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ABSTRACT

In this paper, we define the curve rλ = r + λd at a constant distance from the edge of regression on a curve r(s)
with arc length parameter s in Galilean 3-space. Here, d is a non-isotropic or isotropic vector defined as a vector
tightly fastened to Frenet trihedron of the curve r(s) in 3-dimensional Galilean space. We build the Frenet frame
{Tλ, Nλ, Bλ} of the constructed curve rλ with respect to two types of the vector d and we indicate the properties
related to the curvatures of the curve rλ. Also, for the curve rλ, we give the conditions to be a circular helix.
Furthermore, we discuss ruled surfaces of type A generated via the curve rλ and the vector D which is defined
as tangent of the curve rλ in 3-dimensional Galilean space. The constructed ruled surfaces also appear in two ways.
The first is constructed with the curve rλ(s) = r(s) + λT(s) and the non-isotropic vector D. The second is formed
by the curve rλ = r(s) + λ2N + λ3B and the non-isotropic vector D. We calculate the distribution parameters of
the constructed ruled surfaces and we show that the ruled surfaces are developable. Finally, we provide examples
and visuals to back up our research.

KEYWORDS
Edge of regression; Galilean space; curvature; helix; ruled surface

1 Introduction

Klein pronounced a different definition of geometry in his introductory speech at the University
of Erlangen in 1872. He explained that geometry, given by a subgroup G of a set and its symmetries,
is the examination of invariants under this group [1]. This concept was first presented in a lecture, and
it resulted in the emergence of numerous geometries. Galilean geometry is one of these geometries
whose motions are the Galilean transformations of classical kinematics. Yaglom explained the basics
of Galilean geometry in 1979 [2]. Then particularly, the geometry of ruled surfaces in this space has
been largely improved in Röschel’s thesis [3].

One of the important research areas in differential geometry is the theory of curves examined in
various spaces. In particular, it has been examined in a lot of papers and remarkable results have been
obtained in the 3-dimensional Galilean space [4–10].
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The notion of the curves at a constant distance from the edge of regression has been introduced by
Vogler. He has studied the curves traced on a torse at a constant distance from its edge of regression.
The torse of a space curve in E

3 is dual to its pseudo-rectifying torse [11]. Later, Hacısalihoğlu obtained
a more general case of Vogler’s results [12].

This subject has been studied in Euclidean 3-space since the 1970s, and it is a method that generates
a new curve from the curve through the Frenet frame of the curve. For the first time, we will discuss
this issue in 3-dimensional Galilean space. While the curve is produced by using the unit vector which
is defined by the Frenet frame apparatus of a curve in Euclidean 3-space, we will have produced the
curve by considering two situations in the Galilean 3-space. This is because, in Galilean space, vectors
are treated in two ways, isotropic and non-isotropic.

In this paper, we first recall the essential preliminaries on the Galilean 3-space. Then, we define
curves in the Galilean 3-space and give the curvature properties of these curves. In the main part of
our study, we define a curve noted by rλ at a constant distance from its edge of regression on a unit-
speed admissible curve r in the Galilean 3-space. We give relations between the Frenet apparatus and
the curvatures of r and rλ. Using these relations, we get some conclusions. Also, we investigate ruled
surfaces generated via the curve rλ. In the last section, there are examples, two of which are ruled
surfaces.

2 Preliminaries

Let us consider a curve α(t) in 3-dimensional Euclidean space with {T , N, B} as the Frenet frame
at the point P = α(s) of α(t). d is described as a vector tightly fastened to Frenet trihedron {T , N,
B} such that d = d1T + d2N + d3B, where d1, d2, d3 are constant numbers and d2

1 + d2
2 + d2

3 = 1. k
is described as a line tightly fastened to Frenet trihedron {T , N, B} in the direction of d and passing
through point P (see Fig. 1) [12]. Let Pv denote a point on the line k at a constant distance v from P.
During the movement of the Frenet trihedron along the curve α(t), Cv(t) is geometric place of Pv(s)
which is defined as a curve at a constant distance from the edge of regression of the curve α (see
Fig. 1) [12].

