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ABSTRACT

The steadily growing traffic load has resulted in lots of bridge collapse events over the past decades, especially
for short-to-medium span bridges. This study investigated probabilistic and dynamic traffic load effects on short-
to-medium span bridges using practical heavy traffic data in China. Mathematical formulations for traffic-bridge
coupled vibration and probabilistic extrapolation were derived. A framework for extrapolating probabilistic and
dynamic traffic load effect was presented to conduct an efficient and accurate extrapolation. An equivalent dynamic
wheel load model was demonstrated to be feasible for short-to-medium span bridges. Numerical studies of two
types of simply-supported bridges were conducted based on site-specific traffic monitoring data. Numerical results
show that the simulated samples and fitting lines follow a curve line in theGumbel distribution coordinate system. It
can be assumed that dynamic traffic load effects follow Gaussiandistribution and the extreme value follows Gumbel
distribution. The equivalent probabilistic amplification factor is smaller than the individual dynamic amplification
factor, whichmight be due to the variability of individual samples. Eurocode 1 is themost conservative specification
on vehicle load models, followed by the BS5400 specification. The D60-2015 specification in China and ASSHTO
specification provide lower conservative traffic load models.
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1 Introduction

In recent decades, the highway freight volume has a significant increase leading by the steady
expansion of transportation industry [1,2]. According to the official data provided by the ministry
of transportation of China, the traffic volume has increased by 10.1% in 2019. Meanwhile, the
current traffic load on bridges may exceed the design load that was estimated based on traffic
data over several decades. Thus, the growing traffic load may evolve into a threat to the structural
safety of existing bridges. In practice, numerous bridges were collapsed due to heavy and dense
traffic loading, especially for short-to-medium span bridges [3]. For instance, Yangmingtan Bridge
collapsed in 2012 in Harbin due to the simultaneous presence of 3 overloaded trucks driving in
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the slow lane [4]. Wuyishan Bridge collapsed in 2011 due to an overloaded truck with total weight
of 80 ton. Faridabad Bridge in India collapsed in 2018. Cook et al. [5] investigated the bridge
collapse event in New York State between 1992 and 2014, and found that 16 of 98 bridge collapse
events were caused by truck overloading. Even though truck overloading is associated with traffic
management department, the objective truck overloading phenomenon should be considered in
the design phase.

Several researchers indicated that the present design vehicle load model was underestimated
compared to practical traffic loads. A study conducted by Han et al. [6] indicated that 15% bridges
had higher traffic load effects compared to the design value. Note that the traffic load mostly
governs the design of short-to-medium span bridges, while truck overloading has a relative low
impact on the safety of long-span bridges. It is acknowledged that shorter span bridges have
more significant dynamic effects of moving vehicle loads. Moreover, a degraded road roughness
condition adds to the severe dynamic vibration on the bridge [7,8]. Therefore, it is critical to
evaluate the dynamic traffic load effects on short-to-medium span bridges using practical traffic
data. The analytical results provide a theoretical basis for a reasonable management scheme of
truck overloading. In addition, the dynamic effect analysis associated with the road roughness
parameters can be treated as a theoretical basis for pavement reconstruction.

Since the traffic is random in nature probabilistic analysis is essential to estimate the char-
acteristic load effect on a bridge. Evaluating vehicle load effects on bridges using probabilistic
extreme probability is one of the research hotspots in the field of bridge engineering [9–11].
The numerical result can be utilized to calibrate the design vehicle load model. In general,
the commonly used probability approach is maximum traffic load evaluation based on extreme
value theory. The traditional analytical procedures are summarized as follows. Firstly, establish
a probabilistic vehicle load model based on the traffic data for the purpose of capturing proba-
bilistic traffic features [12,13]. Secondly, estimate a cumulative distribution function (CDF) using
extreme value extrapolation methods, such as generalized extreme value (GEV) distribution, Pareto
distribution and Rice’s level-crossing model [14]. Finally, the characteristic load effect within a
certain return period can be evaluated based on extreme value theory. The traditional approach
can provide a reasonable extrapolation of traffic load effects. Note that these procedures adopt
several mathematical assumptions, including the interval maximum value, the Gaussian distribu-
tion, and the stationary random process. Therefore, there will be a certain deviation between
the extrapolation and the exact value. An exact solution needs large simulations that cause a
time-consuming problem.

