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ABSTRACT

Link prediction, also known as Knowledge Graph Completion (KGC), is the common task in Knowledge Graphs
(KGs) to predict missing connections between entities. Most existing methods focus on designing shallow, scalable
models, which have less expressive than deep, multi-layer models. Furthermore, most operations like addition,
matrix multiplications or factorization are handcrafted based on a few known relation patterns in several well-
known datasets, such as FB15k, WN18, etc. However, due to the diversity and complex nature of real-world data
distribution, it is inherently difficult to preset all latent patterns. To address this issue, we propose KGE-ANS, a novel
knowledge graph embedding framework for general link prediction tasks using automatic network search. KGE-
ANS can learn a deep, multi-layer effective architecture to adapt to different datasets through neural architecture
search. In addition, the general search space we designed is tailored for KG tasks. We perform extensive experiments
on benchmark datasets and the dataset constructed in this paper. The results show that our KGE-ANS outperforms
several state-of-the-art methods, especially on these datasets with complex relation patterns.
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1 Introduction

Knowledge Graphs (KGs) are graph-structured information networks. Typical KGs such as
Freebase [1] and DBpedia [2], represent the knowledge in the form of the triplet (h, r, t), where the
head h and tail t are entities, and the relation r refers to different types of edges between entities.
Recently, KGs have been applied in many fields and achieved significant performance, such as question
answering [3] and dialog system [4]. Growing efforts from both academia and industry have been made
to advance the research on KGs. However, most existing KGs are incomplete and noisy, which severely
limits their popularity and usefulness in practice. For example, in Freebase, more than two-thirds of
person entities lack relations with the corresponding birthplace entities [5]. To tackle the missing link
problem, a link prediction task has been proposed to predict the existence of links between any two
entities [6], which quickly becomes a fundamental but challenging task in the KG field.

Conventional link prediction models, such as TransE [6], DistMult [7] and ComplEx [8], focus
on designing shallow and scalable models by simple operations, like addition, subtraction or matrix
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multiplications over an embedding space. However, these simple operations can only capture the linear
relationships between entities. Particularly, RotatE [9] can achieve state-of-the-art by defining relation
as a rotation from the head to tail in the complex vector space to tackle the existing known datasets.
Several neural models, such as ConvE [10], leverage a single convolutional layer to implicitly learn
more expressive features. Despite some effectiveness of the above models, they are handcrafted by
careful experimentation on several known datasets and fail to model various latent patterns of new
KGs. However, in reality, it is hard to know the latent data distributions of a new KG dataset and even
more difficult to mathematically model them into a single model.

Recently, many Automatic Network Search (ANS) methods [11–13] have demonstrated their
superiority in automatically designing model architectures for various tasks, especially in image
classification and language processing. Motivated by this, in this paper, we propose KGE-ANS, a novel
approach to learning knowledge graph embedding for link prediction tasks with Automatic Network
Search. As can be seen in Fig. 1, KGE-ANS is able to automatically learn the competent architecture
to adapt to different datasets through automatic network search, while most existing methods are fixed
no matter what dataset, and this would substantially reduce the performance of these models on the
unknown dataset.

Figure 1: A demonstration of our KGE-ANS model

Specifically, for a link prediction task, we first leverage the gradient-based ANS method [13] to
search for an appropriate architecture, and then further train the searched architecture on the dataset.
To better adapt to different datasets, we design a general search space that is tailored for KG-related
tasks, which contains five kinds of operations: convolution, pooling, self-attention, zero, and identity
operations. To make different latent representations sufficiently interact with each other, our KGE-
ANS introduces the self-attention operation. In this way, the self-attention operation can model the
global correlation between representations while the convolution and pooling operations can model
the local correlation. In this paper, our contributions can be summarized as follows:

• We propose KGE-ANS, a novel knowledge graph embedding framework for general link predic-
tion tasks with automatic network search. Especially, KGE-ANS can adapt to different datasets
by automatically learning an appropriate neural network architecture using the automatic
network search technique.

• The general search space we designed is tailored for KG tasks. By incorporating the attention-
based operation into the learning process, our KGE-ANS can model the global correlation
between entity and relation.

• We evaluate our approach on several benchmark datasets. Extensive experiments demonstrate
that our approach has good generalization ability over different datasets and achieves the best
Mean Reciprocal Rank compared with several state-of-the-art methods.
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2 Related Work

Our work is mainly related to general embedding-based KG models and is closely connected to
ANS methods. In the following parts, we present an overall review of related works in these two areas,
respectively.