Figure 1: The curve α and the curve Cv

The Galilean space G3 is one of the Cayley-Klein geometries with projective signature (0, 0, +, +)
as described in [6]. The absolute of the Galilean geometry is an ordered triple {w, f , I} where w is the
ideal (absolute) plane, f is the (absolute) line in w and I is the fixed elliptic involution of points of f .
For more detailed information about this space, see [2,3,9,13,14].

Now, let us consider the basic definitions and notions.
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Let
→
A = (x, y, z) and

→
B = (x1, y1, z1) be two vectors in the Galilean 3-space G3. The Galilean scalar

product of two vectors is defined by〈→
A,

→
B

〉
G

= →
A.

→
B =

{
xx1, if x �= 0 or x1 �= 0
yy1 + zz1, if x = 0 and x1 = 0

If
→
A.

→
B = 0, these vectors are called perpendicular in the sense of Galilean in G3 [2].

Let
→
A = (x, y, z) be a vector in the Galilean 3-space. The norm of the vector

→
A is defined by [2]∣∣∣∣∣∣→

A
∣∣∣∣∣∣

G
=

{
|x| , x �= 0√

y2 + z2, x = 0

The Galilean vector product of two vectors in G3 is

→
A ×G

→
B =

∣∣∣∣∣∣
0 e2 e3

x y z
x1 y1 z1

∣∣∣∣∣∣ ,

where
→
A = (x, y, z) and

→
B = (x1, y1, z1) ∈ G3 [3,15].

A vector
→
A = (x, y, z) ∈ G3 is said to be isotropic if x = 0. On the other hand, the vector is defined

as non-isotropic vector if x �= 0 [15].

Definition 2.1. An angle θ between two unit non-isotropic vectors
→
A = (1, y, z) and

→
B = (1, y1, z1)

in G3 is described in [16] as

θ =
√

(y1 − y)
2 + (z1 − z)2. (1)

If the vectors
→
A = (1, y, z) and

→
B = (0, y1, z1) in G3 are taken, an angle θ between the vectors is

described as

θ = yy1 + zz1√
y2

1 + z2
1

. (2)

If the vectors
→
A = (0, y, z) and

→
B = (0, y1, z1) in G3 are isotropic, the cosine of the angle between

two vectors is described as

cos θ = yy1 + zz1√
y2 + z2

√
y2

1 + z2
1

. (3)

2.1 Curves in Galilean 3-Space
Let α be a curve given by α : I → G3, α(t) = (x(t), y(t), z(t)) where x(t), y(t), z(t) ∈ G3. In this

case if x′(t) �= 0, α(t) is said to be a regular curve.

Let α : I → G3 be a regular curve in G3. Arc length of the curve α is ds = |x′(t)dt| = |dx|.
Hence, we obtain s = x. Let α : I → G3 be a curve α(x) = (x, y(x), z(x)) then we say that the curve is
parameterized by arc length [4].

In this case, the functions y, z : I → R are said to be coordinate functions of the curve. Here,
differentiating α(x) = (x, y(x), z(x)) with respect to x and using the norm definition, we obtain

||α′(x)||G = 1. (4)
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Then, α(x) is a unit speed curve. Let α : I → G3, α(x) = (x, y(x), z(x)) be a regular unit speed
curve in G3. Differentiating α(x), we have

α′(x) = (1, y′(x), z′(x)). (5)

The using Eq. (4), then the tangent vector of α is defined as

T(x) = (1, y′(x), z′(x)). (6)

If we take the derivation of Eq. (5), we get

α′′(x) = (0, y′′(x), z′′(x)). (7)

And from Eqs. (5) and (7), we write α′(x).α′′(x) = 0. Here, the normal vector of the curve α is the
vector in the direction. Then, the unit normal vector is defined as

N (x) = α′′(x)

||α′′(x)||G

. (8)

Using Eqs. (7) and (8), we write

N (x) = 1√
y′′2(x) + z′′2(x)

(0, y′′ (x) , z′′ (x)) . (9)

As a consequence, the unit binormal vector B(x) of α is

B (x) = 1√
y′′2(x) + z′′2(x)

(0, −z′′ (x) , y′′ (x)) , (10)

and then the frame {T(x), N(x), B(x)} chosen in this way is called the Frenet-Serret frame for unit
speed curves in the Galilean 3-space [5].

