBFN with Pearson’s correlation (PC) was transformed into an optimization model. Node
convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph
structure, and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.
The DHMR and L1 norm regularization were introduced into the PC-based optimization model to obtain the
final DHMR-based DBFN (DDBFN). Experiment results demonstrated the validity of the DDBFN method by
comparing the classification results with several related brain functional network construction methods. Our work
not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,
providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments.
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1 Introduction

In addition to renal failure, end-stage renal disease (ESRD) is usually accompanied by central
nervous system abnormalities [1] and multiorgan dysfunction [2]. It may lead to cognitive dysfunction,
including cognitive control abnormalities [3], memory impairment [4], and emotional impairment [5].
Cognitive impairment is a common comorbidity in ESRD cases [6], which may be caused by uremia,
thiamine deficiency, hypertension, hemodialysis (HD), transplant rejection or electrolyte disorder.
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About 30%∼60% of ESRD patients will have cognitive impairment when receiving HD treatment
[7]. Patients with mild cognitive impairment (MCI) have a higher risk of developing dementia, which
may significantly reduce the odds of survival and prognosis [8]. The development of dementia in MCI
patients may be delayed after certain cognitive training and rehabilitation treatment. Some patients can
even return to a normal state, which not only relieves their own pain but also relieves the burden on
family and society [9]. However, the exact neuropathological mechanism of ESRD associated with
mild cognitive impairment (ESRDaMCI) remains unclear, hindering the development of effective
treatment.

Nowadays, neuroimaging technology is developed in the detection and research of brain diseases,
providing a valuable tool for the exploration of potential imaging biomarkers of ESRD-related
neurological complications [10]. It allows us to effectively explore brains and their connectivity
patterns in a noninvasive manner, revealing previously unrevealed aspects of brain function and
brain structure. For example, previous voxel-based morphometrics, surface-based morphometrics, and
diffusion tensor imaging studies have revealed defects in gray matter volume and reduced cortical
thickness [11], as well as reduced white matter integrity [12] in ESRD patients. In addition, various
analyses, including arterial spin labeling [13], magnetic resonance spectroscopy [14], and single-photon
emission tomography [15], have found abnormalities in brain metabolism and function in ESRD
patients treated with HD.

In recent years, resting-state functional magnetic resonance imaging (Rs-fMRI) has been
attempted to detect changes in brain function behind neuropsychological injury in ESRD patients
[16]. Brain functional networks (BFN) can describe the functional or structural interactions of the
brain at the level of the whole brain connection [17], providing a new way to explore the function
and structure of the brain. BFN construction and analysis are generally applied to early diagnosis
and prediction of brain diseases. Previous Rs-fMRI studies [16] have shown that patients with ESRD
show internal abnormalities in brain activity, with disruption of functional connectivity networks
within and between regions, especially in certain key brain regions. In the context of cognitive decline
in ESRD patients, changes in the global brain functional network have not been fully understood. In
Rs-fMRI studies, BFN is generally constructed from a full time series of resting states. Studies have
shown that the neural activity of the brain changes dynamically over time, and such dynamic changes
will contain richer information [18]. This study of dynamic BFN (DBFN) helps to further explore the
operation mode of the whole brain, which is conducive to the auxiliary diagnosis of brain diseases.

Manifold regularization (MR) has been widely used in constructing BFN. Li et al. [19] were
inspired by the similar connection mode (internal similar structure) between adjacent brain regions
in BFN, expanded MR by embedding sparse prior information, and obtained a BFN construction
method called sparse MR (SMR). Xue et al. [20] constructed a BFN based on the same idea and
introduced the distance information between brain regions into the manifold regular term. Most
BFN construction methods only consider the paired association between brain regions, but ignore
the higher-order relationship between multiple brain regions. Studies have shown that in BFN, a brain
region usually interacts directly with several adjacent brain regions. Thus, higher-order relationships
between brain regions may contain important information to improve classification performance.
Zhou et al. [21] proposed a hypergraph-based learning method which introduced a hypergraph
Laplacian operator to describe the higher-order relations between multiple samples. Yu et al. [22]
adopted hypergraphs to depict higher-order relationships between multiple nodes and applied them in
the study of BFN. Jie et al. [23] used sparse representation (SR) to form hypergraph, directly carried
out feature extraction and feature selection in the diagnosis of MCI. Ji et al. [24] developed a manifold
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regularization term on the basis of hypergraph, and constructed a DBFN with hypergraph manifold
regularization regularization (HMR) for MCI classification.

The relationship between nodes in most of the above models comes from the attributes of the data
itself, which is a static relationship. If only the initial hypergraph structure is used and the dynamic
modification of the hypergraph structure by the adjusted feature embedding is ignored, the model will
ignore many implicit relationships that are not included in these static relationships. Recent studies
have shown that the structure and function of brain networks are altered in ESRD patients [25,26].
Nevertheless, they did not focus on the topological organization features of the whole brain functional
network in ESRDaMCI patients. To solve these problems, we proposed a DBFN construction method
based on dynamic hypergraph manifold regularization (DHMR), and applied it to the classification
of ESRDaMCI patients and normal people. Firstly, the optimization model of DBFN is constructed.
Secondly, the dynamic hypergraph is constructed based on DBFN. Then, the DHMR and L1 norm
regularization were introduced into the optimization model to obtain a DBFN (DDBFN) constructed
based on DHMR method. Finally, the constructed DDBFN is used for the diagnosis and prediction
of ESRDaMCI to verify the validity of the proposed method.

2 Data and Methods
2.1 Research Framework

Fig. 1 shows our research framework, including the following steps: (a) Preprocessing the original
resting state fMRI data obtained by scanning; (b) Registering preprocessed fMRI data to different
brain regions according to the standard partition template to obtain the time series of all brain regions;
(c) Dividing the whole time series into multiple overlapping subseries segments by the sliding windows;
(d) Constructing a DBFN based on PC and converting it into an optimization model; (e) Forming
hypergraphs based on DBFN, extracting features from the constructed hypergraphs by convolution
operation, and forming new hypergraphs to obtain their Laplacian matrix; (f) Constructing the
manifold regular terms using hypergraph Laplacian matrix, and introducing the manifold regular
terms and sparse regular terms into the PC-based optimization model to obtain a DDBFN; (g)
Extracting the network edge weights in DDBFN as features, and using t-test to select features to obtain
discriminant features; (h) Training a linear kernel SVM classifier by the training set, and classifying
the test sets and evaluating the classification performance.