2.1 Embedding-Based KG Models
TransE [6] is one of the earliest translation-based models, which assumes there exists a simple

mapping function that can translate the embedding of the head entity to that of the tail entity by the
relation. Despite its efficiency and simplicity, TransE is ineffective in modeling 1-to-N, N-to-1, and
N-to-N relations. To solve the limitations of TransE in dealing with multiple mapping relationships,
TransH [14] improved TransE to learn one more mapping vector for each relationship on the basis of
TransE, which is used to map entities to the hyper flat specified by the relationship. However, TranH
still assumes that entities and relations are in the same semantic space, which limits the effect of TransE
to a certain extent. To this end, Lin et al. proposed TransR [15], which models entity and relation
representations in two distinct spaces, i.e., entity space and multiple relation spaces (relation-specific
entity spaces) and performs transformations in the corresponding relation spaces. The aforementioned
methods only consider simple operations like addition and matrix multiplication, which mostly results
in a shallow representation of KG components that is not expressive enough for downstream tasks.

There are several approaches have been proposed to improve the above simple translation-based
methods to handle more complicated relation patterns. One is to design more complicated score
function in the models, such as DistMult (Bilinear Diagonal model) [7] and its extension ComplEx [8].
These models use the latent matrix factorization to model symmetric/asymmetric relations between
entities. RotatE [9] model is similar to ComplEx, but with subtle difference in the definition of
relation, which formulates the relation as a rotation from the head to tail in the complex vector
space. Recently, several neural models have also been proposed to tackle the KGC task. ConvE [10], a
convolutional neural architecture, which is defined by a single convolution layer, a projection layer and
an inner product layer, has shown the effectiveness in modeling entities with high degrees. ConvKB
[16] generalized transitional characteristics in transition-based models by a convolution layer. SimplE
[17] employed a canonical polyadic tensor decomposition method to solve the link prediction problem,
which can allow two embeddings for each entity to be learned dependently. AnyBURL [18] focused on
the symbolic space to learn knowledge graph embedding using the sampling path algorithm. To better
guide the sampling process, AnyBURL adopted reinforcement learning to help finding more valuable
rules. However, these approaches are too shallow to model more complicated patterns and do not
have good generalization ability on different datasets. Zhang et al. [19] proposed AutoSF, which first
uses Automatic Machine Learning (AutoML) methods to greedily search for different optimal scoring
functions to adapt to different datasets. However, these approaches are mainly designed to model a
few known relation patterns in well-known datasets and do not have good generalization ability on
different datasets. We hope to design a model which can automatically adapt to different datasets, and
hence better model various relation patterns in the different data distributions. Compared to previous
works, our proposed method can render the learned representation of KG components more expressive
and comprehensive.

2.2 Automatic Network Search
Automatic Network Search (ANS) is aimed at finding an effective neural network architecture for

a specific domain (dataset). It is coined by AutoML researchers and quickly applied into many fields.
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State-of-the-art ANS methods can be summarized as three main categories:

Reinforcement learning-based approaches [11,12], which uses a recurrent neural network as the
controller to generate child networks. These approaches use reinforcement learning to train the
controller by maximizing evaluation metrics on the validation data. Although these reinforcement
learning-based methods are practicable and easy to understand and implement, their optimization
efficiency is low and the sampling of sub-networks can also introduce large uncertainties. Therefore,
Google proposed the ENAS algorithm [12], which avoids inefficient initial training by forcing all sub-
models to share weights, thereby improving the efficiency of ANS and overcoming the shortcomings
of high computational cost and time-consuming of ANS.

Evolutional-based approaches [20], which simultaneously evolve along network structures and
hyper-parameters to generate neural networks. These methods first randomly generate a population (N
sets of solutions) and begin to cycle through the following steps: selection, crossover, mutation, until
the final condition is met. In 2017, Google proposed “Large-Scale Evolution of Image Classifiers”
[20], which is the first applied evolutionary algorithm to the ANS task of image classification. The
method first encodes the network structure, maintains a collection (population) of structures, selects
structures from the population for training and evaluation, leaves high-performance networks, and
eliminates low-performance networks. Next, a new candidate is formed through a preset structural
mutation operation, which is added to the population after training and evaluation. The process is
iterated until the termination condition is met (for example, the maximum number of iterations is
reached or the network performance after mutation no longer increases). An evolutionary algorithm
is a gradient-free optimization algorithm. The advantage is that the global optimal solution may be
obtained, but the disadvantage is low efficiency.

Gradient descent-based approaches. The search space of the above two methods is discrete, and
ANS is regarded as a black-box optimization problem, so the efficiency is low. Therefore, scholars from
CMU and Google proposed DARTS [13], based on the continuous relaxation of the representation,
allowing an efficient search of architecture by using gradient descent. Specifically, DARTS represents
the network space as a directed acyclic graph, where each node represents the current input and output,
and the edges are various operations. The softmax function is used in the search, which turns the search
space into a continuous space, and the objective function becomes a differentiable function.