Proposition 2.1. The Frenet formulae of a unit speed curve α(x) in G3 is given by⎛
⎝T ′(x)

N ′(x)

B′(x)

⎞
⎠ =

⎛
⎝0 κ(x) 0

0 0 τ(x)

0 −τ(x) 0

⎞
⎠

⎛
⎝T(x)

N(x)

B(x)

⎞
⎠ , (11)

where

κ (x) = √
y′′2 (x) + z′′2 (x) (12)

is the curvature of α and

τ (x) = det(α′(x), α′′(x), α′′′(x))

κ2(x)
(13)

is the torsion of α [17].

3 Curve at a Constant Distance from the Edge of Regression on a Curve in Galilean 3-Space

Definition 3.1. Suppose that r is a curve in Galilean 3-space and {T , N, B} is the Frenet frame at
the point P = r(s) of r. Let Pλ be a point at a constant distance λ from P. During the movement of the
Frenet trihedron along the curve r, rλ = r + λd is geometric place of Pλ, where
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d =
{

d1T , if d is non-isotropic
d2N + d3B, if d is isotropic

such that d2
1 +d2

2 +d2
3 = 1, d1, d2, d3 ∈ R and d2 = 1, |d| = 1. In this case, rλ is called curve at a constant

distance from the edge of regression of r.

Now, let us construct the Frenet frame of rλ generated by both the non-isotropic vector d and
isotropic vector d and examine its curvature properties.

Case 3.1. d is non-isotropic. In this case, d2
1 = 1. Let us d1 = 1, d2 = d3 = 0. Then, we obtain

rλ(s) = r(s) + λT(s), (14)

where d(s) = T(s).

Theorem 3.1. If r(s) is a curve with arc length parameter s, then the arc length parameter of the
curve rλ is also s.

Proof. By differentiating Eq. (14)

d
ds

rλ (s) = r′ (s) + λT ′ (s) . (15)

If we take the norm of two sides of Eq. (15), we have∣∣∣∣
∣∣∣∣ d
ds

rλ (s)

∣∣∣∣
∣∣∣∣

G

= ||r′(s) + λT ′(s)||G = 1

which completes the proof.

Theorem 3.2. Let (r(s), rλ(s)) be given the curves pair with arc length s in G3. If the Frenet vectors
of r and rλ are {T , N, B} and {Tλ, Nλ, Bλ}, the curvatures are κ, τ and κλ, τλ, respectively, then the
following relations hold:

Tλ = T + λκN, (16)

Nλ = 1
κλ

[(κ + λκ ′) N + λκτB] , (17)

Bλ = 1
κλ

[−λκτN + (κ + λκ ′) B] , (18)

κλ =
√

κ2 + 2λκκ ′ + λ2
(
κ

′2 + κ2τ 2
)

(19)

and

τλ = κ2
λ
τ + λκ2τ ′ + λ2

(
κ ′2τ + κκ ′τ ′ − κκ ′′τ

)
κ2

λ

. (20)

Proof. By differentiating Eq. (14) and using Eq. (11), we have

r′
λ
= T + λκN (21)

which gives us Eq. (16). If we take derivation of Eq. (21) according to s, we get

r′′
λ
= (κ + λκ ′)N + λκτB. (22)

Using Eq. (22) in Eq. (12), then we get Eq. (19). From Eq. (9), we easily obtain the Eq. (17) and
from Eq. (10), we get Eq. (18). Considering Eq. (13), we obtain Eq. (20).
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In these calculations we used r′′′
λ

= (
κ ′ + λκ ′′ − λκτ 2

)
N + (κτ + 2λκ ′τ + λκτ ′) B

Corollary 3.1. Let (r(s), rλ(s)) be the curves pair given with arc length s in G3. If the curve r is a
circular helix, rλ is also a circular helix.

Proof. We know that if the curvatures κ and τ of r are constants, τ

κ
is also constant and then r is

a circular helix. If we take κ and τ as constants in Eqs. (19) and (20), we get κλ = κ
√

1 + λ2τ 2 and
τλ = τ .

