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ABSTRACT

According to the World Health Organization (WHO), cancer is the leading cause of death for children in low and
middle-income countries. Around 400,000 kids get diagnosed with this illness each year, and their survival rate
depends on the country in which they live. In this article, we present a Pythagorean fuzzy model that may help
doctors identify the most likely type of cancer in children at an early stage by taking into account the symptoms of
different types of cancer. The Pythagorean fuzzy decision-making techniques that we utilize are Pythagorean Fuzzy
TOPSIS, Pythagorean Fuzzy Entropy (PF-Entropy), and Pythagorean Fuzzy Power Weighted Geometric (PFPWG).
Our model is fed with nineteen symptoms and it diagnoses the risk of eight types of cancers in children. We develop
an algorithm for each method and calculate its complexity. Additionally, we consider an example to make a clear
understanding of our model. We also compare the final results of various tests that prove the authenticity of this
study.

KEYWORDS
Risk assessment; Pythagorean fuzzy sets; TOPSIS method; entropy; power weighted geometric operators

1 Introduction

Childhood cancer is the leading cause of death in children, especially in low and middle-income
countries. Their likelihood of survival heavily rests on the country where they live. The chance of curing
childhood cancer in high-income countries is above eighty percent, whereas in low and in middle-
income countries, it is a mere forty-five percent. This difference in curing rate owes to many factors,
such as late diagnosing and cancer diagnosed at its late stages due to unavailability of resources, cost of
treatment (the treatment cost is rather high in later stages), or incorrect diagnostics and inappropriate
treatment. The survival rate can be increased if low and in middle-income countries improve the access
to necessary medicines and technologies. Generally speaking, the most productive way to reduce the
effects of childhood cancer is by effective and evidence-based therapy with appropriate nurturing care.

The chances of curing childhood cancer, and the cost of treatment with lesser suffering, can
be improved if it is identified early, and appropriate treatment is provided immediately. A correct

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.024551
https://www.techscience.com/doi/10.32604/cmes.2023.024551
mailto:m.akram@pucit.edu.pk


2586 CMES, 2023, vol.135, no.3

diagnosis is required to treat childhood cancer efficiently with the right treatment, which may include
surgeries, radiotherapy, and chemotherapy. For early diagnosing, we should consider the following
three aspects:

1) Parents should know about childhood cancer so that they can perceive its symptoms and
consult a medical expert.

2) The medical expert should be skilled enough and investigate the case promptly in order to cater
for the right treatment.

3) The patient has accessibility to the right treatment at right time.

When someone is diagnosed with cancer, the chances of recovery and survival increase if it is
detected in an early stage, even with the least amount of financial and physical suffering. The low-
and middle-income countries should run education campaigns for parents with the help of competent
doctors so that in the presence of symptoms in any child, their parents can respond without delay. This
task requires the joint effort of civil society and non-governmental organizations. In 2018, the World
Health Organization launched a global initiative on cancer in children. As part of this initiative, they
provided governments with professional guidance and support to maintain high-quality childhood
cancer programs. They aim to increase childhood cancer survival rates, and by 2030 that rate should
be at least sixty percent.

Medical information is very sensitive and contains many uncertainties. Every expert may have their
personal opinion on a health record, and it may become rather difficult to make an accurate diagnostic
based on these reports. In such uncertain situations, fuzzy logic can play an important role in making
decisions among different alternative diagnostics. Many extensions of fuzzy sets theory have been
proposed [1,2]. In fact research has provided many medical applications that have taken advantage of
different fuzzy approaches [3,4], and of models of vague knowledge born from alternative narratives
[5]. Feng et al. [6,7] generalized intuitionistic fuzzy soft sets and related multi attribute decision making
methods. By inspiration of these applied studies, we have selected a powerful and flexible model for the
representation of undertain knowledge. It has been popularized by Yager et al. [8,9], who coined the
term Pythagorean fuzzy sets (PFSs). PFSs improve the performance of intuitionistic fuzzy sets, which
for each alternative, provide a fuzzy assessment of both membership (μ) and nonmembership (ν) in
such a way that μ + ν ≤ 1. In PFSs however, assessments that meet the relaxed condition μ2 + ν2 ≤ 1
are acceptable. The PFS model has become one of the most influential notions in fuzzy modeling,
since it allows us to accept more uncertain appraisals than the intuitionistic fuzzy or fuzzy sets, and
consequently, its applications are potentially wider. The next summary of recent results testifies to this
claim.

Yucesan et al. [10] presented the ideas of Pythagorean fuzzy analytic hierarchy method and
Pythagorean fuzzy method for order decision by comparison to the ideal solution, in order to present
an exact decision-making technique for estimating hospital service quality. Guleria et al. [11] proposed
a new (R, S)-norm discriminant measure of Pythagorean fuzzy sets and proved some interesting
features. Their monotonicity with respect to the parameters R&S were studied too. This information
measure is utilized in some problems related to medical diagnosis or pattern recognition. Extensions
and hybrid models based on PFSs have been put forward too. Rahman [12] extended the spirit of
some popular aggregation operators to the more general framework of interval-valued Pythagorean
fuzzy numbers, thus producing the so-called GIVPFWA, GIVPFOWA, and GIVPFHA operators.
They discussed their properties, and argued that their generalized operators are more reliable and
accurate than the existing aggregation operators. Zulqarnain et al. [13] proposed the averaging and
geometric operators of Pythagorean fuzzy hypersoft sets. They also introduced a novel TOPSIS
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method in this new environment. They applied this methodology to a case-study of selection of
multipurpose masks for protection against COVID-19. Yue et al. [14] proposed novel score function
of hesitant fuzzy numbers and prove the validity of this function using an example. Yue [15] proposed
a novel bilateral matching (BM) decision-making method for knowledge innovation management
considering the matching willingness of bilateral enterprises. Ejegwa [16] improved composite relation
for Pythagorean fuzzy sets and applied it to medical diagnosis. Many other decision-making methods
have been suggested in the literature [17–25].

The following targets motivate the research contained in this article:

1) Early diagnosis of cancer in children can reduce overall mortality and expense of treatment,
which ultimately reduces the patient’s suffering.

2) Effective handling of vague and uncertain data in a medical context is required.

3) Get opinions of available medical experts and decide the final treatment.

4) Contribution towards WHO’s goal of increasing survival from childhood cancer by least sixty
percent before 2030.

Concerning these issues, our contribution to this study is described below:

1) We develop a novel decision-making system to determine childhood cancer risk at its early
stages, thus increasing the survival rate.

2) We use the Pythagorean fuzzy sets (PFS) for decision-making because it is very close to human
thinking. It is characteristic of simultaneously focusing on the degree of truth, the degree
of non-membership, and the degree of indeterminacy of each alternative to make it more
powerful.

3) We design algorithms to demonstrate the entire performance of the model. In addition, we
determine their respective time complexities.

The rest of this paper is structured as follows. Section 2 discusses preliminary work. Section 3
describes the main contributions of the paper. Then Section 4 performs a comparative analysis.
Section 5 concludes the proposed work and lays out some future directions for research.

2 Preliminaries

This section summarizes some of the introductory concepts that need to be followed to completely
benefit from this study. First we overview technical concepts that will help us formulate our theoretical
model. Then we summarize some facts about its prospective application (namely, identification of
childhood cancer).

2.1 Pythagorean Fuzzy Set [8]
Let Z be a universal set. Then, a Pythagorean fuzzy set S over Z is a set of ordered triples indexed

by Z, which adopts the following form: S = {< z, μS(z), νS(z) > |z ∈ Z}, where the functions
μS(z):Z −→ [0, 1] and νS(z):Z −→ [0, 1] respectively define the degree of membership and the degree
of non-membership of z ∈ Z to S, and the inequalities 0 ≤ (μS(z))2 + (νS(z))2 ≤ 1 hold for each
z ∈ Z. The figure πS(z) = √

1 − [μS(z))2 + (νS(z))2] defines the degree of indeterminacy of z ∈ Z to
S. Observe πS(z) ∈ [0, 1], and πS(z) = 0 whenever (μS(z))2 + (νS(z))2 = 1. We represent the set of all
PFSs over Z by PFS(Z).
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2.2 Pythagorean Fuzzy Relation [16]
Let U and V be two nonempty sets. A Pythagorean fuzzy relation (PFR), L, from U to V is a

PFS over U × V . It is characterized by a membership function, μR, and a nonmembership function,
νL that meet the corresponding bounds. A PF relation or PFR from U to V is denoted by L(U→V ).

2.3 Pythagorean Fuzzy-Technique for Order of Preference by Similarity to Ideal Solution (PF-TOP
SIS) Method [20]

The PF-TOPSIS method uses linguistic terms and Pythagorean fuzzy numbers (PFNs) to repre-
sent the relative importance of experts and criteria. These linguistic terms and PFNs are predefined
and used to rate any expert or criteria. The following equation is used to calculate the weight in crisp
form for any Pythagorean fuzzy evaluation. Assume that Pn = [μn, νn, πn] is a Pythagorean Fuzzy
Number (PFN), then its weight can be calculated by using the following formula:

σn = μn + πn(μn/(μn + νn))
k∑

l=1

(μl + πl(μl/(μl + νl)))

. (1)

Notice that the sum of all weights should be equal to 1.