Based on the comparison of the above three types of mainstream search strategies, it can be
found that the method based on gradient descent can greatly improve the search efficiency through
simple weight sharing, compared with reinforcement learning-based and evolutionary-based methods.
Therefore, in the study of knowledge graph representation learning in this paper, a gradient descent-
based method will be used to design a neural network search model.

Previous ANS researches mainly focus on vision and language fields. The search space of these
methods is composed of convolution, pooling, and activation functions in most cases. Unlike existing
ANS researches, our work attempts to propose a novel ANS-based method for the knowledge graph
field, which mainly features the design of a new search space schema carefully tailored for the link
prediction task.

3 Model and Approach
3.1 Problem Formulation

In this work, we formulate a knowledge graph G as a set of triplets {(h, r, t)} ⊆ E × R × E ,
where E is the entity set and R is the relation set. r denotes the relation between a head entity h and
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a tail entity t in the knowledge graph G. Following the embedding-based KG methods, we denote the
entity embedding as eh, et ∈ R

L and relation embedding as er ∈ R
M , respectively. L and M represent

embedding vector dimensions. Knowledge graph embedding models usually learn entity and relation
embeddings by maximizing a score function over all triplets, which is expected to give higher scores
for valid triplets than invalid ones.

3.2 Model Overview
In this section, we first give an overview of the proposed KGE-ANS framework, which is shown

in Fig. 2. The goal of KGE-ANS is to search for an appropriate network architecture for different
datasets on link prediction tasks through an automatic network search module. KGE-ANS first
performs a row-vector look-up operation on head entity and relation embedding matrices to obtain
the corresponding embedding eh and er. The two representations are then combined by a concatenation
operation as em = (eh||er) and fed into the ANS module. In our ANS module, the architecture search
process for a neural network is performed in a normal cell which serves as a building block for the final
architecture. Each cell has the same network architecture, and the final neural network architecture
consists of N same cell. Following the standard gradient-based ANS method [13], we define each
cell has two inputs. As can be seen in Fig. 2a, the inputs of the first cell are both the combined
representation em, called Input A and Input B. Other cells’ inputs come from the outputs of two
previous cells.

Figure 2: The proposed KGE-ANS. We first combine the entity embedding eh and relation embedding
er of a triple to a new vector em. Then the combined representation em is used as the input of the ANS
module. After that, the architecture search process is performed in an iterative fashion to update the
architecture. Finally, the feature map generated by the ANS module is projected into entity space to
predict the probability by sigmoid function ϕ(·). In Fig. 2b, solid lines indicate connections that are
present in every architecture while dashed lines indicate optional connections that are determined by
the search process

The normal cell is defined as a general Directed Acyclic Graph (DAG) which consists of n
intermediate nodes. Fig. 2b illustrates the inner structure of a normal cell, with nodes marked in
orange. In our scenario, we add stem (1 × 1 convolution) as pre-process operation to keep the shape of
output consistent with the shape of the input. Each edge represents an atomic operation which may be
the convolution, pooling, self-attention, zero, or identity atomic operation. Each node is the weighted
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sum of the outputs obtained from all atomic operations, which are edges connected to all previous
nodes and stems. Once the search is completed, we follow the standard setting to choose two edges
with the highest weight to determine the searched architecture related to a node, that is, we choose
two atomic operations for a node. The output of one cell is the sum of all nodes. Note that we add
Batch Normalization (BN) and ReLU activation after the convolution operation as the post-process
to improve the capacity of our model.

The ANS module outputs a feature map T which incorporates the embedding of the head entity
h and the relation r. Since the link prediction task can be regarded as the multiple binary classification
[10], we apply the sigmoid function ϕ(·) on the inner product between T and entity embedding matrix
We to score the final binary classification probability.

In the rest of this section, we first introduce the general search space schema tailored for link
prediction tasks. Then, we show the search process of the network architecture in detail.

3.3 General Search Space
In ANS, network architecture search is based on a predefined search space, so designing a suitable

search space is critical to find an effective network architecture. Most existing ANS researches focus
on image classification and language model tasks. The search space for image classification consists
of different kinds of convolution and pooling operations, while the search space for language models
consists of various activation functions. Existing search spaces for the KG-related tasks are generally
carefully designed, few works focus on exploring an appropriate search space. To address this issue,
we explore an appropriate search space for KG-related tasks in five atomic operations: convolutional
operations, pooling operations, attention operations, zero operations, and identity operations.

• Convolutional operations. Two kinds of convolutional operations can be performed in our
model: convolution 1D and convolution 2D. Specifically, we perform convolution 1D opera-
tions like TextCNN [21], which aims to extract interactions among entities and relations. As
shown in Fig. 3a, the input is viewed as k × u, where k is the dimension of embeddings, u is the
channel number of the current input. The filter size of convolution 1D is 3, including separable
convolution and dilated separable convolution.