2.2 Data Acquisition and Processing
Fifty-one patients with ESRD who had been diagnosed with MCI (ESRDaMCI group) were

included in the study. They were admitted to Changzhou Second People’s Hospital affiliated to
Nanjing Medical University from February 2020 to June 2021. All of them were right-handed and
had no previous cardiovascular disease. No neurological diseases; No infectious diseases; No diabetes
mellitus; No contraindications for MRI examination. Besides, thirty-nine healthy volunteers (normal
group) were recruited, all were right-handed; Previous good health; No contraindications for MRI
examination. In the ESRDaMCI group and the normal group, five and three subjects were excluded
due to excessive head movement, respectively. Finally, fifty-one patients and thirty-nine volunteers
were included. This study was approved and supervised by the Ethics Committee of Changzhou
Second People’s Hospital affiliated to Nanjing Medical University with the approval number KY039-
01. All subjects voluntarily signed a written informed consent.

Montreal cognitive assessment scale (MoCA) is a tool for assessing cognitive abnormalities. It
consists of eleven items, which are used to measure various cognitive domains. Such as memory,
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language, abstract thinking, executive function, visual-spatial skills, attention and concentration,
calculation, and orientation. According to the statistics of Changzhou Second People’s Hospital
Affiliated with Nanjing Medical University, MoCA was better completed and is more sensitive to
identifying MCI in the memory clinic than other cognitive function assessment scales, considering
such factors as patients’ temper and uncooperation [27]. Therefore, the cognitive functions of these
ESRD patients were evaluated by MoCA. The full score of MoCA scale was 30, with 26 or more being
normal, 18–26 being mild, 10–17 being moderate, and less than 10 being severe. All neuropsychological
tests were evaluated by a neurologist with 20 years of experience prior to the MRI scan. The average
score of ESRD subjects diagnosed with MCI was 21.30 ± 2.75. Table 1 shows the specific demographic
information.
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Figure 1: Research framework diagram

Table 1: Demographic information

Item ESRDaMCI (n = 51) Normal (n = 39) t/x2 P

Age (x ± s]) 50.05 ± 7.86 48.37 ± 6.59 1.079 0.251
Gender (M/F) 24/27 24/15 0.341 0.536
Education years (x ± s) 11.25 ± 3.15 9.73 ± 3.85 0.973 0.771
MoCA score (x ± s) 21.30 ± 2.75 27.27 ± 1.24 −13.728 0.000
Note: ESRDaMCI: Subjects with end-stage renal disease and mild cognitive impairment; Normal: Normal subjects; P < 0.05 was
considered as statistically significant difference.
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We used GE Discovery MR 750W 3.0 T superconducting MR scanner with 32 channel head and
neck joint coils. Soft rubber plugs were used to fix the head to avoid artifacts caused by subjects’
head movement in the test. All subjects underwent routine MR examinations, including T2-weighted
(T2WI), fluid-attenuated inversion recovery (FLAIR) sequence T2WI, and two imaging physicians
ruled out organic craniocranial lesions. Gradient echo plane echo imaging (GRE-EPI) sequence to
collect Rs-fMRI images, machine scanning parameters: Repetition time (TR) is 2000 ms, echo time
(TE) is 40 ms, field of view (FOV) is 24 cm, flip angle (FA) is 90°, and matrix size is 64 × 64. The layer
thickness is 6 mm. MoCA assessment was completed prior to scanning.

After obtaining Rs-fMRI data of patients and normal subjects, Data Processing Assistant for
Resting-state fMRI (DPARSF) based on Matlab 2012b platform was used to preprocess the original
data [28]. Preprocessing operations need to install beforehand SPM8 toolkit (http://www.fil.ion.ucl.ac.
uk/spm/) and DPARSF toolkit (http://rfmri.org/dparsf). The specific steps are as follows: (a) Format
conversion: Convert the Rs-fMRI data from DICOM format to NIFTI format using DICOM import
of SPM8; (b) Slice timing: Delete the first ten time points of each subject, and use the remaining 230
time series for subsequent processing (since it takes a certain amount of time for both the instrument
and the subject to enter the stable state); (c) Realign and normalize: Perform head correction using
rigid registration, and congruence fMRI images to Montreal Neurological Institute (MNI) space,
followed by standardized operations (Bounding Box: [−90,−126,−72; Voxel Size: [333]); (d) Space
smoothing: Smooth the Gaussian kernel with full-width-at-half-maximum; (e) Detrend; (f) Band pass
filtering: Set the frequency range from 0.01 to 0.08 Hz; (g) Regions partition: Partition each subject’s
brain into 90 regions according to Automated Anatomical Labeling (AAL) standard template [29] and
extract the time series of each brain region for subsequent research after the removal of covariates.

2.3 Dynamic Hypergraph
BFN was constructed using pairwise Pearson’s correlation coefficients (PCC) between brain pairs.

We think of brain regions as nodes and PCC as the edges connecting them. PCC is calculated using
the following method:

pij = corr{x(i), x(j)} (1)

where x(i) and x(j) represent the i-th and j-th brain regions, respectively, and corr is the pinional
correlation coefficient of x(i) and x(j).