Suppose that Zn = (z(n)

ij )l×m denotes the Pythagorean Fuzzy Decision Matrix (PFDM) of the nth
expert having weight σn. The following formula is used to aggregate all PFDMs with the assistance of
the Pythagorean Fuzzy Aggregated Averaging (PFWA) operator: for each i = 1, 2, 3, ..., l, j = 1, 2, 3,
..., m,

zij =
⎛
⎜⎝

√√√√1 −
k∏

n=1

(1 − (μn
ij)

2)σn ,
k∏

n=1

(νn
ij)

σn ,

√√√√ k∏
n=1

(1 − (μn
ij)

2)σn −
(

k∏
n=1

(λn
ij)

σn

)2
⎞
⎟⎠ . (2)

Let Pn
j = [μn

j , ν
n
j , π n

j ] be the Pythagorean fuzzy number assigned to the criteria Rj, then the weighted
aggregated PFDM against each criteria Rj can be calculated as

zij = (μSi(Rj).μP(Rj),
√

ν2
Si
(Rj) + ν2

P(Rj) − ν2
Si
(Rj).ν2

P(Rj), (3)

and πSiP(Rj) =
√

1 − μSi(Rj) · μP(Rj) − ν2
Si
(Rj) − ν2

P(Rj) + ν2
Si
(Rj) · ν2

P(Rj).

Let B1 and B2 be the sets of benefit-type and cost-type criteria, respectively.

The Pythagorean Fuzzy Positive Ideal Solution (PFPIS) S+ and Pythagorean Fuzzy Negative
Ideal Solution (PFNIS) S− can be obtained as: S+ = {〈Rj, μS+P, νS+P〉|Rj ∈ C, j = 1, 2, ...., m},

S− = {〈Rj, μS−P, νS−P〉|Rj ∈ C, j = 1, 2, ...., m}, where

μS+P(Rj) =
⎧⎨
⎩

max
1≤i≤l

μSiP(Rj), if Rj ∈ B1,

min
1≤i≤l

μSiP(Rj), if Rj ∈ B2,
(4)
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λS+P(Rj) =
⎧⎨
⎩

min
1≤i≤l

νSiP(Rj), if Rj ∈ B1,

max
1≤i≤l

νSiP(Rj), if Rj ∈ B2,
(5)

μS−P(Rj) =
⎧⎨
⎩

min
1≤i≤l

μSiP(Rj), if Rj ∈ B1,

max
1≤i≤l

μSiP(Rj), if Rj ∈ B2,
(6)

λS−P(Rj) =
⎧⎨
⎩

max
1≤i≤l

νSiP(Rj), if Rj ∈ B1,

min
1≤i≤l

νSiP(Rj), if Rj ∈ B2.
(7)

The following formula is used to calculate the distance of each alternative from PFPIS and PFNIS:

E(Si, S+) =
√√√√ 1

2m

m∑
j=1

[
(μ2

SiP
(Rj) − μ2

S+P(Rj))
2 + (ν2

SiP
(Rj) − ν2

S+P(Rj))
2 + (π 2

SiP
(Rj) − π 2

S+P(Rj))
2
]
, (8)

E(Si, S−) =
√√√√ 1

2m

m∑
j=1

[
(μ2

AiP
(Rj) − μ2

S−P(Rj))
2 + (ν2

SiP
(Rj) − ν2

S−P(Rj))
2 + (π 2

SiP
(Rj) − π 2

S−P(Rj))
2
]
. (9)

The relative closeness value of each choice Si is calculated as follows:

Yi+ = E(Si, S−)

E(Si, S+) + E(Si, S−)
, i = 1, 2, ...., l. (10)

The maximum relative closeness value is the best choice among all possible choices.

2.4 Pythagorean Fuzzy-Entropy (PF-Entropy) Method [21]
According to [21], the following equation computes the entropy T(P) of any criteria represented

by a Pythagorean Fuzzy Number (PFN) P:

T(P) = 1
n

n∑
i=1

[T ∗(Pi) + πp(zi) − πp(zi)T ∗(Pi)], (11)

where, T ∗(pi) = 1 − |μp(zi) − νp(zi)|.
The score function K(P) of such P can be defined as follows:

K(P) = (μP)
2 − (νP)

2. (12)

The weighted entropy of each criteria is calculated using the next equation:

wj = 1 − Tj

n − ∑n

j=1 Tj

. (13)

2.5 Pythagorean Fuzzy Power Weighted Average (PFPWA) [21,22]
The support of two PFNs is calculated using the next formula:

Support(Pij, Pik) = 1 − d(Pij, Pik), j, k = 1, 2, ..., n. (14)
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The distance between two PFNs can be calculated using the following normalized Hamming
distance:

d(Pij, Pik) =
(|(μij)

2 − (μik)
2| + |(νij)

2 − (νik)
2|)

2
, j, k = 1, 2, ..., n. (15)

The formula for the weighted support is as follows:

M(Pij) =
n∑

k=1

ωjSupport(Pij, Pik), (16)

and we compute the weights γij associated with the PFN Pij as

γij = ωj(1 + M(Pij))
n∑

j=1

ωj + (1 + M(Pij))

, (17)

where i = 1, 2, ..., m, j = 1, 2, ...,n, γij ≥ 0, and
∑n

j=1 γij = 1.

The Pythagorean Fuzzy Power Weighted Geometric (PFPWG) operator is as follows:

PFPWG =
⎛
⎝ n∏

j=1

(μij)
γij ,

√√√√1 −
n∏

j=1

(1 − (νij)
2)γij

⎞
⎠ . (18)

Let P = (μ, ν) be a PFN. Then a score function S of P, a PFN, can be defined by the expression:

Score(P) = 1
2
(1 + μ2 + ν2) ∈ [0, 1]. (19)

2.6 Major Factors of Childhood Cancer [26,27]
Many studies have tried to identify the causes of childhood cancer. Some factors are related to the

environment, such as radiation exposure and chemical exposure. Some are lifestyle-related, such as
drugs, alcohol, cell phone use, and smoking. Some children inherit DNA changes from a parent that
increase their risk of a certain type of cancer. Here we list possible risk factors for childhood cancer
with a small description of each factor.

Gender (S1): Gender can be male or female.

Age (S2): The age of a child is considered between 0 and 19 years.

Height (S3): The height of a child.

BMI (S4): The body mass index (BMI) is a measure of body fat according to height and weight.

Drugs (S5): A medication is a drug used to diagnose, cure, treat, or prevent disease.

Alcohal (S6): It is a substance that contains the recreational drug ethanol, alcohol is made by
fermentation of fruits, grains, or any source of sugar.

Cell Phone Usage (S7): The use of cell phones on a daily basis.

Pagets Disease (S8): It is a bone disease that disrupts the body’s normal recycling process, in which
new bone tissue gradually replaces old bone tissue. Over time, the disease can cause compromised
bones to become weak and distorted.
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Genetic Disposition (S9): There is an increased chance of acquiring a specific disease based on a
person’s ancestral genes.

Smoking (S10): The habit of inhaling and exhaling tobacco or drug smoke.

Blood Disorder (S11): These are conditions that affect the blood’s ability to function.

Birth Defects (S12): It is a disease that, despite its cause, is present at birth. Birth defects can
appear as disabilities that can be physical, mental, or developmental in nature.

Immunity (S13): Immunity is the capability of multi-cellular organisms to resist harmful microor-
ganisms.

Auto Immune Diseases (S14): It is a disease in which your immune system unintentionally attacks
your body.

Certain Syndromes(S15): Any syndrome already present in children such as Down syndrome,
Li-Fraumeni syndrome, etc.

Race (S16): Identification of a group of people.

Certain Radiation Exposure (S17): Exposed to certain electromagnetic radiation, or living in the
vicinity of a source of electromagnetic radiation.

Certain Chemical Exposure (S18): Exposure to certain chemicals or polluted groundwater used
for drinking.

Socioeconomic Status (S19): A family’s financial status in society.

2.7 Types of Childhood Cancers
Children and teenagers tend to get different types of childhood cancers. The most common

childhood cancers are discussed below:

Leukemia (D1): It is bone marrow and blood cancer. Twenty-eight percent of childhood cancer
cases fall into this category.

Brain and spinal cord tumors (D2): The second most common cancer in children is the brain and
spinal cord cancer. In this type of cancer, abnormal growth in tissues of the brain and spinal cord is
seen causing headache, nausea, vomiting, blurred vision, and difficulty in walking and holding objects.
About 26 children develop this type of cancer every year.

Neuroblastoma (D3): Neuroblastoma begins in the early forms of nerve cells seen in a developing
egg or fetus. About 6 percent of cancers in adolescents are neuroblastomas. This type of cancer occurs
in newborns and adolescents. It is uncommon in children over 10 years of age. Neuroblastomas mostly
occur in and around the adrenal glands. However, neuroblastomas can develop in other areas of the
stomach and ribs, neck, and near the spine where there are clusters of nerve cells.