With the development of weigh-in-motion (WIM) technology [15], it is popular to conduct
traffic load effect simulation using site-specific traffic monitoring data. Obrien et al. [16] investi-
gated the traffic flow data of several European countries, and found that the design load is not
conservative compared to actual traffic loads. Lu et al. [17] investigated the probabilistic traffic
load effect on long-span bridges based on traffic monitoring data and the Rice’s level-crossing
theory. Liu et al. [18] compared the maximum traffic load effect on a cable-stayed bridge and
a suspension bridge. Deng et al. [19] evaluated the dynamic traffic load effect on a prestressed
concrete bridge. Yu et al. [20] predicted the maximum load effect considering traffic growth using
a non-stationary Bayesian method. Zhou et al. [21] investigated the reduction factor for multilane
traffic loads on long-span bridges using coincident lanes loads. Ruan et al. [22] developed a site-
specific traffic load model consisting of load form, loading pattern, multi-lane factor and load
value to predict extreme responses of long-span bridges. Kim et al. [23] presented a probabilistic
traffic load model based on the WIM data collected in South Korea. Xia et al. [24] utilized
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long-term structural health monitoring data to extrapolate the traffic load effect on Tsing Ma
Bridge. Lu et al. [25] evaluate the system reliability of a cable-supported bridge under stochastic
traffic load. However, research effect on the combination of dynamic and probabilistic analysis for
short-span bridges is still insufficient.

2 Research Significances

It is a common phenomenon that short-to-medium span bridges were collapsed or signifi-
cantly damaged due to heavy traffic loads. In addition, the current freight traffic volume keeps a
sustained growth tendency, which may evolve into a risk source for existing bridges. Thus, it is an
urgent task to estimate and predict the traffic load effect on existing bridges with consideration of
site-specific traffic loads rather than the design load. In this research area, most studies concentrate
to the probabilistic traffic load effect modeling via static analysis. Several researchers developed
dynamic analysis accounting for stochastic traffic loads. However, the probabilistic dynamic analy-
sis for the bridges in extremely heavy traffic load area is still insufficient. Therefore, it is difficult to
conduct a reasonable prediction of the maximum dynamic traffic load effect in a bridge lifetime.

This study presented a computational framework for extrapolating maximum dynamic traffic
load effect on short-to-medium span bridges. A huge traffic data in the heavy traffic area was
utilized to predict the maximum traffic load effect on short-to-medium span bridges. Two types
of simply supported prestressed concrete bridges were selected to demonstrate the feasibility of
the proposed framework. Parametric studies were conducted to investigate dynamic extrapolation
effect. The numerical results were utilized for calibrating the vehicle load models in several
design specifications.

The novelty of this study is the big traffic data collected in highway bridges in China,
combined with the probabilistic analysis of the dynamic traffic load effects on short span bridges.
Even though several researchers [16] conducted the similar research in European countries and
the US, this study utilized the representative heavy traffic data in China, which included extremely
overloaded trucks. The probabilistic characteristics and dynamic effects are different with the
referred literatures, which can be used as verification for representative design load models. The
proposed computational framework combines the vehicle-bridge coupled vibration system and
the probability modeling of extreme values effectively. In addition, four typical design vehicle
load models were calibrated on the basis of probabilistic simulations of long-term traffic mon-
itoring data. The numerical results can provide a theoretical basis for updating national design
specifications and making a reasonable scheme to control truck overloading.

3 Theoretical Basis for Stochastic Vibration of Traffic-Bridge System

3.1 Traffic-Bridge Coupled Vibration Model
For short-to-medium span bridges, traffic dynamic effects are more significant than that of a

long-span bridge. Thus, the dynamic effect should be considered in the numerical simulation. In
general, the dynamic effect can be considered in a vehicle-bridge coupled vibration system. The
equations of motion of the system can be established based on forces and displacement of the
system, which are written by [26]:

Mvüv+Cvu̇v+Kvuv = Fvg+Fvb (1)

Mbüb+Cbu̇b+Kbub = Fbg+Fbv (2)

where, Mv and Mb represents mass matrix of the vehicle and the bridge, respectively; Fbv and Fvb
represents interaction force between the bridge and the vehicle, respectively; Fbg and Fvg represents
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dead load of the bridges and the vehicle, respectively; uv and ub represents the displacement
vectors of the vehicle and the bridge, respectively; u̇v and u̇b represents vertical velocity of the
vehicle and the bridge, respectively; üv and üb represents vertical acceleration of the vehicle and
the bridge, respectively.