In this case, we have τλ

κλ
= τ

κ

√
1+λ2τ2

. τλ

κλ
is fixed since λ, κ and τ are constants. Then, rλ is also a

circular helix.

Case 3.2. d is isotropic. In this case, d2
2 + d2

3 = 1 and d = d2N + d3B. Hence, we have

rλ = r(s) + λ2N + λ3B, (23)

where λ2 = λd2 and λ3 = λd3.

Theorem 3.3. If r(s) is a curve with arc length parameter s, then the arc length parameter of the
curve rλ is also s.

Proof. By differentiating Eq. (23), we have

d
ds

rλ (s) = r′ (s) + λ2N ′ (s) + λ3B′ (s) . (24)

If we take the norm of two sides of Eq. (24), we have
∣∣∣∣ d

ds
rλ (s)

∣∣∣∣
G

= ||r′(s) + λ2N ′(s) + λ3B′(s)||G = 1
which completes the proof.

Theorem 3.4. Let (r(s), rλ(s)) be the curves pair given with arc length s in G3. If the Frenet vectors
of r and rλ are {T , N, B} and {Tλ, Nλ, Bλ}, the curvatures are κ, τ and κλ, τλ, respectively, then the
following relations hold:

Tλ = T − λ3τN + λ2τB, (25)

Nλ = 1
κλ

[(
κ − λ2τ

2 − λ3τ
′) N + (

λ2τ
′ − λ3τ

2
)

B
]

, (26)

Bλ = 1
κλ

[(−λ2τ
′ + λ3τ

2
)

N + (
κ − λ2τ

2 − λ3τ
′) B

]
, (27)

κλ =
√

κ2 + (
λ2

2 + λ2
3

) (
τ 4 + τ

′2
) − 2κ (λ2τ 2 + λ3τ ′), (28)

and

τλ = κ2
λ
τ + (

λ2
2 + λ2

3

) (
2ττ

′2 − τ 2τ ′′) + λ2 (κτ ′′ − κ ′τ ′) + λ3

(
κ ′τ 2 − 2κττ ′)

κ2
λ

. (29)

Proof. By differentiating Eq. (23) and using Eq. (11), we obtain r′
λ

= T − λ3τN + λ2τB which
gives Eq. (25). If we take second derivation of rλ according to s and use Eq. (11) again, we get
r′′

λ
= (

κ − λ2τ
2 − λ3τ

′) N + (
λ2τ

′ − λ3τ
2
)

B. In the light of this last equation, if we take into account
Eq. (12) we have Eq. (28). From Eqs. (8) and (26) is obtained and Eq. (27) is found as a consequence
of Eq. (10). Considering (13), the torsion of rλ is found as in Eq. (29).

In these calculations, we use r′′′
λ

= (
κ ′ − λ3τ

′′ − 3λ2ττ ′ + λ3τ
3
)

N + (
κτ − λ2τ

3 − 3λ3ττ ′ + λ2τ
′′) B.
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Corollary 3.2. Let (r(s), rλ(s)) be the curve pair given with arc length s inG3. If the curve r is circular
helix, rλ is also a circular helix.

Proof. If the curvatures of r are constants, τ

κ
is constant and r is a circular helix. Considering κ

and τ as constants in Eqs. (28) and (29), the curvatures of rλ are κλ =
√

κ2 + (
λ2

2 + λ2
3

)
τ 4 − 2κλ2τ 2 and

τλ = τ , respectively.

In this case, we have τλ

κλ
= τ√

κ2+(λ2
2+λ2

3)τ4−2κλ2τ2
. Here, τλ

κλ
is fixed since λ2, λ3, κ and τ are constants.

Then, rλ is also a circular helix.

4 Ruled Surfaces Generated by the Curve rλ

The ruled surfaces in G3 are three types. Definitions of the ruled surfaces of type A, B, C and
current studies can be viewed in [6,15,17–20]. Our goal is to define the ruled surfaces using rλ as the
base curve and r′

λ
as the director curve, and to see if they can be developed. Here, we take into account

ruled surfaces of type A.