Wilms Tumor (D4): Wilms’ tumor begins in one or, rarely, both kidneys. It is usually found in
children around 3 to 4 years of age and is rare in more mature children and adults. Wilms’ tumor
accounts for around 5 percent of childhood cancers. Its symptoms are fever, pain, nausea, or loss of
appetite.

Lymphomas (D5): It is a disease that attacks infection-fighting cells in the immune system. These
cells are called lymphocytes. These cells are found in the lymph nodes, spleen, thymus gland, bone
marrow, and other parts of the body. In this disease, abnormal growth of lymphocytes has been
observed. Symptoms include weight loss, fever, sweats, fatigue, and lumps under the skin in the neck,
armpits, or groin area.
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Retinoblastoma (D6): This type of cancer is related to the eyes. It is a rare type of cancer in which
a child could not distinguish the colors of light, also had impaired vision and sensitive eyes. The pupil
of the eyes becomes large.

Rhabdomyosarcoma (D7): It is an intrusive and very dangerous cancer that originates from
skeletal muscle cells. It is widely believed to be a childhood disease as the vast majority of cases found
are under the age of 18. It is about 3 percent of childhood cancers.

Bone Cancer (D8): This type of cancer usually occurs in older children. This type of cancer causes
severe bone pain all the time. The bones become weak and can also be broken. In some cases, weight
loss is also observed.

3 Pythagorean Fuzzy Model of Childhood Cancer

To make the proposed Pythagorean model more understandable, consider the block diagram
shown in Fig. 1. The proposed model uses nineteen symptoms as inputs. For each input, a linguistic
variable is defined in the Pythagorean fuzzy number. There may be n experts, but we’re only picking
three experts here. Their expertise is represented by PFNs. Symptom PFNs and expert weights are
input to PF-TOPSIS, PF-entropy, and PFPWG blocks. In these blocks, the algorithm of each approach
is executing and generating its final outputs. We compare the results of each method and highlight the
signal output. The results of these three methods should be the same.

Figure 1: Block diagram of risk assessment of childhood cancer

3.1 Algorithm for Risk Assessment of Childhood Cancer
In this subsection, we write all of the instructions that must be followed to obtain final results

for any input. Each algorithm takes certain inputs and produces certain outputs. There are seven sub-
algorithms of the PF-TOPSIS algorithm, namely, Algorithm A, Algorithm B, Algorithm C, Algorithm
D, Algorithm E, Algorithm F, and Algorithm G. Each sub-algorithm shows each step of the TOPSIS
process. We also write the net time complexity of every algorithm.
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3.1.1 Algorithm: PF-TOPSIS

Input: Two-dimensional arrays containing expert’s weights, and decision matrix of each expert. Output:
Highlighted type of cancer.

1. E.W [ ] ← Weight of experts(EWmem[ ][ ], EWnmem[ ][ ], and EWpi[ ][ ])
2. PDMmem[ ][ ], PDMnmem[ ][ ], PDMpi[ ][ ] ← PDM(PDM1[ ][ ],PDM2[ ][ ],...,PDMl[ ][ ] and
EW [ ][ ])
3. Smem[ ][ ], Snmem [ ][ ], Spi [ ][ ] ← Symptom’s Weight(S1mem[ ][ ],S1nmem[ ][ ],S1pi[ ][ ]...,Slmem[
][ ],Slnmem[ ][ ], Slpi[ ][ ] and EW [ ][ ])
4. PDMmem[ ][ ], PDMnmem[ ][ ], PDMpi[ ][ ] ← Weighted Aggregated PDM(PDMmem[ ][ ],
PDMnmem[ ][ ], PDMpi[ ][ ],Smem[ ][ ], Snmem [ ][ ], Spi [ ][ ])
5. PISmem[ ][ ],PISnmem[ ][ ],PISpi [ ][ ] ← PFPIS and PFNIS(PDMmem[ ][ ], PDMnmem[ ][ ],
PDMpi[ ][ ])
6. PD[ ],ND[ ] ← Disance PIS NIS(PISmem[ ][ ],PISnmem[ ][ ],PISpi [ ][ ], NISmem[ ][ ],NISnmem[
][ ],NISpi [ ][ ], PDMmem[ ][ ], PDMnmem[ ][ ], PDMpi[ ][ ])
7. RClose [ ] ← Relative Closeness(PD[ ],ND[ ])
8. Final disease=Maximun(RClose)

Algorithm-A: Weights of experts

Input: Two dimensional arrays EWmem[ ][ ], EWnmem[ ][ ], and EWpi[ ][ ] containing Experts weights,
and membership, non-membership, and indeterminate parts of PFNs.

Output: Two dimensional arrays EW [ ] containing Experts weight in crisp Time complexity
form.

for a ← 1 to l do l
for b ← 1 to o do (l − 1)o

Sum ← Sum +
(

EWmem[a][b] + EWpi[a][b] × EWmem[a][b]
EWmem[a][b] + EWnmem[a][b]

)
(l − 1)

(o − 1)

end for
end for
for a ← 1 to l do l

EW [a] ←

⎛
⎜⎜⎝

(
EWmem[a] + EWpi[a]

EWmem[a]
EWmem[a] + EWnmem[a]

)
Sum

⎞
⎟⎟⎠ l − 1

end for
return EW [ ][ ]; Net time complexity=O(lo)

Algorithm-B: Pythagorean decision matrix (PDM)

Input: Pythagorean decision matrices of all experts, and weight of each expert.

Output: Aggregated Pythagorean decision matrix. Time complexity
for a ← 1 to l do l

for b ← 1 to o do (l − 1)o
for c ← 1 to e do (l − 1)(o − 1)e
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PDMmem[i][j] ← PDMcmem[a][b] ∗ (1 − (PDMcmem[a][b])2))EW [c]

PDMnmem[a][b] ← PDMcnmem[a][b] ∗ (1 − (PDMcnmem[a][b])2))EW [c]

PDMpi[a][b] ← PDMcmem[a][b] − (PDMcnmem[a][b])2 (l − 1)(o − 1)(e − 1)

end for
PDMmem[a][b] ← √

1 − PDMmem[a][b]; (l − 1)(o − 1)

PDMpi[a][b] ← √
PDMpi[a][b]; (l − 1)(o − 1)

end for
end for
return PDMmem[ ][ ],PDMnmem[ ][ ],PDMpi[ ][ ] Net time complexity=O(loe)

Algorithm-C: Symptom’s weight

Input: Pythagorean symptom’s weight matrix, and expert’s weights.

Output: Aggregated Pythagorean symptoms weight matrix. Time Complexity
for a ← 1 to l do l

for b ← 1 to o do (l − 1)o
for c ← 1 to e do (l − 1)(o − 1)e

Smem[a][b] ← Scmem[a][b] ∗ (1 − (Scmem[a][b])2))EW [c] (l − 1)(o − 1)(e − 1)

Snmem[a][b] ← Scnmem[a][b] ∗ (1 − (Scnmem[a][b])))EW [c]

Spi[a][b] ← Scmem[a][b] − (Scnmem[a][b])2

end for
Smem[a][b] ← √

1 − Smem[a][b]; (l − 1)(o − 1)

Spi[a][b] ← √
Spi[a][b]; (l − 1)(o − 1)

end for
end for
return Smem[ ][ ],Snmem[ ][ ],Spi[ ][ ] Net time complexity=O(loe)

Algorithm-D: Weighted aggregated PDM

Input: Pythagorean Symptom’s weight matrix, and Pythagorean decision matrices.

Output: Weighted aggregated decision matrix. Time complexity
for a ← 1 to l do l

for b ← 1 to o do (l − 1)o
(l − 1)(o − 1)

PDMnmem[a][b] ← (((PDMnmem[a][b])2 + (Snmem[a][b])2− PDMnmem[a][b])2

∗(Snmem[a][b])2)0.5

PDMpi[a][b] ← ((1−PDMmem[a][b]∗Smem[a][b]− (PDMnmem[a][b])2 − (Snmem[a][b])2 +
(PDMnmem[a][b])2 ∗ (Snmem[a][b])2)0.5 (l − 1)(o − 1)

end for
end for
return PDMmem[ ][ ],PDMnmem[ ][ ],PDMpi[ ][ ]; Net time complexity=O(lo)

Algorithm-E: PFPIS and PFNIS

Input: Weighted aggregated decision matrix.