The coupled equations of motion are differential equations with variable coefficients for
parameters include displacements, velocities and accelerations. In general, the equation can be
solved by utilizing a step-by-step integration method with the following procedures [27]. Firstly,
extract the natural frequencies and modes of the bridge from the finite element model. Secondly,
estimate the interaction force between vehicles and the bridge within a small time step �t. Thirdly,
the parameters of the vehicle and the bridge can be estimated in the time step. Finally, all
parameters in each time step can be evaluated in sequence.

The above method can be used to calculate dynamic effects of a bridge under individual
vehicle load. For multiple vehicle loads on the bridge, the estimation of dynamic effects is more
complex. Zhou et al. [28] presented an equivalent dynamic wheel load (EDWL) approach to
simplify the analysis of dynamic traffic load effects on long-span bridges. This approach was
demonstrated with the numerical study of Luling Bridge with a mid-span length of 372 m. The
maximum deviation to the detailed model is about 6.8% for the bridge acceleration. The present
study develops the EDWL approach to the probabilistic analysis of vehicle-bridge interaction
system. In general, the EDWL approach is written as [29]:

EDWLj (t)=
na∑
i=1

(
Ki
vlY

i
vl +Ci

vlẎ
i
vl

)
(3)

Rj (t)=EDWLj (t) /Gj (4)

where, Ki
vl and Ci

vl represents the elastic stiffness and damping of the ith axle, respectively; Yi
vl and

Ẏ i
vl represents vertical displacement and velocity, respectively; na represent the number of axles of

the jth vehicle, Gj represents weight of the jth vehicle, Rj(t) represents the equivalent load of the
jth vehicle.

By combining the equations of motion and the EDWL function, the traffic-bridge coupled
vibration equation can be written as [30]:

Mbüb+Cbu̇b+Kbub = Fbg +Fwheel
eq (5)

{F (t)}wheeleq =
nv∑
j=1

{[
1−Rj (t)

]
Gj ·

n∑
k=1

{
hk

[
xj (t)+αk

[
xj (t)dj (t)

]]}}
(6)

where, xj and dj represent the longitudinal and transverse coordinates of the vehicles center gravity
when the jth vehicle loading on bridge; hk and αk represent kth order vertical bending mode and
transverse bending mode of bridges respectively. Based on this equivalent dynamic axle weight
method, the dynamic response of bridge under the random traffic flow can be solved efficiently.
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In order to improve the computational efficiency, structural mode parameters are added to the
motion equations. Considering the orthogonality of bridge modes, the equation of motion can be
written as [31]:

{�}T [Mb] {�} = 1 (7)

{�}T [Kb] {�} =ω2 (8)

where, � represents the bridge modal shape, ω represents the bridge frequency. Substituting
Eqs. (7) and (8) into Eqs. (1) and (2), the differential equation of the traffic-bridge coupled
vibration system can be written as [32,33]:

[
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] {
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üv

}
+
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] {
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}
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}

(9)

where, I is a unit vector, ξ̈b, ξ̇b and ξb represents modal normal coordinate vector of the bridge,
η represents modal damping coefficient of the bridge.

This equation can be solved by Newmark-β, and then the displacement expression of bridge
can be written as:

ub =�bξb = [�1, �2, . . . , �n]
(
ξ1, ξ2, . . . , ξn

)
(10)

where, n represents modal orders of bridges; �i represent the ith order modal shape vector of the
bridge, and ζi represent the normal coordinate of the ith order mode of the bridge.