Sliding windows [30] were adopted to divide the entire Rs-fMRI time series into several subse-
quences to obtain a DBFN. Assume that the total number of time points of Rs-fMRI is M, D =
[(M-L)/s]+1 is the number of subsequences that can be generated, X = [

x1, x2, . . . , xp

] ∈ RM×P is the
matrix composed of time series, where L is the length of sliding window, s is the step length, and P
is the number of brain regions. The time series of d-th window in i-th brain region was defined as
xd

i ∈ RL
(d = 1, . . . , D), and the time series matrix of d-th window was obtained by connecting xd

i in
series:

X (d) = [
xd

1, xd
2, . . . , xd

p

] ∈ RL×P (2)

PCC between time series in each time window is calculated and a DBFN is constructed.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://rfmri.org/dparsf
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After the centralization and standardization of xd
i , the correlation coefficient matrix of the d-th

window can be expressed as Z (d) ≈ (
X (d)

)T
X (d), which can be converted into the optimized form:

min
Z(d)

∣∣∣∣∣∣Z (d) − X (d)T X (d)

∣∣∣∣∣∣2

F
(3)

For a given time series X, a hypergraph G(V, E, W) network can be used to describe the attribute
relationships between brain regions. The set of nodes is represented as V, the set of hyperedges is
represented as E, and the set of weights of each hyperedge is represented as W . In hypergraph G, each
brain region corresponds to a node v ∈ V in the hypergraph, and each hyperedge contains more than
two nodes to represent the simultaneous interaction of multiple brain regions.

Assume that H ∈ R|V|×|E| is the point-edge association matrix of the hypergraph G, where the
values of matrix elements are defined as follows:

h (v, e) =
{

1, v ∈ e
0, v /∈ e

(4)

where v ∈ V is a node of hypergraph G, and e ∈ E is a hyperedge of hypergraph G.

For an association matrix H, the node degree d (vi) of each node and the edge degree δ
(
ei

)
of each

hyperedge are respectively expressed as:

d (vi) =
∑
ei∈E

w
(
ei

)
h

(
vi, ei

)
, i = 1, . . . , m (5)

δ
(
ei

) =
∑
vi∈V

h (vi, ei) , i = 1, . . . , m (6)

where ei (i = 1, . . . , m; m is the number of hyperedges) is the i-th hyperedge, w(ei) is the weight of the
hyperedge, and vi is the i-th node.

The DBFN is constructed based on sliding windows, that is, a complete time series is divided
into several equal length window segments, and then the brain network matrix of each segment is
calculated. Finally, these continuous brain network matrices form a dynamic brain network. Although
constructing the DBFN is dynamic for the whole time series, the method of constructing the BFN on
each window fragment is still static for each window fragment [31]. In other words, the relationship
between traditional hypergraph nodes comes from the attributes of the data itself, which is a static
relationship. Only the initial hypergraph structure is used, while the dynamic modification of the
hypergraph structure by the adjusted feature embedding is ignored. This may cause the model to ignore
many implicit relationships that are not included in these static relationships [32].

To obtain a dynamic hypergraph, the method of node convolution and hyperedge convolution
superposition [32] is adopted to dynamically modify the structure of the hypergraph. First, node
convolution is performed to aggregate node features to the hyperedge containing these nodes. The
transformation matrix T is learned from the node features to replace and weight the node features in
the hyperedge, the multilayer perceptron (MLP) is used to generate the transformation matrix T. Then
we use the one-dimensional convolution to compress the transformed features:

T = MLP (Xu)

xe = conv (T · MLP (Xu))
(7)

where Xu represents the node feature set, xe represents the adjacent hyperedge feature.
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Then, hyperedge convolution is performed to aggregate hyperedge features into centroid node
features. Use MLP to generate the weight score of each super edge. The output centroid node features
are calculated as the weighted sum of the input hyperedge features.

w∗ = softmax (xeB + b) (8)

xu =
|A(u)|∑
i=0

w∗ixi
e (9)

where w∗ is the weight of each super edge, B and b are learnable parameters, xu represents centroid
node characteristics, and |A(u)| represents the size of the adjacent super edge set.

Node features are updated to embed new features, and a new hypergraph structure is constructed
on this basis by combining with node convolution and hyperedge convolution. Table 2 shows the
algorithm of dynamic hypergraph construction.

Table 2: Dynamic hypergraph construction algorithm

Input: G// Hypergraph structure
xu// Features of centroid nodes

Output: yu// Node features

xlist = �

for e in A(u) do
xe = VertexConv(X v) // X v is the sample node feature set
xlist.insert(xe)

end for
X e = stack(xe)
xu = EdgeConv(X e)
yu = f (xuB + b) // f is a nonlinear activation function

We initialize the hypergraph structure by embedding the input features. With the enhancement of
feature embedding degree and the deepening of network embedding degree, the hyperedge set is also
dynamically adjusted, so that a better hypergraph structure can be obtained. Finally, a new dynamic
hypergraph G∗(V∗, E∗, W∗) is obtained.

2.4 DBFN Based on DHMR
Laplacian matrix can reflect the intrinsic geometric structure of a graph, so it is often used in the

matrix representation of graph. The Laplacian matrix of a hypergraph can better reflect higher-order
relations between nodes, which can be expressed as

L = Dv−Θ (10)

where Θ = HWD−1
e HT is the adjacency matrix of the hypergraph, Dv is the node degree matrix with

the diagonal element d (vi), De is the hyperedge degree matrix with the diagonal element δ
(
ei

)
.
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The standardized Laplacian matrix of the dynamic hypergraph is deduced and calculated accord-
ing to the calculation method of Laplacian matrix of a simple graph, as shown in Eq. (11):

Ldh = I − Dv
∗− 1

2 H∗W ∗De
−1H∗TDv

∗− 1
2 (11)

where Ldh is the normalized Laplacian matrix of the dynamic hypergraph, and I is the identity matrix.
Dv

∗ is the node degree matrix of the dynamic hypergraph, De
∗ is the hyperedge degree matrix of the

dynamic hypergraph, W∗ is the diagonal matrix in which the diagonal elements are the weights of each
hyperedge of the dynamic hypergraph, and H∗ ∈ R|V∗|×|E∗| is the point-edge correlation matrix of the
hypergraph G∗.