Output: Positive ideal and negative ideal solution. Time complexity
Bmax, Bmin, Cmin, Cmax = 0
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for a ← 1 to l do l
for b ← 1 to o do (l − 1)o

if Symptom = Benefit then (l − 1)(o − 1)

if Bmax < PDMmem[b][a] then
Bmax ← PDMmem[b][a]

end if
PISmem[b][a] ← Bmax

if Bmin > PDMnmem[b][a] then
Bmin ← PDMnmem[b][a]

end if
PISnmem[b][a] ← Bmin

if Bmin > PDMmem[b][a] then
Bmin ← PDMmem[b][a]

end if
NISmem[b][a] ← Bmin

if Bmax < PDMnmem[b][a] then
Bmax ← PDMnmem[b][a]

end if
NISnmem[b][a] ← Bmax

end if

if Symptom = Cost then (l − 1)(o − 1)

if Cmin > PDMmem[b][a] then
Cmin ← PDMmem[b][a]

end if
PISmem[b][a] ← Cmin

if Cmax < PDMnmem[b][a] then
Cmax ← PDMnmem[b][a]

end if
PISnmem[b][a] = Cmax

if Cmax < PDMmem[b][a] then
Cmax ← PDMmem[b][a]

end if
NISmem[b][a] ← Cmax

if Cmin > PDMnmem[b][a] then
Cmin ← PDMnmem[b][a]

end if
NISnmem[b][a] ← Cmin
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end if
end for

end for
return PISmem[ ][ ],PISnmem[ ][ ],NISmem[ ][ ],NISnmem[ ][ ] Net time complexity=(lo)

Algorithm-F: Distance PIS NIS

Input: Positive ideal and negative ideal solutions. Weighted aggregated decision matrix.

Output: Distance of each disease from positive ideal and negative ideal solutions. Time complexity
PISsum, NISsum = 0

for a ← 1 to l do l
for b ← 1 to o do (l − 1)o

PISsum ←
PISsum + ((PDMmem[b][a])2 − (PISmem[b][a])2)+
((PDMnmem[b][a])2 − (PISnmem[b][a])2) + ((PDMpi[b][a])2 − (PISpi[b][a])2) (l − 1)(o − 1)

end for
PD[a] ← √

(PISsum
2∗b

) (l − 1)

end for
for a ← 1 to l do l

for b ← 1 to o do (l − 1)o
NISsum ←
NISsum + ((PDMmem[b][a])2 − (NISmem[b][a])2)+
((PDMnmem[b][a])2 − (NISnmem[b][a])2) + ((PDMpi[b][a])2 − (NISpi[b][a])2) (l − 1)(o − 1)

end for

ND[a] ← √
(
NISsum

2 ∗ b
) (l − 1)

end for
return PD[ ], ND[ ] Net time complexity=O(lo)

Algorithm-G: Relative Closeness

Input: Distance of each disease from positive and negative ideal solutions.

Output: Relative closeness. Time complexity
sum = 0

for a ← 1 to l do l

RClose[a] ← NIS[a]
PIS[a] + NIS[a]

(l − 1

end for Net time complexity=O(l)

After aggregating all complexities, we get the final time complexity of the PF-TOPSIS algorithm,
which is O(loe). If l ≈ o ≈ e ≈ n then we can say that net time complexity is O(n3).

3.1.2 Algorithm: Entropy

Algorithm PF-Entropy shows the set of instructions that need to follow to find the final results
of each childhood cancer.

Input: Aggregated decision matrix and symptom’s weight matrix.

Output: Highlighted disease. Time complexity
sum, absolute, Esum
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for a ← 1 to l do l
for b ← 1 to o do (l − 1)o

absolute ← 1 − |PDMmem[a][b] − PDMnmem[a][b]| (l − 1)(o − 1)

sum ← sum + (absolute + PDMpi[a][b] ∗ absolute ∗ PDMpi[a][b] (l − 1)(o − 1)

end for
Entropy[a] ← sum

m
(l − 1)

Esum ← Esum + Entropy[a] (l − 1)

end for
for a ← 1 to l do l

W [a] ← 1−E[a]

8−Esum
(l − 1)

end for
Call algorithm PIS NIS (Algrithm-E) O(lo)

Call distance algorithm (Algrithm-F) O(lo)

Call relative closeness (Algrithm-G) O(l)
Find max value O(l)

Net time complexity=O(lo)

3.1.3 Algorithm: PFPWG

Algorithm-PFPWG shows the set of instructions of PFPWG decision-making techniques.

Input: Aggregated decision matrix and symptom’s weight matrix.
Output: Highlighted disease. Time complexity
Call expert weight algorithm to calculate crisp weight of each symptom S1[],...,S[l]. O(lo)

sum, absolute, Esum

for a ← 1 to l do l
for b ← 1 to o do (l − 1)o

mem[i] ← |PDMmem[1][b]2 − PDMmem[b][1]2| (l − 1)(o − 1)

nmem[i] ← |PDMnmem[1][b]2 − PDMnmem[b][a]2| (l − 1)(o − 1)

Tp[i] ← S[a] ∗ (1 − (mem[a]+nmem[a]

20
)) (l − 1)(o − 1)

sum = sum + Tp[a] (l − 1)(o − 1)

end for
end for
for a ← 1 to l do l

for b ← 1 to o do (l − 1)o
Dmem ← Dmem ∗ (PDMmem[b][a])Tp[a] (l − 1)(o − 1)

Dnmem ← Dnmem ∗ (1 − (PDMnmem[b][a])2)Tp[a] (l − 1)(o − 1)

end for
Dnmem = √

1 − Dnmem (l − 1)

D[a] ← 1
2
(1 + Dmem2 − Dnmem2) (l − 1)

end for
Find max value (l − 1)

Net time complexity=O(loe)
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3.2 Example of Risk Assessment of Childhood Cancer
To understand the working of the above algorithm, consider the following example and apply the

PF-TOPSIS method to it. The PFNs against each linguistic variable are shown in Table 1. Table 1
shows the linguistic variables for all inputs.

Table 1: Linguistic variables

Linguistic variables PFNs

Very low [0,1,0]
Low [0.2,0.9,0.39]
Below medium [0.4,0.6.0.69]
Medium [0.65,0.50,0.57]
Above medium [0.8.0.45,0.4]
High [0.9,0.2,0.39]
Very high [1,0,0]

3.2.1 Pythagorean Fuzzy Topsis

We shall first show how a decision can be made with the application of the steps described in
Section 3.1.1.

Step 1: We are taking opinions from three medical experts, E1, E2, and E3, and the credibility of
each expert is high, above medium, and medium, depending upon their experience, qualification, and
research. The rating of each medical expert is calculated using Eq. (1) and Table 1. The ratings of E1,
E2, and E3 are 0.375, 0.325, and 0.3, respectively [20].

Step 2: The Pythagorean Fuzzy Decision Matrix shows ratings of eight diseases by the experts in
relation to nineteen symptoms. This step is completed using Tables 1 and 2, and Eq. (2). The result of
this step is shown in Tables 3 and 4.

Table 2: Ratings of eight diseases

Symptom Disease E1 E2 E3 Symptom Disease E1 E2 E3

D1 VL LO LO D1 VH HI HI
D2 LO LO VL D2 LO LO VL
D3 MED MED BM D3 VL LO LO

S1 D4 MED MED BM S11 D4 LO LO VL
D5 MED BM BM D5 VL LO LO
D6 LO LO VL D6 LO VL VL
D7 AM MED MED D7 LO LO VL
D8 VL LO LO D8 LO LO VL

D1 VH VH HI D1 VH HI HI
D2 LO LO VL D2 LO LO VL
D3 MED MED BM D3 MED BM BM
D4 MED MED BM D4 LO LO VL

(Continued)
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Table 2 (continued)

Symptom Disease E1 E2 E3 Symptom Disease E1 E2 E3

S2 D5 MED MED BM S12 D5 VL LO LO
D6 MED BM BM D6 LO VL VL
D7 MED BM BM D7 LO LO VL
D8 MED BM BM D8 LO LO VL

D1 VH HI HI D1 VH HI HI
D2 LO LO VL D2 LO LO VL
D3 VL LO LO D3 VL LO LO

S3 D4 LO VL VL S13 D4 LO LO VL
D5 LO LO VL D5 MED BM BM
D6 VL LO LO D6 LO VL VL
D7 LO VL VL D7 LO LO VL
D8 MED BM BM D8 LO LO VL

D1 VH VH HI D1 VH HI HI
D2 LO LO VL D2 LO LO VL
D3 VL LO LO D3 VL LO LO

S4 D4 LO VL VL S14 D4 LO LO VL
D5 LO LO VL D5 BM BM LO
D6 VL LO LO D6 LO VL VL
D7 LO VL VL D7 LO LO VL
D8 LO LO VL D8 LO LO VL

D1 LO LO VL D1 VL LO LO
D2 VL LO LO D2 BM MED MED
D3 LO LO VL D3 MED BM MED

S5 D4 VL LO LO S15 D4 BM BM MED
D5 LO VL VL D5 LO LO VL
D6 LO LO VL D6 LO LO VL
D7 MED BM BM D7 LO LO LO
D8 LO LO LO D8 VL LO LO

D1 VH HI HI D1 VL LO LO
D2 VL LO LO D2 LO LO VL
D3 LO LO VL D3 BM BM MED

S6 D4 VL LO LO S16 D4 LO VL VL
D5 LO VL VL D5 LO LO VL
D6 LO LO VL D6 LO LO VL
D7 LO LO VL D6 LO LO VL
D8 LO LO LO D8 MED BM BM