3.2 Probabilistic Modeling of Extreme Values
In general, the vehicle load can be regarded as a stationary stochastic process according to the

design specification and many research results [34,35]. The commonly used theory is the general
extreme value distribution. According to the general extreme value theory, the extreme value of
traffic load effects can be approximated to the three types of distribution functions [36]:

F (x)= exp {− exp [(x− b) /a]} , −∞≤ x≤∞; a, b> 0 (11)

F (x)=

⎧⎪⎪⎨
⎪⎪⎩
0, x≤ b

; a, b> 0

exp {− exp [(x− b) /a]}−α , x> b

(12)

F (x)=

⎧⎪⎨
⎪⎩
exp {− [(x− b) /a]}α , x< b

; a, b, α > 0

1 x≥ b

(13)

where, a, b and α are parameters for position, scale and shape of the function. The three types
of distributions are so-called Gumbel distribution, Frechet distribution and Weibull distribution.
By integrating the three types of distributions, a function for generalized extreme value (GEV)
distribution can be written as:

G (x)= exp
{
− [1+ (x− a) /b]−1/γ

}
I (x) (14)
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where, γ is the shape parameters for the GEV function, I(x) is the indicative function. If
γ = 0, the GEV function can be simplified as Gumbel function. If γ > 0, the GEV function
can be simplified as Frechet function. If γ < 0, the GEV function can be simplified as the
Weibull function.

For the topic of traffic load effect, the commonly used method is to divide the simulated
data into groups, Therefore, according to probability function of the binomial distribution, the
probability FT (t) of the extreme value of vehicle load effects can be written as [37]:

FT (x)= [F (x)]m (15)

where, F(x) represents probability distribution of vehicle load effect extreme value during a return
period; m represents the number of groups corresponding to F(x).

In the design reference period, a characteristic value Qk can be calculated based on above
probability model. The equation is written as:

FT (Qk)=P (16)

where, P represents a probability assurance of Qk during time period T . In other words, the
probability of vehicle load effect exceeding Qk in this time period is 1−P. According to design
code in china, probability promise rate of design load should be 95%, and the return period is
approximately 1950 years.

4 A Framework for Extrapolating Probabilistic and Dynamic Traffic Load Effects on Bridges

In general, the traffic load effect on a bridge can be evaluated based on static influence
lines of the bridge extracted from the finite element model. However, dynamic effects in the
vehicle–bridge coupled system have no concern with the static influence lines. For the vehicle-
bridge interaction analysis, there is a time consuming process to evaluate a large number of
block maximum values for probabilistic modelling. Therefore, there should be a balance between
the large number of dynamic simulations and the accurate probabilistic modeling. This study
presented a comprehensive computational framework for a reasonable extrapolation of dynamic
and probabilistic traffic load effects.

By combining the theories of traffic-bridge coupled vibration and probabilistic extreme theory,
the maximum probabilistic and dynamic traffic load effect on the bridge can be evaluated. In
order to improve the computational efficiency, the static influence line was utilized for the purpose
of identifying the critical loading scenarios, which could be subsequently utilized for the dynamic
analysis. A flow chart of the computational framework is shown in Fig. 1.

As shown in Fig. 1, the key procedures of the analytical framework are summarized as fol-
lows. Firstly, conduct the probabilistic modelling of traffic parameters using the traffic monitoring
data and assumed probability functions, and then select the critical daily random traffic samples
based on bridge influence lines. Secondly, extract the mode shapes and frequencies based on the
3D finite element model of the bridge. Thirdly, conduct traffic-bridge couple vibration analysis to
evaluate the maximum dynamic effect under critical load conditions. Fourthly, the extreme value
samples are fitted based on the generalized extreme value (GEV) distribution function. Finally,
the standard value in a return period can be extrapolated, and the probability assurance level of
the design vehicle model can be verified.

Compared with the traditional computational approach, the proposed computational frame-
work has the following benefits. Firstly, the equivalent dynamic approach can provide efficient
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and considerable accurate dynamic solution for the traffic load effect on the bridge. Secondly, the
stochastic traffic load model derived from the practical traffic monitoring data can provide real-
time probabilistic parameters for the site-specific bridge. Finally, the traffic change due to traffic
growth or overloading control can be reflected by the traffic monitoring data, where the change
tendency of the maximum traffic load effect can be reflected. However, it is important to note
that the accuracy of the probabilistic extrapolation mostly depends on the number of simulations.
Meanwhile, more input traffic data will lead to a more realistic extrapolation.