4.1 Ruled Surface of Type A Generated by rλ(s) = r(s) + λT(s)
A ruled surface of type A in G3 by using non-isotropic vector D can be written as

XA(s, v) = rλ(s) + vD(s), (30)

where rλ is defined as in Eq. (14) and the vector D is tangent of rλ. Besides, the curve rλ defined a
directrix that does not lie in Euclidean plane and non-isotropic vector D(s) = Tλ is generator. The
associated orthonormal triple of XA(s, v) is given by

t(s) = Tλ(s),

n(s) = Nλ(s),

b(s) = Bλ(s), (31)

where Frenet trihedron {Tλ, Nλ, Bλ} is the Frenet frame of the unit speed curve rλ(s) in Galilean 3-space.
From Eq. (31), we see that two orthonormal triple coincide.

Additionally, the parameter of distribution PXA
of XA(s, v) is

PXA
= −det

(
r′

λ
, D, D′)

||D′||2
G

. (32)

We know that if PXA
= 0, XA(s, v) is developable. Then, we can express the following theorem:

Theorem 4.1. Suppose that (r, rλ) is a unit speed curves pair in Galilean 3-space with rλ = r + λT ,
where {T , N, B} and {Tλ, Nλ, Bλ} are the Frenet frame of r and rλ, respectively. D is a non-isotropic
vector tightly fastened to Frenet trihedron {Tλ, Nλ, Bλ} of rλ at the origin and XA(s, v) is the ruled surface
of type A generated by D and rλ. Then, XA(s, v) is a developable surface.

Proof. By taking derivative of rλ with respect to s and by using Theorem 3.2, we obtain

r
′
λ
= Tλ = T + λκN. (33)

If we take D = Tλ, we get PXA
= 0 from Eq. (32). Thus, XA(s, v) is developable.
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Now, we consider that v is a constant in the ruled surface XA(s, v). Then, XA(s, v) = rλ(s) + vD(s)
is the equation of parametric curve rλv for the points Kv on the ruled surface. In this case, we have

Tλv = Tλ + vκλNλ, (34)

where Tλv is tangent vector at a point Kv of rλv for v −constant. If κλ is a non-zero constant, we deduce
from Eq. (34) that rλ is a Bertrand curve.

Finally considering Eq. (1), the angle θ between non-isotropic vectors Tλv and D, we calculate as
θ = vκλ.

4.2 Ruled Surface of Type A Generated by rλ = r(s) + λ2N + λ3B
Similarly to Section 4.1, a ruled surface of type A in G3 by using D = Tλ can be written as

XA(s, v) = rλ(s) + vD(s), (35)

where the curve rλ(s) = r(s) + λ2N + λ3B is directrix and D(s) = Tλ = T − λ3τN + λ2τB is generator.
In this case, the associated orthonormal triple of XA(s, v) is found as Eq. (31).

Thus, the following theorem can be written:

Theorem 4.2. Suppose that (r, rλ) is a unit speed curves pair in Galilean 3-space with rλ = r +
λ2N + λ3B, where {T , N, B} and {Tλ, Nλ, Bλ} are Frenet frame of r and rλ, respectively. D is a non-
isotropic vector tightly fastened to Frenet trihedron {Tλ, Nλ, Bλ} of rλ at the origin and XA(s, v) is the
ruled surface of type A generated by D and rλ. Then, XA(s, v) is a developable surface.

Proof. By taking derivative of rλ with respect to s and by using Theorem 3.4, we have

r
′
λ
= Tλ = T − λ3τN + λ2τB. (36)

We take as D = Tλ, so by a straightforward computation, the parameter of distribution for XA(s, v)
is calculated as follows:

PXA
= 0. (37)

Hence, XA(s, v) is developable.

5 Applications

Example 5.1. Consider the curve given by the parametrization

φ(σ) = (σ , −σ cos(σ ) + 2 sin(σ ), −σ sin(σ ) − 2 cos(σ )) . (38)

The Frenet frame fields of the curve of φ(σ) are [Fig. 2]

T(σ ) = (1, σ sin(σ ) + cos(σ ), −σ cos(σ ) + sin(σ )) , N(σ ) = (0, cos(σ ), sin(σ )) , B(σ ) = (0, − sin(σ ), cos(σ )) .