D1 LO LO VL D1 VH VH VH
D2 MED MED MED D2 MED BM BM
D3 LO LO VL D3 LO VL VL
D4 VL LO LO D4 LO LO VL

(Continued)
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Table 2 (continued)

Symptom Disease E1 E2 E3 Symptom Disease E1 E2 E3

S7 D5 LO VL VL S17 D5 BM BM BM
D6 LO LO VL D6 MED BM BM
D7 LO LO VL D7 BM BM MED
D8 LO LO LO D8 MED BM BM

D1 LO LO VL D1 VH HI HI
D2 VL LO LO D2 VL LO LO
D3 LO LO VL D3 LO VL VL

S8 D4 VL LO LO S18 D4 LO LO VL
D5 LO VL VL D5 LO LO VL
D6 LO LO VL D6 LO LO LO
D7 LO LO VL D7 VL LO LO
D8 MED BM BM D8 LO LO VL

D1 VH HI HI D1 VL LO LO
D2 MED MED BM D2 LO VL VL
D3 BM BM BM D3 LO LO VL

S9 D4 MED BM BM S19 D4 LO LO VL
D5 MED BM MED D5 MED BM MED
D6 BM BM BM D6 VL LO LO
D7 MED BM BM D7 LO LO VL
D8 MED BM MED D8 VL LO LO

D1 VH HI VH
D2 LO LO VL
D3 VL LO LO

S10 D4 LO LO VL
D5 VL LO LO
D6 LO VL VL
D7 LO LO VL
D8 LO LO VL

Table 3: Aggregated Pythagorean fuzzy decision matrix

Symptom D1 D2 D3 D4

S1 [0.158717,0.93621,
0.3133777]

[0.167842,0.928902,
0.330107]

[0.594807,0.52811,
0.606056]

[0.594807,0.52811,
0.606056]

S2 [0.167842,0.928902,
0.330107]

[0.594807,0.52811,
0.606056]

[0.594807,0.52811,
0.606056]

[0.594807,0.52811,
0.606056]

S3 [1,0,0] [0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

[0.123255,0.96126,
0.2465508]

S4 [1,0,0] [0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

[0.123255,0.96126,
0.2465508]

(Continued)
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Table 3 (continued)

Symptom D1 D2 D3 D4

S5 [0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

[0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

S6 [1,0,0] [0.158717,0.936271,
0.313377]

[0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

S7 [0.167842,0.928902,
0.330107]

[0.65,0.5,0.572276] [0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

S8 [0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

[0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

S9 [1,0,0] [0.594807,0.52811,
0.6060566]

[0.4,0.6,0.6928203] [0.519722,0.560349,
0.6449015]

S10 [1,0,0] [0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

[0.167842,0.928909,
0.330107]

S11 [1,0,0] [0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

[0.167842,0.928909,
0.330107]

S12 [1,0,0] [0.167842, 0.928902,
0.330107]

[0.519722, 0.560349,
0.644901]

[0.167842,
0.928909, 0.330107]

S13 [1,0,0] [0.167842, 0.928902,
0.330107]

[0.158717, 0.936271,
0.313377]

[0.167842,
0.928909, 0.330107]

S14 [1,0,0] [0.167842, 0.928902,
0.330107]

[0.158717, 0.936271,
0.313377]

[0.167842,
0.928909, 0.330107]

S15 [0.158717, 0.93621,
0.3133777]

[0.579118, 0.535381,
0.614808247]

[0.589672, 0.530523,
0.6089599]

[0.499309,
0.568063, 0.654213]

S16 [0.158717, 0.93621,
0.3133777]

[0.167842, 0.928902,
0.330107]

[0.499309, 0.568063,
0.654213]

[0.263522,
0.814217, 0.517307]

S17 [1,0,0] [0.519722, 0.560349,
0.6449015]

[0.123255, 0.96126,
0.2465508]

[0.167842,
0.928909, 0.330107]

S18 [1,0,0] [0.158717, 0.936271,
0.313377]

[0.123255, 0.96126,
0.2465508]

[0.167842,
0.928909, 0.330107]

S19 [0.158717, 0.93621,
0.3133777]

[0.123255, 0.96126,
0.24655]

[0.167842, 0.928902,
0.330107]

[0.167842,
0.928909, 0.330107]

Table 4: Aggregated Pythagorean fuzzy decision matrix

Symptom D1 D2 D3 D4

S1 [0.519722,0.560349,
0.6449015]

[0.167842,0.928909,
0.330107]

[0.718534,0.48063,
0.502695]

[0.158717,0.936271,
0.313377]

S2 [0.519722,0.560349,
0.644901]

[0.519722,0.560349,
0.6449015]

[0.519722,0.560349,
0.6449015]

S3 [0.167842,0.928909,
0.330107]

[0.158717,0.936271,
0.313377]

[0.123255,0.96126,
0.2465508]

[0.519722,0.560349,
0.6449015]

S4 [0.167842,0.928909,
0.330107]

[0.158717,0.936271,
0.313377]

[0.123255,0.96126,
0.2465508]

[0.167842,0.928902,
0.330107]

(Continued)
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Table 4 (continued)

Symptom D1 D2 D3 D4

S5 [0.123255,0.96126,
0.2465508]

[0.167842,0.928909,
0.330107]

[0.519722,0.560349,
0.6449015]

[0.2,0.9,0.387298]

S6 [0.123255,0.96126,
0.2465508]

[0.167842,0.928909,
0.330107]

[0.167842,0.928902,
0.330107]

[0.2,0.9,0.387298]

S7 [0.123255,0.96126,
0.2465508]

[0.167842,0.928909,
0.330107]

[0.167842,0.928902,
0.330107]

[0.2,0.9,0.387298]

S8 [0.123255,0.96126,
0.2465508]

[0.167842,0.928909,
0.330107]

[0.167842,0.928902,
0.330107]

[0.519722,0.560349,
0.6449015]

S9 [0.589672,0.530523,
0.6089599]

[0.4,0.6,0.69282] [0.519722,0.560349,
0.6449015]

[0.589672,0.530523,
0.608959]

S10 [0.158717,0.936271,
0.313377]

[0.123255,0.96126,
0.2465508]

[0.167842,0.928902,
0.330107]

[0.167842,0.928902,
0.330107]

S11 [0.158717,0.936271,
0.313377]

[0.123255,0.96126,
0.2465508]

[0.167842,0.928902,
0.330107]

[0.167842,0.928902,
0.330107]

S12 [0.158717,0.936271,
0.31337]

[0.123255,0.96126,
0.2465508]

[0.167842,0.928902,
0.330107]

[0.167842,0.928902,
0.330107]

S13 [0.519722,0.560349,
0.6449015]

[0.123255,0.96126,
0.2465508]

[0.167842,0.928902,
0.330107]

[0.167842,0.928902,
0.330107]

S14 [0.354495,0.677608,
0.644344]

[0.123255,0.96126,
0.2465508]

[0.167842,0.928902,
0.330107]

[0.167842,0.928902,
0.330107]

S15 [0.167842,0.928909,
0.330107]

[0.167842,0.928909,
0.330107]

[0.2,0.9,0.387298] [0.158717,0.936271,
0.313377]

S16 [0.167842,0.928909,
0.33010]

[0.167842,0.928909,
0.330107]

[0.2,0.9,0.387298] [0.519722,0.560349,
0.6449015]

S17 [0.4,0.6,0.69282] [0.519722,0.560349,
0.6449015]

[0.499309,0.568063,
0.654213]

[0.519722,0.560349,
0.6449015]

S18 [0.167842,0.928909,
0.330107]

[0.2,0.9,0.387298] [0.1518717,0.936271,
0.313377]

[0.167842,0.928902,
0.330107]

S19 [0.65,0.5,0.572276] [0.158717,0.936271,
0.313377]

[0.167842,0.928902,
0.330107]

[0.158717,0.936271,
0.313377]

Step 3: Determine the weight of each symptom using Table 5, and Eq. (2). The result of this step
is shown in Table 6.

Table 5: The importance of criteria in linguistic terms

Symptom E1 E2 E3 Symptom E1 E2 E3

S1 H AM AM S11 M M H
S2 M H M S12 M H M
S3 M H M S13 M H M
S4 M M H S14 M M H
S5 M M H S15 M H M
S6 M H M S16 H AM AM
S7 M H M S17 H M AM

(Continued)
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Table 5 (continued)

Symptom E1 E2 E3 Symptom E1 E2 E3

S8 H AM AM S18 AM M H
S9 H AM AM S19 M H AM
S10 M H M

Table 6: Weights of each symptom

Symptoms Rating

S1 (0.846591,0.332005,0.416001)
S2 (0.773055,0.371227,0.51437)
S3 (0.773055,0.371227,0.51437)
S4 (0.765686,0.379829,0.519091)
S5 (0.765686,0.379829,0.519091)
S6 (0.773055,0.371227,0.51437)
S7 (0.773055,0.371227,0.51437)
S8 (0.846591,0.332005,0.416001)
S9 (0.846591,0.332005,0.416001)
S10 (0.773055,0.371227,0.51437)
S11 (0.765686,0.379829,0.519091)
S12 (0.773055,0.371227,0.51437)
S13 (0.773055,0.371227,0.51437)
S14 (0.765686,0.379829,0.519091)
S15 (0.773055,0.371227,0.51437)
S16 (0.846591,0.332005,0.416001)
S17 (0.818343,0.34357,0.460732)
S18 (0.808373,0.365114,0.461762)
S19 (0.806725,0.359677,0.468858)

Step 4: Constructing aggregated weighted PFDM using Eq. (3), and Tables 3, 4, and 6. The results
are shown in Tables 7 and 8.