Referring to the method of Shao et al.’s [33], a common k-nearest neighbor (KNN) algorithm is
used to construct dynamic hypergraphs on the basis of DBFN, and popular regularization terms and
L1 norm regularization terms are added to calculate the node degree and edge degree of dynamic
hypergraphs, thus obtaining the regular terms of hypergraphs. Inspired by Jiang et al. [32] and
Ji et al. [24], we added a hypergraph convolution method based on node convolution and hyperedge
convolution superposition to dynamically update the hypergraph structure and obtained a new DBFN
construction method, namely, DHMR. The objective function of this method is shown in Eq. (12):

min
Z(d)

∣∣∣∣∣∣Z (d) − X (d)T X (d)

∣∣∣∣∣∣2

F
+ λ

∣∣∣∣Z (d)
∣∣∣∣

1
+ βtr

(
Z (d)T LdhZ (d)

)
(12)

where X (d) represents the time series matrix of the d-th window, λ and β represent the regularization
parameters of L1 norm regularization term and manifold regularization term, respectively, and Ldh is
the normalized Laplacian matrix of the dynamic hypergraph.

The diagonal value of the DDBFN matrix finally obtained was changed to zero to make our
method comparable with other methods. That is, the self-connection of the two regions was not
calculated in this study.

2.5 Feature Extraction, Selection and Classification
After obtaining BFN of all subjects, the next task was to classify ESRDaMCI and normal

subjects according to the estimated BFN. The problem then turns to determining which features
[34] should be used for classification. In BFN analysis, two methods are commonly used to identify
cognitive impairment. One is to extract features based on some graph measures, such as local clustering
coefficients [35,36]. The other is to directly take network edge weights as features [37]. We adopted the
second method, which can reduce the influence of different extracted features on the validation of
BFN itself. The simplest t-test method is used to select features to avoid the confounding effect of
feature extraction.

Support vector machine (SVM) has good generalization performance [38] and uses a kernel
function to map samples to high-dimensional space during classification. It can simplify linear
separable problems in high-dimensional space. Linear kernel SVM is easy to employ and easy to
compare experimental results, and has been widely used in small-sample classification problems [39].
The t-test method selects features with discriminating ability, and uses the selected features to train
SVM for recognition. The optimization objective function of SVM classifier can be expressed as
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L (w, β, a) =
n∑

p=1

ap − 1
2

n∑
p,q=1

ypyqapaqK
〈
xp, xq

〉
s.t.K

〈
xp, xq

〉 = xT
p xq

w =
l∑

p=1

apypxp,
l∑

p=1

apyp = 0

0 ≤ ap ≤ C, p = 1, . . . , n

(13)

where K〈xp, xq〉 is a linear kernel function, yp ∈ {−1, +1} represents the label, n is the training sample,
and ap is the training parameter.

3 Experiment and Analysis

Due to the limited number of samples, the leave-one-out cross-validation (LOOCV) was adopted
to evaluate the performance of the proposed method [40]. In simple terms, one is tried on the test,
and the others are tried on the training model. The training set cannot participate in the testing
process of the model, because such participation would result in information disclosure and artificially
improve the performance of the model. We can unify the information of the brain region relationship
and feature embedding relationship by constructing the dynamic hypergraph and then constructing
the DDBFN. We firstly discuss the effects of different parameters on the classification performance
of ESRDaMCI, and determine the optimal parameters of the proposed method, and then uses six
different relevant approaches to construct DBFN for comparison, to evaluate the performance of the
proposed method.

3.1 Parameter Selection
We set ten step sizes, s = 1, 2, . . . , 10, and ten sliding window lengths, L = 10, 20, . . . , 100. The

nearest neighbor number k is 1, 3, 5, 6, 7, 8, 9, 10, and 15 [33]. The regularization parameters λ and β

are in the range of {2−4, 2−3, 2−2, 2−1}. The significance level of t-test feature selection was set to 0.05,
and the linear kernel classifier parameter C of SVM was set to one. Proximal operator method [19]
is used to optimize and solve the L1 norm regularization terms, as shown in Table 3. Z (d) is updated
m times using gradient descent, and αm is the step size in gradient descent. Then the nearest neighbor
operator of the L1 norm regular term is calculated to apply soft threshold operation to the elements
in Z (d). After each gradient descent calculation is completed, the proximal operator method is used to
calculate the nearest neighbor operator of Z (d), which is updated in the next iteration. Thus, when the
objective function converges, the optimal solution of Z (d), namely, DDBFN, is obtained.

Because of multiple parameters, the grid search method cannot find the optimal parameters
directly. Our strategy is to work out the optimal parameters separately, that is, work out the optimal
parameters step by step. In this study, the LOOCV method was adopted to gradually obtain the
optimal parameter values of the model, that is, the window size and step size were determined
according to DBFN first, and then the nearest neighbor number and regularization parameters were
determined. The ESRDaMCI patient training set was used to find the optimal classification model
and the test set was used to evaluate the model. In this way, the number of classifiers and test results
corresponding to the sample size are obtained. The average of the test results is then calculated
to measure the performance of the model. To avoid data leakage, the optimal hyperparameter is
determined by a repeated training model, and the optimal hyperparameter model is verified by the
original samples.
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Table 3: Pseudocode of DDBFN construction

Input: X// Time series matrix
L// Sliding window length
s// Sliding window step size
λ// Hyperparameters of the L1 norm regular term
β// Hyperparameters of the regular term of a hypergraph manifold
k// The number of nearest neighbors in KNN algorithm

Output: Z (d)// BFN for each window

Initialize X (d)// Time series matrix of time window;
H∗// Constructed using the algorithm in Table 2;
Ldh// Constructed using Eq. (11);

While not converge
Z (d) ← Z (d)

m−1 − αm

(∇Z(d)f
(
X (d), Z (d)

m−1

) + βLdhZ (d)
)

;

Z (d) ← proximalλ||.||1
(
Z (d)

m

) = [
sgn

(
w(d)

ij

) × max
(
abs

(
w(d)

ij

) − λ
)

, 0
]

N×N
;

end

Classification accuracy (ACC), area under ROC curve (AUC), sensitivity (SEN), and specificity
(SPE) were used to evaluate classification performance [41]. ACC is defined as the ratio of the number
of correctly predicted tags to the number of the entire sample. The AUC measures the probability that
the classifier will rank a randomly selected positive sample higher than a randomly selected negative
sample. SEN and SPE are called true positive rate and false positive rate, respectively.