Considering Eq. (14), the curve φλ(σ ) generated by non-isotropic vector d in G3 is

φλ(σ ) = φ(σ) + λT ,

φλ(σ ) = (1 + σ , (1 − σ) cos(σ ) + (2 + σ) sin(σ ), (1 − σ) sin(σ ) − (2 + σ) cos(σ ))

for λ = 1 (see Fig. 2). If d is isotropic vector, from Eq. (23) we have

φr (σ ) =
(

σ , −σ cos (σ ) +
(

4 − √
3

2

)
sin (σ ) + 1

2
cos (σ ) , −σ sin (σ ) +

(
−4 + √

3
2

)
cos (σ ) + 1

2
sin (σ )

)
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for r = 1, d2 = 1
2
, d3 =

√
3

2
(see Fig. 2).

Figure 2: The red curve is φ(σ ), the blue curve is φλ (σ ) and the green curve is φr(σ )

Example 5.2. Let us consider the curve given by Eq. (38) in Example 5.1. The ruled surface XA(σ , v)
obtained by using Eq. (38) in light Eq. (30) is

XA (σ , v) =
⎛
⎝ 1 + v + σ ,

(1 − σ + v(1 + λκ)) cos(σ ) + (2 + σ(1 + v)) sin(σ ),
(1 − σ + v(1 + λκ)) sin(σ ) − (2 + σ(1 − v)) cos(σ )

⎞
⎠ . (39)

In Eq. (39), the curve φλ(σ ) = (1+σ , (1−σ) cos(σ )+(2+σ) sin(σ ), (1−σ) sin(σ )−(2+σ) cos(σ ))

is directrix and the non-isotropic vector

D(σ ) = Tλ(s) = (1, σ sin(σ ) + (1 + λκ) cos(σ ), −σ cos(σ ) + (1 + λκ) sin(σ ))

is generator. For κ = σ and λ = 1, Eq. (39) is shown in the Fig. 3.

Example 5.3. Let us consider the curve given by Eq. (38) in Example 5.1. The ruled surface XA(σ , v)
obtained by using Eq. (38) in light Eq. (35) is

XA (σ , v) =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ + v,(
−σ + 1

2
+ v (1 − λ3τ)

)
cos (σ ) +

(
4 − √

3
2

+ v (σ − λ2τ)

)
sin (σ ) ,(

−σ + 1
2

+ v (1 − λ3τ) sin (σ ) +
(

−4 + √
3

2
+ v (−σ + λ2τ)

)
cos (σ )

)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (40)
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Figure 3: The surface XA(σ , v), for −π ≤ σ ≤ π , −1 ≤ v ≤ 1

In Eq. (40), the curve

φr (σ ) =
(

σ , −σ cos (σ ) +
(

4 − √
3

2

)
sin (σ ) + 1

2
cos (σ ) , −σ sin (σ ) +

(
−4 + √

3
2

)
cos (σ ) + 1

2
sin (σ )

)

is directrix and the non-isotropic vector

Tλ(s) = (1, (σ − λ2τ) sin(σ ) + (1 − λ3τ) cos(σ ), (1 − λ3τ) sin(σ ) + (−σ + λ2τ) cos(σ ))

is generator. For τ = 1 and λ2 = λ3 = 1, Eq. (40) is shown in the Fig. 4.

Figure 4: The surface XA(σ , v), for −π ≤ σ ≤ π , −1 ≤ v ≤ 1

6 Conclusion

In this study, we present a method that generates a new curve from the curve using the Frenet frame
of a curve that is parameterized by arc length in G3. We show that it is possible in two ways to achieve
this state in Galilean 3-space. We also calculate the Frenet frame and curvatures of the generated curve
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in terms of the Frenet frame and curvatures of the first curve. In this case, we reveal that if the first
curve is helix, the generated curve is also the helix curve. In Section 4, for Case 3.1 and Case 3.2, ruled
surfaces generated by the constructed curve and its tangents are discussed. It has been shown that the
composed ruled surfaces are developable.
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9. Öğrenmiş, A. O., Öztekin, H., Ergüt, M. (2009). Bertrand curves in galilean space and their characteriza-

tions. Kragujevac Journal of Mathematics, 32(32), 139–147.
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