Step 5: Table 9 shows the results of PFPIS and PFNIS using Eqs. (4)–(7), and Tables 7 and 8.

Table 7: Aggregated weighted Pythagorean fuzzy decision matrix

Symptom D1 D2 D3 D4

S1 [0.1343,0.9434,
0.3030]

[0.1420,0.937,
0.3191]

[0.5035,0.5986,
0.6229]

[0.5035,0.5986,
0.6229]

S2 [0.7730,0.3712,
0.5143]

[0.1297,0.9390,
0.3184]

[0.4598,0.6150,
0.6405]

[0.4598,0.6150,
0.6405]

(Continued)
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Table 7 (continued)

Symptom D1 D2 D3 D4

S3 [0.7730,0.3712,
0.5143]

[0.1297,0.9390,
0.3184]

[0.1229,0.9453,
0.3022]

[0.0952,0.9666,
0.2375]

S4 [0.7656,0.3798,
0.5190]

[0.1285,0.9394,
0.3175]

[0.1215,0.9457,
0.3013]

[0.0943,0.9664,
0.2368]

S5 [0.1285,0.9394,
0.3175]

[0.1215,0.9457,
0.3013]

[0.1285,0.9394,
0.3175]

[0.1215,0.9457,
0.3013]

S6 [0.7730,0.3712,
0.5143]

[0.1226,0.9453,
0.3021]

[0.1297,0.9390,
0.3184]

[0.1226,0.9453,
0.3022]

S7 [0.1297,0.9390,
0.3184]

[0.5024,0.5944,
0.6278]

[0.1297,0.9390,
0.3184]

[0.1226,0.9453,
0.3022]

S8 [0.142,0.9370,
0.3191]

[0.1343,0.9435,
0.3028]

[0.1420,0.9370,
0.3191]

[0.1343,0.9435,
0.3028]

S9 [0.8465,0.332,
0.4160]

[0.5035,0.598, 0.622] [0.338,0.6561,
0.6743]

[0.4399,0.6241,
0.6455]

S10 [0.7730,0.3712,
0.5143]

[0.1297,0.9390,
0.3184]

[0.1226,0.9453,
0.3022]

[0.1297,0.9390,
0.3184]

S11 [0.7656,0.3798,
0.5190]

[0.1285,0.9394,
0.31755]

[0.1215,0.9457,
0.3013]

[0.1285,0.9394,
0.3175]

S12 [0.7730,0.3712,
0.5143]

[0.1297,0.9390,
0.3184]

[0.4017,0.6391,
0.6557]

[0.1297,0.9390,
0.3184]

S13 [0.7730,0.3712,
0.5143]

[0.1297,0.9390,
0.3184]

[0.1226,0.9453,
0.3022]

[0.1297,0.9390,
0.3184]

S14 [0.7656,0.3798,
0.5190]

[0.1285,0.9394,
0.3175]

[0.1215,0.9457,
0.3013]

[0.1285,0.9394,
0.3175]

S15 [0.1226,0.9452,
0.3023]

[0.4476,0.6204,
0.6439]

[0.4558,0.6168,
0.6416]

[0.3859,0.6450,
0.6595]

S16 [0.1343,0.9434,
0.3030]

[0.1420,0.9370,
0.3191]

[0.4227,0.6303,
0.6511]

[0.223,0.8367,
0.5001]

S17 [0.8183,0.343,
0.4607]

[0.4253,0.6284,
0.6512]

[0.1008,0.9659,
0.2384]

[0.1373,0.9375,
0.319]

S18 [0.8083,0.3651,
0.4617]

[0.1283,0.9450,
0.3008]

[0.0996,0.9665,
0.2364]

[0.1356,0.9386,
0.3169]

S19 [0.1280,0.9447,
0.3018]

[0.0994,0.9663,
0.2371]

[0.1354,0.938,
0.31790]

[0.1354,0.9384,
0.3178]

Table 8: Aggregated weighted Pythagorean fuzzy decision matrix

Symptom D5 D6 D7 D8

S1 [0.4399,0.6241,
0.6455]

[0.1420,0.9370,
0.3190]

[0.6083,0.5619,
0.5605]

[0.1343,0.9435,
0.3028]

(Continued)
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Table 8 (continued)

Symptom D5 D6 D7 D8

S2 [0.4598,0.6150,
0.6405]

[0.4017,0.6391,
0.6557]

[0.4017,0.6391,
0.6557]

[0.4017,0.6391,
0.6557]

S3 [0.1297,0.9390,
0.3184]

[0.1226,0.9453,
0.3022]

[0.0952,0.9666,
0.2375]

[0.4017,0.6391,
0.6557]

S4 [0.1285,0.9394,
0.3175]

[0.1215,0.9457,
0.3013]

[0.0943,0.9669,
0.2368]

[0.1285,0.9394,
0.3175]

S5 [0.0943,0.9669,
0.236]

[0.1285,0.9394,
0.3175]

[0.3979,0.6426,
0.6547]

[0.1531,0.9151,
0.3730]

S6 [0.0952,0.9666,
0.2375]

[0.1297,0.9390,
0.3184]

[0.1297,0.9390,
0.3184]

[0.1546,0.9144,
0.3740]

S7 [0.0952,0.9666,
0.2375]

[0.1297,0.9390,
0.3184]

[0.1297,0.9390,
0.3184]

[0.1546,0.9144,
0.3740]

S8 [0.1043,0.9656,
0.2381]

[0.1420,0.9370,
0.3190]

[0.1420,0.9370,
0.3191]

[0.4399,0.6241,
0.6455]

S9 [0.4992,0.6005,
0.6246]

[0.3386,0.6561,
0.6743]

[0.4399,0.6241,
0.6455]

[0.4992,0.6005,
0.6240]

S10 [0.1226,0.9453,
0.3022]

[0.0952,0.9666,
0.2375]

[0.1297,0.9390,
0.3184]

[0.1297,0.9390,
0.3184]

S11 [0.1215,0.9457,
0.3013]

[0.0943,0.9667,
0.2368]

[0.1285,0.9394,
0.3175]

[0.1285,0.9394,
0.3175]

S12 [0.1226,0.9453,
0.3022]

[0.0952,0.9667,
0.2375]

[0.1297,0.9390,
0.318]

[0.1297,0.9390,
0.3184]

S13 [0.4017,0.6391,
0.6557]

[0.0952,0.9666,
0.2375]

[0.1297,0.9390,
0.3184]

[0.1297,0.9390,
0.3184]

S14 [0.2714,0.7329,
0.6238]

[0.09437,0.9669,
0.236]

[0.1285,0.9394,
0.3175]

[0.1285,0.9394,
0.3175]

S15 [0.1297,0.9390,
0.3184]

[0.1297,0.9390,
0.3184]

[0.1546,0.9144,
0.3740]

[0.1226,0.9453,
0.3022]

S16 [0.1420,0.937,
0.3190]

[0.1420,0.9370,
0.3190]

[0.1693,0.9115,
0.3746]

[0.4399,0.624,
0.6455]

S17 [0.327,0.6594,
0.6762]

[0.4253,0.6284,
0.6512]

[0.4086,0.6345,
0.6560]

[0.4253,0.6284,
0.6512]

S18 [0.1356,0.9386,
0.3169]

[0.1616,0.9139,
0.3721]

[0.1227,0.9450,
0.3031]

[0.1356,0.9386,
0.3169]

S19 [0.5243,0.5890,
0.6148]

[0.1280,0.9447,
0.301726]

[0.1354,0.938,
0.3179]

[0.128,0.9447,
0.3017]