Figure 3: Illustration of 1D convolution input and 2D convolution input methods

Convolution 2D operations are the same as the 2D convolution operations in the image clas-
sification. The input is viewed as u × m × m, as shown in Fig. 3b, where m × m = k. In this way,
the model has better expressiveness through additional pointwise interactions when performing 2D
convolutions. The filter size of convolution 2D is 3 × 3, including separable convolution and dilated
separable convolution. Take the head entity eh as the example, the embedding representation in 2D is
calculated by:
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))
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where ec+1
h refers to the head entity embedding representation in the th-(c + 1) cell of the network.

|| denotes concatenation operation, êc
r and êc

t represent 2D reshaping of embedding el
r and ec

t in the th-c
cell of the network.

Each convolutional operation is followed by batch normalization and dropout. Meanwhile, we
set the same padding to ensure the shape of the input being maximally preserved in the output.

• Pooling operations. Pooling operations are essential to the regularization of our model. We
define two pooling operations: max pooling and average pooling with kernel size 3 × 3. The
padding settings are the same as those in convolutional operations.

• Self-attention operations. Self-attention can be seen as a major component in the Transformer
[22]. In this work, we utilize multi-head self-attention operations to make different latent
representations interact with each other more sufficiently. By doing so, the self-attention
operation can model the global correlation between entities and relations while the convolution
and pooling operations can capture their local correlation patterns. We provide two parameter
settings: layer = 1&head = 1 and layer = 2&head = 4.

• Zero operations. The zero operation refers to resetting the input of a node as 0, which is used to
improve the generalization ability of the model in the searching phase.

• Identity operations. The identity operation directly maps the input to the output without any
modifications, which aims to stabilize, normalize and improve the convergence speed of our
model.

3.4 Network Architecture Search Process
Gradient descent-based methods can greatly improve search efficiency compared with reinforce-

ment learning and evolutionary algorithms through simple weight sharing. Therefore, we adopt
gradient descent-based search strategy to design a neural network search model. As described
previously, we perform a network architecture search in a normal cell that consists of multiple nodes.
We assign a weight for each optional atomic operation and each edge between a node and its previous
node or the stem. Let χi denote the currently calculated embedding in the node i that combines head
entity embedding and relation embedding, which is calculated by:

χi =
i−1∑
j=1

βj

K∑
k=1

ωj,kφk

(
χj

) + λ1

K∑
k=1

�1,kφk

(
χj

) + λ2

K∑
k=1

�2,kφk

(
χj

)
(2)

where K is the number of optional atomic operations described in Section 3.3. ωj,k represents the weight
of the th-k atomic operation φk(·) for the edge between node i and its previous node j. �1,k and �2,k are
the weights of the th-k atomic operation φk(·) for the edge between node i and two stems. In addition,
each edge between a node i and its previous node or a stem is also assigned a weight. Node i has i − 1
previous nodes. βj is the weight of the edge between the node i and the th-j previous node. λ1 and λ2

represent the weights of the edges between node i and two stems. The output of a normal cell c is the
sum of all nodes, which is formalized by:

tc =
n∑

i=1

χi (3)

where n is the number of nodes in a normal cell.
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Specially, we obtain an appropriate neural network architecture for a specific dataset related to
link prediction tasks by learning the appropriate weights of different atomic operations and edges.
Therefore, we define the searched network architecture A = {β1, β2, . . . , βn, ω1, ω2, . . . , ωn, λ1, λ2, �1,
�2}, where ωj = [ωj,1, ωj,2, . . . , ωj,K ] and �1 = [�1,1, �1,2, . . . , �1,K ]. Next, we describe the details of
the search process of KGE-ANS by using the gradient descent-based method. We first divide the
train set Dtrain of the specific dataset D into two subsets: Dtrain = {Dsearch, Darch}, and then we iteratively
update the network parameters θA and the network architecture A in an inner iteration process and
an architecture iteration process. Parameters θA consist of the parameters of all atomic operations. In
the inner iteration process, we utilize Dsearch to update the network parameters θA with fixed A (i.e., all
weights are fixed). In the architecture iteration process, we use Darch to update the architecture A with
fixed parameters θA, that is, the weights of each atomic operation and the edges between nodes and
nodes or stems are updated. The model parameters and weights are updated according to the following
loss function:

L (θA) = − 1
N

N∑
i=1

(yi log (ϕ (·)) + (1 − yi) (1 − log (ϕ (·)))) , (4)

ϕ(·) = σ(WeT), (5)

T = gα((eh||er); θA) (6)

where gα denotes the current searched network architecture A. eh, er, and et denote the embedding of
head entity, relation and tail entity, respectively. T is the feature map outputted by A, and We is the
structural embedding matrix of all entities in E . ϕ(·) is the sigmoid function that scores the probability
of a triplet (h, r, t) given an input entity h or t. yi is the label whether there exists a relationship between
h and t. The label yi is 1 if the triplet (h, r, t) exists and 0 otherwise. To speed up the calculation of
ϕ(·), we follow ConvE [10] to take one (h, r) pair and score its probability against all entities in E
simultaneously.