The length L and step s of the sliding window are important parameters of DDBFN analysis,
which will greatly affect the reliability of DDBFN. Since DDBFN was optimized by DBFN, we first
classified all DBFN of the subjects based on different L and s to determine the optimal L and s. In the
classification, patients were treated as positive samples and normal subjects as negative samples. The
classification performance with multiple groups of parameters was analyzed to determine the optimal
L and s. For each window length, each index value and standard deviation of the group with higher
classification performance are shown in Table 4, where the best classification results are highlighted
in black bold.

It can be seen from Table 4 that the classification effect is best when L is set to 80 and s is set to
3. The classification performance first gets better and then gets worse with the increase of L and s.
Accordingly, the appropriate window length and step size should be selected, which is consistent with
the conclusion in the study of Li et al. [41]. The reason may be that the information is too dense with
the small window length, which makes the classification performance not very good. Large window
size and large step size may lead to the loss of some dynamic information between brain regions over
time, resulting in the decline of classification performance, while moderate window size and large step
size correspond to considerable classification performance.
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Table 4: Classification performance with different window width and step size

Parameter ACC (%) SEN (%) SPE (%) AUC

L = 10, s = 1 69.4872 ± 1.8581 70.1176 ± 0.0765 58.9744 ± 5.1452 0.7442 ± 0.1164
L = 20, s = 1 77.0588 ± 0.4287 74.1176 ± 0.2874 80.0039 ± 0.3823 0.7904 ± 0.0071
L = 30, s = 1 77.4359 ± 0.1429 80.0053 ± 0.0843 84.8718 ± 0.7241 0.7985 ± 0.0164
L = 40, s = 1 76.1538 ± 0.4510 80.1737 ± 0.0767 82.3077 ± 0.4291 0.8365 ± 0.1135
L = 50, s = 3 78.7179 ± 0.2997 80.0141 ± 0.0818 87.4359 ± 0.1488 0.9090 ± 0.0049
L = 60, s = 2 78.6615 ± 0.1533 80.3629 ± 0.1437 87.7443 ± 0.1075 0.8865 ± 0.0259
L = 70, s = 5 81.7376 ± 0.3632 78.0392 ± 0.4895 87.4359 ± 0.5217 0.8475 ± 0.1422
L = 80, s = 3 83.0091 ± 0.2484 80.5806 ± 0.8514 90.4783 ± 0.6927 0.8902 ± 0.0473
L = 90, s = 2 77.0588 ± 0.4586 74.1176 ± 0.6134 90.6489 ± 7.6638 0.7984 ± 0.3373
L = 100, s = 8 66.0784 ± 1.4318 72.1568 ± 1.8562 78.0435 ± 5.8347 0.5053 ± 0.1549

After determining the window size and step size, we determine the optimal neighbor number k
and regularization parameters λ and β. KNN algorithm is used to select k nodes closest to the central
node to form a hyperedge, so different neighbor numbers have a great impact on the classification
performance. L1 regular term is mainly to remove redundant features and make DDBFN sparser.
The regular term of a hypergraph manifold preserves the discriminant information of each subject
and induces more discriminant features. In general, the regularization parameters λ and β are also
important to regulate the complexity of constructing DBFN. Regularization parameters with better
classification performance under each neighbor number k are shown in Table 5, by comparing the
values of various classification indexes with different regularization parameters under the same k,
where k = 1 means that no hypergraph is formed.

Table 5: Classification performance with different neighbor numbers and regularization parameter
values

Parameter ACC (%) SEN (%) SPE (%) AUC

k = 1, λ = 2−4, β = 2−2 84.6958 ± 0.3792 78.3424 ± 0.3352 86.5497 ± 0.3470 0.8943 ± 0.0024
k = 3, λ = 2−2, β = 2−4 85.3584 ± 0.3287 77.8567 ± 0.6897 88.7511 ± 0.6784 0.8954 ± 0.0017
k = 5, λ = 2−4, β = 2−3 85.6135 ± 0.7924 78.6423 ± 0.3246 88.8564 ± 0.3478 0.8967 ± 0.0011
k = 6, λ = 2−4, β = 2−3 86.5884 ± 0.7384 77.5853 ± 0.4678 88.5468 ± 0.7645 0.9011 ± 0.0021
k = 7, λ = 2−4, β = 2−3 87.7781 ± 0.3458 81.3572 ± 0.1247 88.9644 ± 0.5417 0.8914 ± 0.0019
k = 8, λ = 2−4, β = 2−1 86.6457 ± 0.1813 77.6724 ± 0.7851 88.9564 ± 0.4467 0.9053 ± 0.0011
k = 9, λ = 2−2, β = 2−4 88.5670 ± 0.3587 80.7873 ± 0.4649 90.3577 ± 0.5461 0.9008 ± 0.0011
k = 10, λ = 2−2, β = 2−4 85.4920 ± 0.7952 77.1035 ± 0.8134 88.2631 ± 0.7940 0.8916 ± 0.0018
k = 15, λ = 2−2, β = 2−3 84.8411 ± 0.2877 76.3789 ± 0.6651 88.4151 ± 0.7852 0.8961 ± 0.0016

It can be seen from Table 5 that ACC, SPE, and AUC are the best when k = 9, and the error range
is small, which is generally consistent with the research conclusion of Shao et al. [33]. The classification
performance increases first and then decreases when the value of k changes from small to large. The
possible reason is that when k is small, it depicts too many features. When the value of k is large, the
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hypergraph describes the overall structural features of BFN rather than local features. Many nodes on
the edge may belong to different categories, so it is difficult to reflect the structural features of BFN
well. It can be found that k = 9, λ = 2−2, β = 2−4 have the best classification performance. To sum up,
we set the window length as 80, step size as 3, nearest neighbor number as 9, regularization parameters
λ = 2−2 and β = 2−4 to construct DDBFN.