2606 CMES, 2023, vol.135, no.3

Table 9: PIS and NIS

Symptom PIS NIS

S1 (0.6083044176, 0.5619336555, 0.56053216) (0.1343683837, 0.9435067904, 0.3028862392)
S2 (0.773055, 0.371227, 0.514369985) (0.1297510973, 0.9390198435, 0.318443694)
S3 (0.773055, 0.371227, 0.514369985) (0.09528289403, 0.9666909764, 0.2375494187)
S4 (0.765686, 0.379829, 0.5190904354) (0.09437462793, 0.9669448349, 0.2368778499)
S5 (0.3979438593, 0.6426208583, 0.6547359142) (0.09437462793, 0.9669448349, 0.2368778499)
S6 (0.773055, 0.371227, 0.514369985) (0.09528289403, 0.9666909764, 0.2375494187)
S7 (0.50248575, 0.5944384864, 0.6278144287) (0.09437462793, 0.9669448349, 0.2368778499)
S8 (0.4399919677, 0.6241858178, 0.6455998243) (0.1043465737, 0.9656064274, 0.2381512544)
S9 (0.846591, 0.332005, 0.4160004311) (0.3386364, 0.6561596489, 0.6743737123)
S10 (0.773055, 0.371227, 0.514369985) (0.09528289403, 0.9666909764, 0.2375494187)
S11 (0.765686, 0.379829, 0.5190904354) (0.09437462793, 0.9669448349, 0.2368778499)
S12 (0.773055, 0.371227, 0.514369985) (0.09528289403, 0.9666909764, 0.2375494187)
S13 (0.773055, 0.371227, 0.514369985) (0.09528289403, 0.9666909764, 0.2375494187)
S14 (0.765686, 0.379829, 0.5190904354) (0.09437462793, 0.9669448349, 0.2368778499)
S15 (0.455848888, 0.6168281917, 0.6416578319) (0.1226969704, 0.9453087376, 0.3022198604)
S16 (0.4399919677, 0.6241858178, 0.6455998243) (0.1343683837, 0.9434529307, 0.3030539637)
S17 (0.818343, 0.34357, 0.4607324489) (0.1008648665, 0.9659137643, 0.2384048629)
S18 (0.808373, 0.365114, 0.4617627745) (0.09963601412, 0.9665140672, 0.2364809137)
S19 (0.52437125, 0.5890888373, 0.6148244741) (0.09943288988, 0.9663591629, 0.2371983741)

Step 6: Find distance of each disease with respect to PIS and NIS using Eqs. (8) and (9), and
Tables 7 and 8.

Step 7: Now apply Eq. (10) on Table 10 to calculate the relative closeness of each disease.

Table 10: Numerical results

Disease D(Li,L+) D(Li,L−) (Li) Rating of disease

D1 0.275112 0.557659 0.669642 1
D2 0.562568 0.194540 0.256951 6
D3 0.546636 0.233754 0.299534 4
D4 0.562210 0.184700 0.247285 7
D5 0.527542 0.255102 0.325949 2
D6 0.579636 0.149774 0.205336 8
D7 0.547882 0.217842 0.284491 5
D8 0.525929 0.240877 0.314130 3

Step 8: The maximum value is D1 disease.
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3.2.2 Pythagorean Fuzzy Entropy Method

Now we evaluate the same inputs with our second methodology (cf., Section 3.1.2). The step-by-
step calculations of this algorithm are as follows:

Step 1: Compute the overall entropy of each criterion using Tables 3 and 4, and Eq. (11).

Step 2: Compute the overall weight of each symptom: we use Tables 6 and 11, and Eq. (13), to
get Table 12.

Table 11: Entropy of each Symptom

Entropy Value Entropy Value Entropy Value Entropy Value

E1 0.7159104962 E6 0.4178064273 E11 0.4076892564 E16 0.6504636906
E2 0.7960083765 E7 0.5377938017 E12 0.4726217253 E17 0.7162852648
E3 0.4544188736 E8 0.5308859753 E13 0.4726217431 E18 0.4172182446
E4 0.3924935986 E9 0.8469676038 E14 0.4600604293 E19 0.5216621254
E5 0.5410031461 E10 0.4076892564 E15 0.6774897253

Table 12: Weight of each Symptom

Weight Value Weight Value Weight Value Weight Value

W1 0.03317680263 W6 0.06799014839 W11 .0691716591 W16 .04081980058
W2 0.02382269643 W7 0.05397769656 W12 .06158866884 W17 .03313297819
W3 0.06371444735 W8 0.05478441131 W13 0.06158866884 W18 0.06805883796
W4 0.07094624934 W9 0.01787153932 W14 0.06305561114 W19 0.05586159757
W5 0.05360290059 W10 0.0691716591 W15 0.03766362677

Step 3: Determine the Pythagorean fuzzy PIS γ + and NIS γ − of each alternative using Eqs. (4)–(7),
and Tables 3 and 4. The PIS and NIS results are shown in Table 13.

Table 13: PIS & NIS

Symptoms γ +(mem) γ +(non − mem) γ −(mem) γ −(non − mem)

S1 0.7185344956 0.4806300777 0.1587167962 0.9362709927
S2 1 0 0.1678421306 0.9289016977
S3 1 0 0.123255 0.96126
S4 1 0 0.123255 0.96126
S5 0.519722 0.560349 0.123255 0.96126
S6 1 0 0.123255 0.96126
S7 0.65 0.5 0.123255 0.96126
S8 0.519722 0.560349 0.123255 0.96126
S9 1 0 0.4 0.6
S10 1 0 0.123255 0.96126
S11 1 0 0.123255 0.96126

(Continued)
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Table 13 (continued)

Symptoms γ +(mem) γ +(non − mem) γ −(mem) γ −(non − mem)

S12 1 0 0.123255 0.96126
S13 1 0 0.123255 0.96126
S14 1 0 0.123255 0.96126
S15 0.5896724049 0.5305226244 0.158717 0.936271
S16 0.519722 0.560349 0.1587167962 0.9362709927
S17 1 0 0.1232545023 0.9612601555
S18 1 0 0.1232545023 0.9612601555
S19 0.65 0.5 0.1232545023 0.9612601555

Step 4: Calculate the distance between alternatives using Tables 12 and 13.

Step 5: Calculate the relative degree of closeness of each alternative using Eq. (10), and Table 14.
Table 15 shows the relative closeness of each disease.

Table 14: Distance between alternatives

Disease D(Ai, γ +) D(Ai, γ −)

D1 0.2673218011 0.7632174342
D2 0.7701354677 0.188677577
D3 0.7588156448 0.2131948401
D4 0.7738775789 0.1547205578
D5 0.7495318939 0.2463499314
D6 0.7855832056 0.1222792276
D7 0.7662546068 0.1935045705
D8 0.7451043189 0.2317462283

Table 15: Degree of closeness

Disease Value Ranking

D1 0.7406000743 1
D2 0.1967824469 6
D3 0.2193338893 4
D4 0.1666173468 7
D5 0.2473686387 2
D6 0.1346891589 8
D7 0.2016178381 5
D8 0.237238162 3

Step 6: Rank all alternatives Ai according to relative closeness φ(Ai) of each alternative. The
highest value is of D1.
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3.2.3 Pythagorean Fuzzy Power Weighted Geometric Method (PFPWG)

We consider the same example again, but now we follow the PFPWG algorithm (cf., Section 3.1.3)
to find the final result.

Step 1: Calculate the supports using distance and support formulas–Eqs. (15) and (14), with
Tables 3 and 4.

Step 2: Calculate the weighted support using Tables 12, 16, and Eq. (16).

Step 3: Use Table 2 and Eq. (1) to get crisp weight of each symptom.

Step 4: Use Eq. (17), plus Tables 16, 17 and 18, to determine the weight associated with PFNs.

Table 16: Support of each symptom

Symptom D1 D2 D3 D4 D5 D6 D7 D8

S1 1 1 1 1 1 1 1 1
S2 0.07429382481 1 1 1 0.9406123802 0.6045895256 0.8354170216 0.5962338726
S3 0.07429382481 1 0.5368457814 0.5081379061 0.6045895256 0.991644347 0.4029425476 0.5962338726
S4 0.07429382481 1 0.5368457814 0.5081379061 0.6045895256 0.991644347 0.4029425476 0.9916378446
S5 0.9916375164 0.9916375164 0.545208265 0.5368462527 0.567525526 1 0.8354170216 0.9592938503
S6 0.07429382481 0.9916375164 0.545208265 0.5368462527 0.567525526 1 0.4400130496 0.9592938503
S7 0.9916375164 0.4964063084 0.545208265 0.5368462527 0.567525526 1 0.4400130496 0.9592938503
S8 0.9916375164 0.9916375164 0.545208265 0.5368462527 0.567525526 1 0.4400130496 0.5962338726
S9 0.07429382481 0.5452087848 0.8625519566 0.9406123802 0.9449307707 0.6826495033 0.8354170216 0.5411646433
S10 0.07429382481 1 0.5368457814 0.5452019058 0.5962338726 0.9629360004 0.4400130496 0.9916378446
S11 0.07429382481 1 0.5368457814 0.5452019058 0.5962338726 0.9629360004 0.4400130496 0.9916378446
S12 0.07429382481 1 0.9406124118 0.5452019058 0.5962338726 0.9629360004 0.4400130496 0.9916378446
S13 0.07429382481 1 0.5368457814 0.5452019058 1 0.9629360004 0.4400130496 0.9916378446
S14 0.07429382481 1 0.5368457814 0.5452019058 0.8551970739 0.9629360004 0.4400130496 0.9916378446
S15 1 0.5582837365 0.9956816017 0.9258593552 0.6045895256 1 0.4723570439 1
S16 1 1 0.9258584902 0.6657996631 0.6045895256 1 0.4723570439 0.5962338726
S17 0.07429382481 0.6045958532 0.5081372495 0.5452019058 0.9219400223 0.6045895256 0.8206639966 0.5962338726
S18 0.07429382481 0.9916375164 0.5081372495 0.5452019058 0.6045895256 0.9676495033 0.4305879033 0.9916378446
S19 1 0.9629289845 0.545208265 0.5452019058 0.8918099777 0.991644347 0.4400130496 1