Equivalent dyanmic approach

3d Finite element model of 
bridges

Probabilistic modelling of 
traffic parameters

Extracting mode shapes and 
frequencies

Critical stochastic traffic 
flow modelling

Traffic-bridge interaction analysis

Gaussian distribution and stationarity

Probabilistic analysis 

Fitting to top maximum data 

GEV function

Probabilistic extrapolation

Return period

Traffic monitoring data on the bridge

Figure 1: Flow chart of the proposed framework for evaluating maximum probabilistic and
dynamic traffic load effect

5 Numerical Study

5.1 Traffic Load Modeling Based on Measured Data
The WIM data collected from a highway bridge in China was selected for probabilistic

modeling of traffic loads. Illustration of the WIM system is shown in Fig. 2, and more detailed
information can be found in Lu et al. [30]. The traffic parameters utilized in the present study are
vehicle weights, axle weights, driving lanes, and vehicle spacing. The proportion of trucks and the
ratio of truck overloading are 12% and 21%, respectively.

(a) (b)
1

2

3

4

SensorsTo Yibin

To Luzhou

(c)

Road surface Notch for sensors

Sensors9.
5

Figure 2: Weigh-in-motion system of a highway bridge: (a) Site photos; (b) Plane view;
(c) Elevation view (unit: mm)
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All vehicles were classified into 6 types based on the vehicle configurations and axle charac-
teristics. The proportions of all type of vehicles are shown in Tab. 1. The occupancy of different
vehicle types and their distribution in each lane are shown in Fig. 3.

Table 1: Classification of vehicle types and corresponding proportions

Vehicle type Vehicle configuration Illustration Proportion

Slow lane (%) Fast lane (%)

V1 Light cars 36.6 63.4

V2 2-axle trucks 84.5 15.5

V3 3-axle trucks 91.1 8.9

V4 4-axle trucks 96.5 3.5

V5 5-axle trucks 92.6 7.4

V6 6-axle trucks 98.1 1.9

(a) (b)

V1 35.64%

V2 26.12%

V3 8.58%

V4 10.24%

V5 4.93%

V6 15.49%
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0
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0.8

1

Vehicle types
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op
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tio

n

Figure 3: Proportion of vehicles (a) vehicle types; (b) driving lanes

As shown in Fig. 3a, the light cars (V1) have the highest proportion of 35.64%, and two-axle
truck (V2) and six-axle trucks (V6) have higher proportion compared with other types of trucks.
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As observed in Fig. 3b, the light cars have a high probability driving in the fast lane, while heavy
trucks mostly driving in the slow lane. This phenomenon is in accordance with the practical rule.

In order to study the probability distribution of axle weights and total weights of heavy
trucks, the proportion of axle weights was assigned as a parameter. Fig. 4a plots the fitted
probability distribution model of V6 trucks, Fig. 4b shows the relation between the GVW and
the axle weight. It is observed that the GVW follows a multimodal distribution, where the truck
overloading effect was captured by the probabilistic model. In addition, the relationship between
the axle weight and the GVW mostly follows a linear function.
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Figure 4: Probability distribution of V6 trucks: (a) PDF of GVWs; (b) relation between the GVW
and the axle weight

Based on estimated probability distribution models, the stochastic traffic flow load model was
established using Monte Carlo simulation. Fig. 5 plots the simulated dense traffic load model in
60 min. The stochastic traffic load model contains the parameters of vehicle types, GVW, driving
lanes and vehicle spacing.
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Figure 5: Stochastic load model for dense traffic flow

5.2 Simulation of Traffic Load Effects
Two typical simply-supported T-girder bridges with span-length of 20 and 40 m were selected

as prototypes for the numerical simulation. The dimensions of the bridges are shown in Fig. 6.
The transverse direction of bridge consists of five T-girders with height Hb = 1.7 and 2.5 m for
the short-span and medium-span bridges, respectively. The design traffic loads on the bridge were
the highway traffic loads in the design specifications [38–41]. The road roughness conditions in the
present study are considered as “good” and “poor” shown in Fig. 7 to investigate the dynamic
impact of road conditions on the bridge.