3.2 DBFN Construction
Several different BFN construction methods, including PC [19], SR [19], MR [19], SMR [19],

HMR [24], and SHMR [24] (the nearest neighbor number corresponding to the optimal classification
performance is 7), were used to construct DBFN, and these comparison methods were all relevant to
the proposed method. Feature selection was carried out by t-test with a significance level of 0.05, and
linear kernel SVM classifier was adopted to complete classification. Their classification performance
for ESRDaMCI is shown in Table 6, where the optimal classification result is indicated in bold.

Table 6: Classification performance of different BFN construction methods

Method λ1 λ2 ACC (%) SEN (%) SPE (%) AUC Features

PC \ \ 80.0741 ± 0.9782 76.8554 ± 0.3841 77.4852 ± 0.6985 0.7952 ± 0.0037 73
SR 2−4 \ 70.0146 ± 0.8552 68.6985 ± 0.8412 78.1428 ± 0.3784 0.8083 ± 0.0070 60
MR 2−4 \ 50.8402 ± 1.1050 86.1513 ± 6.3478 21.5477 ± 3.3541 0.8124 ± 0.0741 69
SMR[ 24 2−1 76.8464 ± 0.7241 69.9887 ± 0.2114 80.6454 ± 0.1247 0.8014 ± 0.0034 65
HMR 2−3 \ 80.7857 ± 0.9471 77.8544 ± 0.6474 84.5412 ± 0.3547 0.8901 ± 0.0040 74
SHMR 2−4 2−3 83.5546 ± 0.2574 77.1451 ± 0.5744 86.9454 ± 0.3745 0.8998 ± 0.0076 81
DHMR 2−2 2−4 88.5670 ± 0.3587 80.7873 ± 0.4649 90.3577 ± 0.5461 0.9008 ± 0.0011 87
Note: This table sets the window size to 80 and the step size to 3; λ1, λ2: Regularization parameter corresponding to optimal classification
performance.

Fig. 2 visualizes the classification performance of different BFN construction methods. It can
be seen intuitively that DHMR method has better classification performance for ESRDaMCI than
six related methods except for SEN, thus achieving the best classification effect. The best ACC, SPE,
and AUC are 88.5670% ± 0.3587%, 90.3577% ± 0.5461% and 0.9008 ± 0.0011, respectively. Compared
with other methods, the error range of the proposed method is smaller, and the average of the selected
features in LOOCV is the largest. It indicates that DBFN constructed by our method is more stable
and may contain more potential information. The average ACC, SEN, SPE, and AUC of the SHMR
method were 5.0124%, 3.6422%, 3.4123%, and 0.001 higher than those of the SHMR method, and six
more than those of the SHMR method.

As can be seen from Fig. 2, the classification performance of SR is better than MR, that of SMR
is better than SR, and that of HMR is better than SMR. This indicates that introducing L1 norm
regularization and streamlining regularization on the basis of the SR method can effectively improve
the quality of DBFN and increase the classification accuracy. Conversely, introducing only L1 norm
regularization cannot improve the classification performance. These are consistent with the research
conclusions of Li et al. [41]. The classification performances of the HMR method and SHMR method
are better than those of the PC method, which proves the effectiveness of introducing the regular term
of hypergraph manifold. The DHMR method is slightly better than SHMR, which also shows the
effectiveness of dynamic hypergraph in BFN.
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Figure 2: Visualization of classification performance

In essence, we focus only on the node-based functional connection approach, using network
matrices to visualize the constructed BFN. An ESRDaMCI subject was randomly selected to visualize
BFN of the same subject in the same time window after constructing DBFNs using our method and
the other six methods. The results are shown in Fig. 3.

It can be observed in Fig. 3 that the topologies of BFN with the same time window formed by
PC and SR are quite different. The BFN of the same time window constructed based on PC tends to
be dense, while the BFN of the same time window constructed based on SR is sparse, because they
use different data fitting terms. We note that the traditional data deletion scheme has a significant
impact on the network structure, but our proposed DHMR method can preserve the original network
structure well. It weakens some possible noisy connections and makes the BFN matrix clearer, while
maintaining the original sparse structure. Fig. 3g is sparser and has a clearer topology than Figs. 3a,
3e, 3f.

Figure 3: (Continued)
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Figure 3: Visualization results of BFN in the same time window. (a) PC, (b) SR, (c) MR, (d) SMR, (e)
HMR, (f) SHMR, (g) DHMR

3.3 Discriminative Regions
We used connections in BFN to identify features from patients with ESRDaMCI. The main

question, therefore, is which features contribute to the final classification. DDBFN was constructed
based on the optimal classification performance to find some biomarkers for ESRDaMCI diagnosis.
Then the features (i.e., network “connections”) were sorted by p-values to obtain 87 features with p-
value less than 0.05 and high frequency in LOOCV. We also counted the features with a high frequency
of each functional subnetwork in the cross validation, and finally obtained the 87 discriminating
features involved in the classification task. They were visualized, as shown in Fig. 4.
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Figure 4: The most discriminating features (network connections)

In Fig. 4, the thickness of each arc is inversely proportional to the corresponding p-value,
indicating the distinguishing ability of the corresponding feature (not its actual connectivity strength).
The color of each arc is randomly assigned, just for better visualization. From the connections in Fig. 4,
we found that the brain regions associated with the 87 most discriminating features mainly included
21 brain regions, such as the left middle temporal gyrus (MTG.L), right amygdala (AMYG.R), left
superior marginal gyrus (SMG.L) and right hippocampus (HIP.R), which were called discriminative
regions, as shown in Table 7. These findings are consistent with previous pathological studies of MCI
and neuroimaging biomarkers [42,43], and are largely consistent with brain regions with significant
differences in topological properties between the two groups of subjects studied by Wu et al. [44].