Table 17: Weighted support

Disease Weighted support

D1 0.1194823486
D2 0.2670615473
D3 0.196587252
D4 0.1866896644
D5 0.2115133567
D6 0.2750992294
D7 0.1617538985
D8 0.2559919525
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Table 18: Weights of each symptom

Symptom Weight Symptom Weight

S1 0.01396530372 S11 0.01621589327
S2 0.01624052684 S12 0.01624052684
S3 0.01624052684 S13 0.01624052684
S4 0.01621589327 S14 0.01621589327
S5 0.01621589327 S15 0.01624052684
S6 0.01624052684 S16 0.01396530372
S7 0.01624052684 S17 0.01516553483
S8 0.01396530372 S18 0.0148661582
S9 0.01396530372 S19 0.01515533886
S10 0.01624052684

Step 5: Apply the PFPWG operator using Eq. (18), and Tables 19, 3, and 4.

Step 6: Calculate the scores of the overall PFNs using Eq. (19) and Tables 20 and 21.

Table 19: Weights associated with the PFN’S

Symptom D1 D2 D3 D4 D5 D6 D7 D8
S1 0.04757226825 0.04719906613 0.04737572284 0.04740046969 0.04733855366 0.04717920819 0.04746287952 0.04722336609
S2 0.05462660171 0.05501188798 0.05521778653 0.05524662971 0.05512210018 0.05464126637 0.05517386925 0.05468505886
S3 0.05462660171 0.05501188798 0.05480908316 0.05481236679 0.05482581458 0.05498140024 0.05479153667 0.05468505886
S4 0.05454364459 0.0549271147 0.05472523149 0.05472854815 0.05474184762 0.05489668488 0.05470788958 0.05494806034
S5 0.05535403485 0.05491978515 0.05473258846 0.05475381779 0.05470926579 0.05490400536 0.0550890632 0.0549196969
S6 0.05462660171 0.05500453615 0.05481646251 0.05483771326 0.05479313368 0.05498874297 0.05482430915 0.05500440529
S7 0.05543945597 0.05456915647 0.05481646251 0.05483771326 0.05479313368 0.05498874297 0.05482430915 0.05500440529
S8 0.04756678906 0.04719362992 0.04707896944 0.04709810219 0.04705658376 0.04717920819 0.04709681361 0.04696075437
S9 0.04696573542 0.04690341962 0.04728603745 0.0473616988 0.04730264896 0.04697299468 0.04735529091 0.04692493704
S10 0.05462660171 0.05501188798 0.05480908316 0.05484509043 0.05481844704 0.05495617208 0.05482430915 0.05503285497
S11 .05454364459 0.0549271147 0.05472523149 0.0547611726 0.05473450242 0.0548715332 0.05474056271 0.05494806034
S12 0.05462660171 0.05501188798 0.05516538086 0.05484509043 0.05481844704 0.05495617208 0.05482430915 0.05503285497
S13 0.05462660171 0.05501188798 0.05480908316 0.05484509043 0.05517446476 0.05495617208 0.05482430915 0.05503285497
S14 0.05454364459 0.0549271147 0.05472523149 0.0547611726 0.0549621491 0.0548715332 0.05474056271 0.05494806034
S15 0.05544686593 0.05462355566 0.05521397583 0.05518117125 0.05482581458 0.05498874297 0.05485290312 0.0550402103
S16 0.04757226825 0.04719906613 0.04732734522 0.04718228875 0.04708074919 0.04717920819 0.04711795702 0.04696075437
S17 0.0510066918 0.05101308249 0.05112979126 0.0511850345 0.05140784028 0.05099161504 0.05146478003 0.05103293237
S18 0.04999867869 0.05028219687 0.05011289268 0.05016648925 0.05014483695 0.05024337859 0.05014763937 0.05030808439
S19 0.05168666771 0.05125280746 0.05112364047 0.05115034017 0.05134966675 0.0512532187 0.05113670654 0.05130758994

Table 20: Results after applying PFPWG operator

Disease Results

D1 [0.5194678133, 0.7224007634]
D2 [0.2114815744, 0.9036659282]

(Continued)
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Table 20 (continued)

Disease Results

D3 [0.227599577, 0.8913426691]
D4 [0.2089763783, 0.9037153385]
D5 [0.2324989425, 0.8878193748]
D6 [0.1809496915, 0.9227676788]
D7 [0.2225946569, 0.8940073968]
D8 [0.242201083, 0.8764918485]

Table 21: Scores of the overall PFN’s

Disease Score

D1 0.373991973
D2 0.1140561733
D3 0.1286549069
D4 0.1134848568
D5 0.132916258
D6 0.09062130094
D7 0.1251495779
D8 0.1452117021

Step 7: Disease D1 is pinpointed again.

We confirm that each approach highlights the same disease based on the patient record provided.

4 Comparative Analysis

In this section, we compare the results of the Pythagorean Fuzzy TOPSIS (PF-TOPSIS), the
Pythagorean Fuzzy Entropy (PF-Entropy), and the PFPWG method. To do this, we took ten different
data sets and applied PF-TOPSIS, PF-Entropy, and the PFPWG techniques. The results obtained
from each technique are represented by drawing bar graphs. In Fig. 2, the results of PF-TOPSIS are
displayed. The eight diseases are shown in different eight colors. The length of each bar shows its value
obtained from the PF-TOPSIS method. In Fig. 3, the results of the PF entropy are displayed. In this
figure, eight diseases are also represented by different colors, and the length of the bar shows the value
of each disease for each data set obtained from PF entropy method. Fig. 4 shows the results of the
PFPWG method.
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Figure 2: PF-TOPSIS Results

Figure 3: PF-Entropy Results

Now we compare these three bar charts for each data set. We can see that the data set
1,2,3,4,5,6,7,8,9, highlighted D1, D2, D1, D4, D8, D6, D1, D2, D1, and D7 diseases, respectively.
We can see that each approach highlights the same disease based on the provided patient’s records,
which testifies the authenticity of our model.
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Figure 4: PFPWG Results

5 Conclusion and Future Work

According to the World Health Organization (WHO), around 400,000 children are diagnosed
with cancer each year and the rate of cure in low and middle-income countries is only 45 percent,
which is highly unsatisfactory. To improve this percentage, WHO has launched a global initiative and
provided appropriate professional guidance and resources. Their goal is to increase the survival rate
up to sixty percent by the end of 2030. To help achieve this goal, we have proposed a novel model that
allows doctors to diagnose the type of childhood cancer early, so that appropriate treatment can be
given at the right time. This ultimately reduces the physical and financial suffering of the patient and
their parents. Our model takes nineteen symptoms as inputs and determines the type of cancer. We
have used Pythagorean fuzzy decision-making techniques for diagnostic purposes. We designed three
algorithms, namely, Pythagorean fuzzy TOPSIS method, Pythagorean fuzzy entropy, and PFPWG.
We have determined their respective time complexities. To test them, we have taken ten data sets and
compared the results of the different approaches. Also, we have set forth a numerical example to make
each of their steps understandable.

There are many other applications where decision-making takes place and our approaches can
provide assistance. Our system is applicable when data is fuzzy and decisions must be made. So, some
future directions of our work are discussed below:

Industrial automation and Industry 4.0: In Industry 4.0, we connect the devices through the
internet to make a network of different things. Then through the proposed approach, the different
manufacturing parts of the machines can be controlled without human intervention. We can use our
proposed model in Industry 4.0 to make intelligent decisions by taking into account all parameters
and making the manufacturing process more productively and efficiently.

Precision agriculture: We need various decision-making systems to automate traditional farming
to increase the yields and reduce the potential risks. With our model, precision farming can be made
more efficient and productive. We can make timely decisions, and automate the decision process.
Through this approach, an irrigation system can be improved, and water wastage could be reduced.
Our proposed approach can be useful for designing a pest control system that helps the farmer to save



2614 CMES, 2023, vol.135, no.3

crops from pests timely. This approach can also be useful to monitor soil pH and other ingredients,
which require for the proper growth of the crops. Through this procedure, farmers can decide the right
amount of fertilizers for the field.

Computer aided diagnosis: These systems help doctors to analyze the medical images and highlight
diseases based on symptoms. The proposed approach can help doctors to early detect the chances of
any disease, which could happen in the future due to the patient’s routine or changes in his body and
enable the doctor to prevent it from spreading more by proper medication or therapies.

Classroom monitoring: The proposed approach could be beneficial for monitoring students’
activities in a large classroom and concluding which student is not attentive in class or how much
students in the class are attentive.
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