After the training of the inner iteration and architecture iteration process, we determine the final
network architecture using the trained weighted of the atomic operations and the trained weights of
the edges between the node and previous nodes (or stems). For each edge between a node and its
previous node or a stem, we select the atomic operation with the highest weight as the operation of
that edge. Furthermore, we split the connection of a node to its previous node or a stem to speed up the
embedding learning process. Specially, we keep only the top-2 edges with the highest weights and cut
off the other edges, which means that we only connect one node with the two most important elements
(the previous node or stem). Finally, we use the determined final network architecture to train from
scratch on the training set Dtrain to get the final result of the specific link prediction task. We summarize
the searching process in Algorithm 1.

Algorithm 1: Search Process
Take the combined representation em as the input
Initialize architecture A, parameters θA and the number of epochs E
for epoch = 1:E do

Calculate loss Lsearch in Dsearch according to Eq. (4)
Inner iteration: Update parameters θA of architecture A by the loss Lvalid

Calculate loss Larch in Darch according to Eq. (4)
Arc iteration: Update the architecture A by the loss Larch

(Continued)
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Algorithm 1: (Continued)
end for
Obtain the best architecture A
Determine the final network architecture
Train from scratch using the finalized network architecture on the training set Dtrain

Return final results of the link prediction task

4 Experiments
4.1 Datasets

We evaluate our model on three public benchmark datasets: FB15k, FB15k-237 and WN18, which
are sampled from DBpedia or Freebase. Since their relation patterns are very limited, existing methods
can simply tackle these datasets by hand-coding them into the model. However, in the real data
distribution, there are various intricate relation patterns that cannot be mathematically modeled into
a single model. We argue that this discrepancy would prevent us from comprehensively and accurately
evaluating existing methods for the KGC task. Therefore, we construct several KG datasets where
intricate relation patterns exist, aiming to demonstrate KGE-ANS’s advantage in the adaptation to
different datasets (domains). Table 1 describes the considered datasets in our experiments.

Table 1: Statistics of datasets

Dataset # Entities # Relations Train Validation Test

Public
benchmark

FB15k 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000

Constructed
in this paper

Medical-E 1,516 5 5,000 1,000 1,000
Medical-C 22,119 6 156,367 13,682 24,048
Military 11,975 15 92,016 11,502 11,502
Kb2e 13,294 295 19,473 2,434 2,434

FB15k [6] is a subset of Freebase, which describes movies, actors, sports, and awards in most facts.

FB15k-237 [23] observed that most test triplets can be inferred by simply inverting the correspond-
ing triplets in the training set. Therefore, Toutanova et al. [23] introduced FB15k-237, a subset of
FB15k, in which those inverse relations were removed.

WN18 [6] is a subset of WordNet, most of which consists of lexical relations between entities.

Medical-E is a professional dataset extracted from the Freebase and most entities describe drugs
and diseases. We mainly collected five relations: treatments, symptoms, risk factors, causes, and
prevention factors. This dataset is randomly divided into the training set, validation set, and test set on
a scale of 5:1:1. The purpose of constructing this dataset is to demonstrate that our model can achieve
good performance in the medical field.

Medical-C is a disease-centered medical knowledge graph constructed based on an open-source
project1. We get rid of entities that only appear at the head, not at the tail. Since there are many attribute

1https://github.com/liuhuanyong/QASystemOnMedicalKG.

https://github.com/liuhuanyong/QASystemOnMedicalKG
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types in this dataset, we only use six relations of them. This dataset aims to verify the expressiveness
of our model in the case of very sparse entities (plenty of entities only appear once).

Military2 mainly includes the publication and citation of papers in the military field. Each entity
in this dataset appears in at least 10 triples. The split ratio is 8:1:1 for the train, validation, and test set.

Kb2e is a general dataset extracted from WordNet, most of them describe relationships between
people or locations. The split ratio of this dataset is the same as Military. The number of entities and
relations is similar to FB15k-237, but the triplets are much less, which can show the superiority of our
model when entities and relationships appear less frequently in the general field.

4.2 Experimental Setup
We implemented KGE-ANS by PyTorch [24]. Given our tailored search space for the link predic-

tion task, we search for appropriate network architectures on different datasets. In the experiment, the
grid search is used to select hyperparameters for our model. The ranges of the hyperparameters are
as follows: number of cells L = {1, 2, 4, 6}, number of nodes inside one cell N = {2, 4, 6}, embedding
dimension k = {200, 400}, learning rate lr = {3e-3, 3e-4, 3e-5}, dropout rate p = {0.2, 0.4, 0.6}. We find
that the following combination of hyperparameters achieves the best performance on most datasets:
L = 2, N = 4, k = 400, lr = 3e-4, p = 0.4. The batch size is 80 on Medical-E and 128 on other datasets.
Empirically, we find that our model is unstable in the early training stage. Thus, we try two methods
to apply batch normalization on convolution operations: BN-Relu-Conv and Conv-BN-Relu, and the
latter is chosen due to its better performance.