It can be seen from Table 7, the selected discriminative regions are mainly located in the left
brain, which is considered for logical task processing, language, and analytical thinking. For example,
left orbitofrontal superior frontal gyrus (ORBsup.L), left middle frontal gyrus (MFG.L), left insular
inferior frontal gyrus (IFGoperc.L), left orbitofrontal inferior frontal gyrus (ORBinf.L) [45] are
mainly related to creative and advanced mental activities such as thinking and consciousness. The right
hippocampus (HIP.R) [46] plays an important role in short-term memory, long-term memory, and
spatial localization. Right amygdala (AMYG.R) [47] mainly affects motivation, emotional control,
fear, and interpretation of the nonverbal emotional expression. The occipital lobe includes the left
superior occipital gyrus (SOG.L), left middle occipital gyrus (MOG.L), left inferior occipital gyrus
(IOG.L), and right inferior occipital gyrus (IOG.R) [48], which are responsible for vision, image
recognition and image perception. The middle left transverse temporal gyrus (HES.L), left middle
temporal gyrus (MTG.L) and right temporal pole: middle temporal gyrus (TPOmid.R) [47] are closely
related to short-term memory, balance and emotional, if these brain regions damage can lead to the
change of personality. These brain regions were selected to indicate that ESRDaMCI subjects had
changes in memory, language, spatial and visual processing, etc., compared with normal subjects.
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Table 7: Discriminative regions

AAL number Regions Abbreviations
(L: left

R: right)

MNI coordinates

X(mm) Y(mm) Z(mm)

5 Frontal_Sup_Orb_L ORBsup.L −16.56 47.32 −13.31
7 Frontal_Mid_L MFG.L −33.43 32.73 35.46
10 Frontal_Mid_Orb_R ORBmid.R 33.18 52.59 −10.73
11 Frontal_Inf_Oper_L IFGoperc.L −48.43 12.73 19.02
15 Frontal_Inf_Orb_L ORBinf.L −35.98 30.71 −12.11
17 Rolandic_Oper_L ROL.L −47.16 −8.48 13.95
19 Supp_Motor_Area_L SMA.L −5.32 4.85 61.38
23 Frontal_Sup_Medial_L SFGmed.L −4.80 49.17 30.89
27 Rectus_L REC.L −5.08 37.07 −18.14
38 Hippocampus_R HIP.R 29.23 −19.78 −10.33
42 Amygdala_R AMYG.R 27.32 0.64 −17.50
49 Occipital_Sup_L SOG.L −16.54 −84.26 28.17
51 Occipital_Mid_L MOG.L −32.39 −80.73 16.11
53 Occipital_Inf_L IOG.L −36.36 −78.29 −7.84
54 Occipital_Inf_R IOG.R 38.16 −81.99 −7.61
61 Parietal_Inf_L IPL.L −42.80 −45.82 46.74
63 SupraMarginal_L SMG.L −55.79 −33.64 30.45
65 Angular_L ANG.L −44.14 −60.82 35.59
79 Heschl_L HES.L −41.99 −18.88 9.98
85 Temporal_Mid_L MTG.L −55.52 −33.80 −2.20
88 Temporal_Pole_Mid_R TPOmid.R 44.22 14.55 −32.23

Some selected discriminative regions, including the right hippocampus (HIP.R), left parietal and
inferior angular gyrus (IPL.L), and left angular gyrus (ANG.L), belong to default mode network
(DMN), and are related to memory, sensation, and visual language, respectively. DMN plays an
important role in cognitive function and neuromodulation. Although the results of our experiment
revealed that only three brain regions of ESRDaMCI subjects’ brain function changes were located in
DMN, the specific DMN regions were different. The results indicate that our study may provide the
most discriminating features and discriminative regions leading to ESRDaMCI, providing a reference
for clinical diagnosis.

3.4 Refine and Differentiate the Degree of Cognitive Impairment
Bai et al. [49] found that some topological attributes of nodes with significant differences could

be considered as neuroimaging biomarkers to evaluate the degree of ESRD associated with cognitive
impairment. Hence, we analyzed the topological attributes of the discriminative regions in the two
types of functional subnetworks, including degree, betweenness centrality, local efficiency, clustering
coefficient, small-world attribute and shortest path length. Since the preprocessed Rs-fMRI data
spans 230 time points, the length of a sliding window was 80 and the step size was 3, so each
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subject had 51 functional subnetworks. The specific steps are to extract the degree, intermediate
centrality, local efficiency, clustering coefficient, small-world attribute, and shortest path length of
the functional subnetworks, respectively. Then calculate the average value, respectively, and extract
the topological attributes of discriminative regions, respectively. As a result, we can obtain the node
topological attributes of discriminative regions of the two types of subjects. Independent sample t-test
was used to compare the topological attributes of discriminative regions between the two groups, and
p < 0.05 was considered as statistically significant. Table 8 shows the average topological properties of
discriminative regions.

Table 8: Average topological properties of discriminative regions

Parameter (x ± s) ESRDaMCI (n = 51) Normal (n = 39) p

Degree 45.6188 ± 0.7863 46.0964 ± 0.2609 0.000
Betweenness centrality 3786.0695 ± 54.5645 3761.4754 ± 17.9776 0.004
Local efficiency 0.1619 ± 0.0029 0.1671 ± 0.0008 0.000
Clustering coefficient 0.0671 ± 0.0021 0.0691 ± 0.0007 0.000
Small-world attribute 0.5903 ± 0.0429 0.6344 ± 0.0267 0.001
Shortest path length 15.7472 ± 0.2012 15.8756 ± 0.1108 0.000
Note: ESRDaMCI: Subjects with end-stage renal disease with mild cognitive impairment; Normal: Normal subjects; p < 0.05
was considered as statistically significant difference.

As can be seen from Table 8, the p-values of the average topological attributes of the discriminative
regions of the two groups of subjects are all less than 0.05. Degree, betweenness centrality, local
efficiency, clustering coefficient, small-world attribute, and shortest path length are statistically
significant, which also proves the accuracy of the discriminative regions we selected for ESRDaMCI.
Sequently, the degree, local efficiency, and clustering coefficient with p-values less than 0.001 were
selected as neuroimaging biomarkers to evaluate the degree of cognitive impairment of ESRDaMCI.
Degree, local efficiency, and clustering coefficient of discriminative regions are shown in Fig. 5, where
the first 51 numbers belong to ESRDaMCI group and the last 39 belong to normal group.