354 CMES, 2021, vol.127, no.1

(a)

12

1.25 3.75 3.75 2.75 0.5

Fast lane Slow lane
Emergency

lane

2.4 2.4 2.4 2.4

H
b

1 2 3 4 5

0.52

5¦ µ25 

7¦µ10 

0.3 1.8 0.3

2¦ µ12 

8¦ µ12 

Wet joint

7¦ µ12 

2.0
H

b
56.0-

54.0

(b)

Figure 6: Dimensions of cross-sections of a girder bridge: (a) All girders; (b) A detailed girder
(unit: m)
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Figure 7: Two types of road roughness conditions

The simulated stochastic load model for dense traffic flow shown in Fig. 5 was utilized to
estimate the maximum traffic load effect. The simulated time-histories of the bending moments
under the two-lane dense traffic load in 12 h for the two types of bridges are shown in Fig. 8. It
is observed that the daily maxima for the shorter span bridge and the longer span bridge are 641
and 2917 kN.m, respectively.
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Figure 8: Static time histories of the bending moment in 2 h for: (a) The 20 m girder; (b) The
40 m girder

Since the EDWL approach was primarily developed by Chen et al. [29] for long-span bridges,
this study should demonstrate the feasibility of applying this approach for short-span bridges.
In this regard, the bridge girder with span length of 20 m was selected for the comparison
study between the EDWL approach and the commotional vehicle-bridge fully coupled vibration
approach. In order to show the deviation more conservatively, the poor RRC and a constant
speed V = 20 m/s were selected. Fig. 9 plots the bending moment histories computed via the two
types of approaches. It is observed that the maximum variation rate for the EDWL approach is
3.7% compared with the fully coupled VBI approach. Therefore, it is feasible to utilize the EDWL
approach for dynamic analysis of short-span bridges.
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Figure 9: Comparison of bending moments computed via the EDWL and VBI approaches

Subsequently, consider the critical loading vehicles passing on the bridge with a constant speed
V = 20 m/s under the condition of RRC=Good and RRC= Poor, respectively. Fig. 10 plots the
time-histories of bending moments of the mid-span points of the two bridges, respectively. The
maximum values and dynamic amplification factors were summarized in Tab. 2. It is observed
that the dynamic amplification factor is associated with the bridge span length and the RRC. The
maximum dynamic amplification factor is observed for the bridge with a span-length of 20 m
under the poor RRC.



356 CMES, 2021, vol.127, no.1

(a) (b)
0 0.5 1 1.5 2 2.5 3

0

200

400

600

800

1000

Time (s)

L = 20 m               
v = 20 (m/s)           

Static
RRC = Good
RRC = Poor

0 1 2 3 4
0

1000

2000

3000

4000

Time (s)

L = 40 m                
v = 20 (m/s)            

Static
RRC = Good
RRC = Poor

B
en

di
ng

 m
om

en
t (

kN
.m

)

B
en

di
ng

 m
om

en
t (

kN
.m

)

Figure 10: Time-histories of the bending moment of the simply-supported T-girder bridge under
the 6-alxe vehicle load: (a) L= 20 m; (b) L= 40 m

Table 2: Summary of the simulated characteristic values

Span length (m) Maximum bending moment (kN.m) Dynamic amplification factor

Static RRC= good RRC= poor RRC= good RRC= poor

L= 20 641 715 905 1.11 1.41
L= 40 2917 3202 3701 1.09 1.26

Based on the above analysis, it can be inferred that a bridge with a shorter span-length and a
worse RRC has a larger dynamic amplification factor. This conclusion is in accordance with the
theoretical basis that a bridge with a shorter span-length has a higher stiffness, which leads to
stronger vibrations. Therefore, the influence of dynamic effects on the probabilistic extrapolation
of traffic load effects should be considered in the bridge with a shorter span length.

5.3 Probabilistic Extrapolation
For the probabilistic evaluation, 10-year samples (N = 3650 days) were utilized to fit the GEV

function as shown in Fig. 11. The corresponding Gumbel cumulative distribution function value
is 12.43 for the return period of 1000 years. It is observed that all of the simulated samples
and fitting lines are close to a curve line, which mostly results in the lack of samples. Since the
traffic load effects follow Gaussian distribution, it can be assumed that the extreme value follows
Gumbel distribution.