After enough training epochs, a competitive architecture is obtained. For example, a normal cell
that contains 4 nodes searched on FB15k-237 dataset by KGE-ANS is shown in Fig. 4. It can be seen
that 1D convolution operations are more than 2D operations, the reason might be that 1D operations
can better extract interactions between entities and relations. We use the searched architecture to train
from scratch, and the best performance is recorded by early stopping strategy according to the metrics
on the validation set. It is noteworthy that the filtering setting is used for our experiments, that is,
we rank the ground truth triples against all other candidate triplets unseen in the dataset. In the
experiment, the evaluation metrics contain Mean Reciprocal Rank (MRR), Hits at N (Hits@N), and
running time Time/h (1 GPU Hour).

input_1

0
multi_atten_1x1

1sep_conv_3x3_1d

2

max_pool_3x3 3

skip_connect

input_2

sep_conv_3x3_2d

avg_pool_3x3

dil_conv_3x3_1d

output

max_pool_3x3

Figure 4: The normal cell searched on FB15k-237 dataset by KGE-ANS

2http://openkg.cn/dataset/techkg10.

http://openkg.cn/dataset/techkg10
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4.3 Results
We compare our KGE-ANS with several state-of-the-art models: (1) Reconstruction-Based

Models: TransE [6], TransR [15], ConvE [10] and RotatE [9]. (2) Semantic Matching Models: DistMult
[7], ComplEx [8], SimplE [17] and ConvKB [16], Graph attention model KBGAT [25]. (3) Rule-based
and reinforcement learning-based model AnyBURL [18]. (4) AutoML-based model AutoSF [19]. The
results are summarized in Tables 2–5.

Table 2: Link prediction results on FB15k and FB15k-237

FB15k FB15k-237

MRR Hits@1 Hits@3 Hits@10 Time/h MRR Hits@1 Hits@3 Hits@10 Time/h

TransE .463 .297 .578 .749 8 .294 .209 .339 .465 10
TransR .346 .218 .404 .582 9 .259 .232 .280 .459 9
ConvE .657 .558 .723 .831 10 .325 .237 .356 .501 11
RotatE .737 .743 .828 .884 10 .336 .240 .373 .533 9

DistMult .654 .546 .733 .824 9 .241 .155 .263 .419 9
ComplEx .692 .599 .759 .840 8 .247 .158 .275 .428 10
ConvKB .680 .650 .805 .870 9 .335 .242 .366 .530 9
SimplE .732 .695 .810 .865 10 .328 .239 .356 .527 9
KBGAT .651 .582 .758 .799 10 .325 .221 .353 .528 9

AnyBURL .742 .731 .819 .867 10 .326 .219 .342 .465 10

AutoSF .767 .743 .830 .889 10 .338 .241 .375 .530 10

KGE-ANS .780 .740 .831 .891 11 .339 .250 .377 .528 11

Table 3: Link prediction results on WN18 and Medical-C

WN18 Medical-C
MRR Hits@1 Hits@3 Hits@10 Time/h MRR Hits@1 Hits@3 Hits@10 Time/h

TransE .495 .113 .888 .943 5 .304 .253 .325 .391 6
TransR .606 .335 .876 .941 6 .344 .281 .352 .421 5
ConvE .943 .935 .946 .953 6 .321 .276 .342 .397 8
RotatE .947 .944 .950 .957 6 .355 .319 .362 .412 7
DistMult .822 .728 .914 .936 4 .346 .298 .365 .427 7
ComplEx .941 .936 .945 .947 5 .335 .285 .357 .419 6
ConvKB .946 .938 .949 .955 5 .338 .291 .351 .409 7
SimplE .945 .942 .949 .951 6 .342 .292 .359 .423 7
KBGAT .895 .841 .852 .896 6 .331 .285 .342 .415 7
AnyBURL .945 .943 .946 .955 5 .347 .312 .355 .409 8

(Continued)



2508 CMES, 2023, vol.135, no.3

Table 3 (continued)

WN18 Medical-C
MRR Hits@1 Hits@3 Hits@10 Time/h MRR Hits@1 Hits@3 Hits@10 Time/h

AutoSF .949 .944 .952 .959 5 .356 .318 .364 .415 8
KGE-ANS .951 .945 .950 .965 6 .360 .320 .375 .439 9