Figure 5: (Continued)
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Figure 5: Topological attributes of discriminative regions (a) degree, (b) local efficiency, (c) clustering
coefficient values

As can be seen from Fig. 5, the degree, local efficiency, and clustering coefficient of ESRDaMCI
subjects are mostly lower than those of normal subjects. Among them, the values of the two subjects
are higher than those of normal subjects, indicating that ESRD might be mixed in ESRDaMCI
subjects without cognitive impairment. The possible reason is that the previous MoCA scale score
is not very accurate. Multi-objective optimization [50,51] is adopted to rank 51 ESRDaMCI subjects
according to degree, local efficiency, and clustering coefficient. The ESRDaMCI subjects are clustered
to further refine and distinguish the cognitive impairment degree of ESRDaMCI subjects. The degree
of cognitive impairment is defined as 0∼1, and the closer it is to 1. The higher the degree of cognitive
impairment is. Fig. 6 shows the order of cognitive impairment degree of all subjects.

Figure 6: Ranking of cognitive impairment degree of ESRDaMCI subjects
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As can be seen from Fig. 6, the degrees of cognitive impairment of ESRDaMCI subjects are
significantly different from left to right. The specific classification is as follows: subjects 8, 7, 10, 9, 1,
38, and 11 have higher degrees of cognitive impairment, while subjects 19, 5, and 23 have lower degrees
of cognitive impairment. Subjects 2 and 3 may be with ESRD but without cognitive impairment, while
the other subjects suffer from moderate cognitive impairment. It indicates that the degrees of cognitive
impairment are different in MCI patients. The possible reason is that MCI can further subdivide the
degree of cognitive impairment, and the MoCA scale is limited, which cannot refine and distinguish the
degrees of cognitive impairment in MCI patients. The degree of cognitive impairment in ESRDaMCI
subjects is subdivided according to node topological attributes of the discriminative regions, providing
a reference for clinical diagnosis.

4 Discussion

In recent years, there has been an increasing interest in epidemiology, clinical features, neuroimag-
ing, biomarkers, disease mechanisms, neuropathology, and clinical trials of diseases associated with
MCI. The threshold for such comorbidities remains a challenge, whereas these challenges may turn
into opportunities to further explore the human brain with the development of new neuroimaging
techniques and new research methods. Thus, there are relatively few studies on the classification of
ESRDaMCI. Most studies are based on the attributes of the data themselves, and only consider
the paired relationship between two brain regions. They do not take into account the non-negligible
dynamic high-order relationship between the functional connections of multiple brain regions, which
is also an important prior information.

At present, relevant studies have modeled the high-order relationship between multiple brain
regions. For example, Chen et al. [52] introduced “correlation’s correlation” to construct high-order
functional networks, and then employed the k-means clustering method to reduce the dimensionality
of high-order functional networks, and verified the effectiveness of this method in MCI classification
experiments. Zhou et al. [53] proposed a high-order functional network construction method based
on the normal distribution of matrix variables. The DBFN of each subject was taken as samples and
assumed to follow the normal distribution of matrix variables. These methods have some drawbacks.
Chen et al.’s [52] method involving many parameters is easy to overfit in classification with limited
training data, but it is not supported by a mathematical model. Zhou et al.’s [53] require strict
assumptions so that subsequent conclusions can be established. Therefore, it is essential to describe
the complex relationship between brain regions. In this study, node features in particular are updated
to embed new features, and a new hypergraph structure is constructed on this basis. Many vertices are
on the same hyperedge, so dynamic hypergraphs can well reflect this higher-order relation and make
reasonable explanations. Compared with general networks, this model has high-order and dynamic
characteristics and provides more feature information.

It is worth mentioning that Jie et al. [23] directly carried out feature extraction, feature selection,
and classification of the formed a hypergraph. The relationship between nodes comes from the
attributes of the data itself, which is a static relationship. This can cause the model to ignore many
implicit relationships that are not included in these static relationships. After obtaining the hypergraph
in DBFN based on PC, node convolution and hyperedge convolution superposition are adopted
to dynamically modify the hypergraph structure to obtain the dynamic hypergraph, and then its
node degree and edge degree are calculated to obtain the manifold regular term of the dynamic
hypergraph and introduce it into BFN construction. The constructed BFN can simultaneously capture
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the dynamic correlations and complex high-order relationships between brain regions. Jie et al. only
focused on high-order relationships between multiple brain regions in their study.

However, the proposed method also needs some improvement. Firstly, the KNN method is not
interpretable in the field of neuroimaging, and the SR method [23] can be used to form hypergraphs in
future work. Secondly, the simplest t-test and SVM are used for feature selection and classification. In
the future, feature selection can be improved by iterating feature selection in the training set combined
with the test set to gradually select the features which can improve the classification performance. SVM
can also be optimized using the whale algorithm and other methods to optimize the classifier.

5 Conclusion

In summary, we proposed a DBFN construction method based on DHMR and applied it to
the classification of ESRDaMCI. This method considers the higher-order characteristics of BFN
and the richer information provided by DBFN. It extends the MR method, makes DBFN more
biologically significant, and can effectively improve the classification performance of DBFN with
ESRDaMCI. Firstly, a dynamic high-order BFN is constructed, a t-test is used to select the effective
features, and SVM is used to classify the network features. Among the seven comparable BFN
construction methods, this method achieves the best classification result. Furthermore, we also
identified discriminative regions based on the selected features to better reflect the pathogenesis of
ESRDaMCI, and refined and differentiated the cognitive impairment degree of ESRDaMCI subjects
through the node topology attributes of discriminative regions.

Nevertheless, there are some limitations in our work. First of all, we did not consider biological
mechanisms. The experiment was purely data-driven. Second, we only used single mode imaging (Rs-
fMRI), and the data should be collected in a larger database. Next, we classified normal subjects
and ESRDaMCI subjects and only considered the dichotomous problem. To break through these
limitations, we will introduce multimodal imaging and more training samples to potentially improve
classification accuracy. In addition, we will establish multiclassification tasks, such as adding ESRD
subjects without cognitive impairment to form a three-classification problem, to verify our method
more comprehensively.
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