As shown in Fig. 11, the static and dynamic extrapolations are 902 and 969 kN.m for the
bending moment of the 20 m girder, respectively. The static and dynamic extrapolations are 4070
and 4313 kN.m for the bending moment of the 40 m girder, respectively. The corresponding
equivalent probabilistic amplification factors are 1.07 and 1.05, respectively. It is an interesting
phenomenon that the probabilistic dynamic factor is less than the individual dynamic factor. This
might due to the variability of individual samples.

Based on the established probability models, this study examined and compared the traffic
load effect accounting for different national design specifications, such as AASHTO, Eurocode 1,
BS5400, and D60-2015 in China. The referenced bending moment was considered as a return
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period of 1000 years and the RRC was considered as good. Tab. 3 summaries the standard values
and the corresponding return period of the estimated values and design values.
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Figure 11: Probabilistic extrapolation on Gumbel distribution: (a) The 20 m girder; (b) The
40 m girder

Table 3: Standard value of the bending moment of the simply supported T-girder bridge for varity
design vehicle loads

Items Standard values (kN.m) Estimated return period (years)

Span length L= 20 m L= 40 m L= 20 m L= 40 m
Estimated values
accounting for Rt = 1000
years and RRC= good

969 4070 1000 1000

AASHTO 934 3454 909 645
Eurocode 1 1781 6500 Infinite Infinite
BS5400 1284 5806 5.45× 105 Infinite
D60-2015 966 4214 980 1354

It is observed that Eurocode 1 has the highest standard value compared to the other design
specifications and the actual value. In addition, the return period for the Eurocode 1 value is
infinite, which can be treated as the most conservative design specification. Subsequently, the
BS5400 value is much higher than the estimated value, ASSHTO value and D60-2015 value. The
return period for the BS5400 value is approximately infinite. The AASHTO and the D60-2015
have the lowest values, which are close to the estimated values. For the D60-2015 code in China,
the standard value for longer span bridges is conservative than short span bridges.

6 Conclusions

This study presented an efficient computational framework combining vehicle-bridge inter-
action analysis and probabilistic extrapolation, which provided reasonable characteristic dynamic
traffic load effects on short-to-medium span bridges. A stochastic traffic load model can provide
a reliable connection for transmitting probability distributions from site-specific traffic loads to
the dynamic load effects on the bridge. Case studies of two simply supported bridges were
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conducted taking into account traffic monitoring data. Comparison of deterministic and proba-
bilistic dynamic amplification factors shows advantages of the proposed computational framework.
Based on the site-specific traffic data, the estimated bending moments of the two bridges were
utilized to calibrate the characteristic values in several design specifications. The conclusions are
summarized as follows:

(1) The stochastic traffic flow model contains the individual vehicle parameters and the
probability characteristics estimated from the actual traffic data. In addition, the simulated traffic
samples is appropriate for the vehicle-bridge interaction analysis in time domain, where the
interspace between the deterministic simulation and probability extrapolation.

(2) The simulated samples follow a curve line in the Gumbel distribution coordinate system.
With increase of the number of samples, the extreme value will follow a straight line. This
phenomenon demonstrates that the dynamic traffic load effects follow Gaussian distribution, and
the extreme values follow Gumbel distribution.

(3) The dynamic amplification factors for the 20 and 40 m girders with a good road roughness
condition are 1.11 and 1.09, respectively. However, the equivalent probabilistic amplification fac-
tors are 1.07 and 1.05, respectively. It is an interesting phenomenon that the probabilistic dynamic
factor is less than the individual dynamic factor, which might due to the variability of individual
samples. In other words, equivalent probabilistic amplification factor contains a large number
of simulations, while the individual dynamic amplification factor is just one of the data base.
Therefore, the probabilistic amplification factor is more reliable.

(4) The vehicle load models in representative national design codes have a great deviation
corresponding to the practical traffic data. The design vehicle load model in Eurocode 1 is the
most conservative one, followed by the BS5400 specification. The D60-2015 specification in China
provides an approximated load model for the practical traffic data. The traffic load model in
ASSHTO specification provides the lowest traffic load value that is less conservative for the traffic
load in China.
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