Table 4: Link prediction results on Military and Kb2e

Military Kb2e

MRR Hits@1 Hits@3 Hits@10 Time/h MRR Hits@1 Hits@3 Hits@10 Time/h

TransE .387 .253 .478 .598 4 .329 .184 .421 .506 5
TransR .385 .291 .475 .597 5 .357 .328 .431 .504 6
ConvE .391 .302 .432 .561 5 .418 .369 .452 .505 6
RotatE .409 .301 .473 .606 4 .409 .354 .440 .509 5

DistMult .380 .273 .429 .592 4 .377 .331 .406 .457 6
ComplEx .367 .297 .402 .496 3 .382 .333 .412 .468 6
ConvKB .398 .303 .452 .587 4 .415 .382 .447 .507 5
SimplE .393 .301 .462 .571 5 .413 .372 .433 .495 6
KBGAT .385 .296 .452 .566 5 .407 .365 .424 .481 6

AnyBURL .408 .292 .461 .599 4 .403 .355 .447 .501 6

AutoSF .411 .303 .475 .609 4 .412 .364 .454 .510 6

KGE-ANS .419 .313 .480 .615 5 .429 .385 .463 .512 7

Table 5: Link prediction results on Medical-E

Medical-E
Tail prediction Head prediction Time/h

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE .348 .290 .365 .422 .352 .286 .381 .431 3
TransR .351 .331 .386 .455 .373 .358 .381 .441 4
ConvE .420 .386 .424 .489 .389 .365 .389 .435 4
RotatE .441 .401 .454 .536 .432 .387 .441 .520 4
DistMult .352 .318 .363 .412 .382 .354 .382 .434 4
ComplEx .365 .341 .370 .411 .404 .383 .399 .447 4
ConvKB .431 .395 .441 .512 .413 .379 .421 .475 4
SimplE .433 .378 .392 .459 .411 .385 .433 .499 4

(Continued)
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Table 5 (continued)

Medical-E
Tail prediction Head prediction Time/h

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

KBGAT .426 .375 .389 .460 .405 .373 .425 .483 4
AnyBURL .435 .393 .446 .539 .429 .379 .435 .515 4
AutoSF .442 .403 .455 .545 .434 .388 .442 .522 4
KGE-ANS .465 .405 .458 .585 .435 .391 .446 .524 4

As shown in Tables 2–5, our model can achieve the best MRR in all datasets. In well-known
datasets such as FB15k, FB15k-237, and WN18, KGE-ANS reaches comparable performance. Once it
comes to the datasets (Medical-C, Military, Kb2e and Medical-E) within the special field that has not
been studied before, our model shows superiority compared to baselines, which confirms that KGE-
ANS can adapt to different datasets and thus better capture various relation patterns in different latent
data distributions. TransE reveals FB15k mainly contains inversion and symmetry/antisymmetry
relation patterns. As expected, ComplEx performs better than TransE on FB15k since it is designed
to handle inversion and symmetry/antisymmetry relation patterns. KGE-ANS slightly underperforms
RotatE on FB15k in terms of Hits@1 and on FB15k-237 in terms of Hits@10. The possible reason
is that most relation patterns of this dataset are carefully designed by RotatE. On the one hand,
KGE-ANS has an obvious improvement over ConvE on FB15k-237, which indicates KGE-ANS can
better infer various kinds of relation patterns due to the tailored architecture searched on the dataset.
KGE-ANS slightly underperforms AutoSF on WN18 in terms of Hits@3. The main reason for this
phenomenon is that, as shown in Table 1, the WN18 dataset is the most sparse among the five datasets.
The final architecture obtained from the AutoSF search can be viewed as a combination of multiple
bilinear link prediction models, which may have better performance in this sparse case due to the
ensemble property. The time consumption of KGE-ANS is comparable since we have saved a lot of
time in designing the network specifically. The search process of KGE-ANS can be finished within 24
h on a single Tesla P100 GPU, and the training time is within 13 h in almost all datasets, thus the time
cost is comparable to other baselines.

As for these datasets with intricate relation patterns, including Medical-C, Military, and
Medical-E datasets, our KGE-ANS obviously outperforms AutoSF in all metrics. The reason is that
not only does KGE-ANS have the tailored architecture search on the dataset but also can extract
the intrinsic information between entities and relations during the modeling relations. Furthermore,
as shown in Table 5, there is an interesting phenomenon in the experimental results. The metrics of
tail prediction are always higher than those of head prediction in most of models, such as ConvE,
RotaE and our KGE-ANS. By analyzing cases inside Medical-E, we find that the wrong prediction
of the head entity often occurs when the frequency of the tail entity is much higher than that of the
head entity in the dataset. Taking the triplet (swine_influenza, symptoms, headache) as an example,
it is always easier to predict the symptom of a disease than to predict the disease of a symptom. The
reason is that many diseases could cause the “headache” symptom while there are only a few symptoms
caused by the “swine_influenza”. Detailed case study experiments are included in Section 5.
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4.4 Analysis on KGE-ANS
Since KGE-ANS consists of stacking normal cells, we want to investigate the effect of the number

of nodes N inside one cell. For the Medical-E dataset, we use KGE-ANS to search the network
architecture and fix other hyperparameters (L = 2, k = 400, lr = 3e-4, p = 0.4). Fig. 5 shows the learning
curves of Hits@10 on the test set. The model with fewer nodes converges faster while the model with
more nodes can achieve better performance after convergence. When N = 4, continuing to increase
the number of nodes does not lead to an obvious improvement. Although our model works best
when N = 4, 6, 8, we choose N = 4 to train the model on the Medical-E dataset because of its faster
convergence.

Figure 5: The learning curves on Medical-E by KGE-ANS method. The y-axis is Hits@10 calculated
on the test data

4.5 ANS Comparison
To assess the feasibility of KGE-ANS, we conduct experiments to compare KGE-ANS with other

state-of-the-art ANS methods, including DARTS [13], ENAS [12], ONE-SHOT [26] and RANDOM
SEARCH [27] on Medical-E dataset. The baseline models3 are neither tuned hyper-parameters nor
modified original search spaces, except for adapting them to the KGC task. We report the comparison
results on the FB15k-237 dataset, as shown in Fig. 6. Due to the more complicated architecture, ENAS
converges relatively slower than KGE-ANS and other models. Compared to DARTS, the significant
improvement of KGE-ANS indicates that our designed search space is more suitable for the KGC
task. Furthermore, KGE-ANS outperforms other methods with fewer GPU hours due to the simple
parameter setting and appropriate search space, which is a natural advantage of our method as it is
very easy and straightforward to generate effective architecture automatically.

5 Case Study

In this section, we elaborate on actual link prediction results from the Medical-E dataset to
highlight the strengths of our KGE-ANS. As shown in Table 6, models are provided with the head
entity “hearing_loss” and the relation “risk_factors” and asked to predict the tail entity. KGE-ANS
and RotatE successfully rank the correct entity within the top-2 results, while the TransE and ConvE
don’t perform well enough. Since the model of TransE and ConvE are too sample to focus on the deep
information, they are prone to making wrong predictions, such as more frequent entities like “fever”.

3Come from the original open-source codes.
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RotatE method can better capture deep path information, it would result in ranking “nausea” first (the
triplet “meningitis, symptoms, nausea” appears in training data). Compared to RotatE, KGE-ANS
shows superiority in modeling the long-term dependency by leveraging the multi-head self-attention
mechanism, thereby ranking the correct entity higher.

Figure 6: Search process comparison of different ANS methods on FB15k-237 dataset. For each
method, we repeat experiments for 4 times with different random seeds and report the average Hits@10
performance on the test data over time

Table 6: Comparison of prediction results. The ground truth triplet is (hearing_loss, risk_factors,
meningitis)

Model Top-4 predicted tails

TransE Fever, infection, anorexia, meningitis
ConvE Fever, nausea, meningitis, infection
RotatE Nausea, meningitis, anorexia, infection
KGE-ANS Meningitis, aplasia, nausea, fever

5.1 Ablation Study
Table 7 shows the results of the ablation study on the test set of the Military. It can be seen that

removing the Identity operation hardly affects the experimental results. The reason is that the Pooling
operation can handle the regularization of our model during the training on this dataset. Therefore,
the drop in removing the Pooling operation suggests that regularization plays an incremental role
in the training procedure. Moreover, we can see that during the training on the Military dataset, 1D
Convolution operation plays a more important role than 2D Convolution operation. Furthermore, the
drop in removing multi-head self-attention indicates it is a crucial component in KGE-ANS, which can
potentially make interactions of different latent representations more comprehensively.
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Table 7: Ablation study on Military dataset by KGE-ANS

Ablation MRR Hits@1 Hits@10

Full KGE-ANS .419 .313 .615

(-) Identity operation .417 .311 .612
(-) 2D convolution operation .412 .310 .611
(-) 1D convolution operation .410 .303 .610
(-) Multi-head attention .409 .301 .609
(-) Pooling operation .408 .301 .602

6 Conclusion and Future Work

In this paper, we propose KGE-ANS, a novel knowledge graph embedding approach for link
prediction, which is able to search for an appropriate neural network architecture using an automatic
network search technique to model various relation patterns to adapt to different datasets. Especially,
to better adapt to KG-related tasks, we design a general search space including convolution operations,
pooling operations, self-attention operations, zero operations, and identity operations, for neural
network architecture search. Extensive experiment results show that our KGE-ANS outperforms
several state-of-the-art models on both existing benchmark datasets and constructed datasets in this
paper. Furthermore, our detailed case study and exhaustive experimental analyses give more insights
into our method’s superiority for different link prediction tasks. In the future work, we will explore
how to use a textual description of entities to further enhance our neural network architecture search
model.
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