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ABSTRACT

A modified exponentially weighted moving average (EWMA) scheme is one of the quality control charts such
that this control chart can quickly detect a small shift. The average run length (ARL) is frequently used for the
performance evaluation on control charts. This paper proposes the explicit formula for evaluating the average run
length on a two-sidedmodified exponentiallyweightedmoving average chart under the observations of a first-order
autoregressive process, referred to asAR(1) process, with an exponential white noise. The performance comparison
of the explicit formula and the numerical integral technique is carried out using the absolute relative change for
checking the correct formula and the CPU time for testing speed of calculation. The results show that the ARL of
the explicit formula and the numerical integral equation method are hardly different, but this explicit formula is
much faster for calculating the ARL and offered accurate values. Furthermore, the cumulative sum, the classical
EWMA and themodified EWMA control charts are compared and the results show that the latter is better for small
and intermediate shift sizes. In addition, the explicit formula is successfully applied to real-world data in the health
field as COVID-19 data in Thailand and Singapore.
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1 Introduction

Statistical analysis is important for confirming consistency and has received interest from
many business areas requiring increased reliability. In the manufacturing industry, statistical pro-
cess control is used extensively and a control chart is one of the quality control tools and has
been applied in many fields such as finance [1], health [2] and medicine [3]. In 1924, Shewhart
created the first control chart which can detect a large-sized process shift quickly [4]. Next, the
exponentially weighted moving average (EWMA) chart [5] and the cumulative sum (CUSUM)
chart [6] were developed and found to be faster for small shift detection. In addition, other new
control charts have been developed, one of which is the modified EWMA control chart. Patel
et al. [7] expanded the modified EWMA control chart from a fusion of the characteristics of
the Shewhart and EWMA control charts that could detect a small size shift quickly and was
more effective for autocorrelated data. The modified EWMA statistic is based on the classical
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EWMA statistic by using past observations with additional consideration of changes in the recent
past for pairs of observations in the process. Next, Khan et al. [8] increased the performance
of the modified EWMA scheme by maintaining a constant r in the last term of the modified
EWMA statistic.

The average run length (ARL) [9] is the average number of in-control observations before
an out-of-control signal occurs and is classified based on two stages: ARL at the initial mean
(ARL0) and ARL when the process mean has shifted (ARL1). It is now a popular performance
measure for a control chart and has been frequently used for research evaluation with many
methods, such as Monte Carlo simulation, a Markov Chain approach, a Martingale approach, a
numerical integral equation (NIE), and an explicit formula. All of these methods can be used to
approximate the ARL but only the last one can be calculated using the least time and obtained
the accuracy ARL. For research examples, Flury et al. [10] simulated the ARL to evaluate the
multivariate EWMA control chart performance with highly asymmetric gamma distributions. The
Markov Chain approach was used by Chananet et al. [11] for the ARL evaluation of EWMA
and CUSUM control charts based on the zero-inflated negative binomial (ZINB) model. The
Martingale approach was predicated by Sukparungsee [12] to approximate the ARL with optimal
parameters of one and two-sided EWMA control chart.

There are many examples in the literature of using the explicit formula and the NIE method
for the ARL on control charts. First, Suriyakat et al. [13] presented an explicit formula and a
numerical method to solve the ARL on an EWMA control chart for a first-order autoregressive
(AR(1)) process with an exponential white noise. Meanwhile, Busaba et al. [14] proposed numerical
approximations of ARL on a CUSUM chart for an AR(1) model with exponential white noise.
Next, Pecharat et al. [15] derived an explicit formula and a numerical integration scheme for
the ARL on a CUSUM control chart for a moving average process of order q (MA(q)) with
an exponential white noise. Later, Peerajit et al. [16] solved the NIEs for the ARL for a long
memory process with non-seasonal and seasonal autoregressive fractionally integrated moving
average (ARFIMA) models on a CUSUM control chart. After that, Sukparungsee et al. [17]
analyzed explicit formulas of the ARL for an EWMA control chart using an autoregressive model.
Moreover, Sunthornwat et al. [18] reported an explicit formula and a numerical technique to find
the ARL on an EWMA control chart for a long memory ARFIMA process, and also presented
the evaluation of ARL of an EWMA control chart for a long memory ARFIMA process with
optimal parameters [19]. Recently, Peerajit et al. [20] introduced the ARL evaluation for CUSUM
chart on a seasonal autoregressive fractionally integrated moving average (SARFIMA) process
with an exponential white noise by using explicit analytical solutions.

Autoregressive models are often used on control charts in the recent literature [21–23]. The
order of an autoregressive model is the number of immediate previous values used to predict
the present value. A first-order autoregressive model considered in this research is an appropriate
process for numerous data sources in real life such as environmental [24], physical [25] and
industrial [26] data. Moreover, the modified EWMA control chart can be effectively used with an
autocorrelated data.

In this paper, we present the explicit formula to evaluate the ARL on a two-sided modified
EWMA control chart for the AR(1) process with an exponential white noise, which is the error
term with an exponential distribution that has been studied recently [27–29]. In the next section,
the AR(1) process features are shown and applied to a modified EWMA scheme. Following
this, the ARL is calculated using the explicit formula and the NIE method, and after that, the
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performance of the schemes to detect shifts between the CUSUM, the classical EWMA and the
modified EWMA control charts with simulated and real-world data are reported and compared.

2 Control Chart and Process

2.1 Classical and Modified EWMA Control Charts
The modified exponentially weighted moving average (EWMA) control chart introduced by

Patel et al. [7] and Khan et al. [8] were adjustments of the classical EWMA scheme. Let {Xt} for
t= 1, 2, 3, . . . be a sequence of random variables on the AR(1) process with mean μ and variance
σ 2, and λ is an exponential smoothing parameter, where 0< λ < 1. The modified EWMA statistic
with adjusted constant r is expressed as:

Zt = (1−λ)Zt−1+λXt+ r (Xt−Xt−1) ; t= 1, 2, 3, . . . (1)

and the asymptotic variance of Zt is

(
λ+ 2λr+ 2r2

2−λ

)
σ 2. From Eq. (1), we can show that

(1) If r= 0, the classical EWMA statistic coincides with Zt = (1−λ)Zt−1+λXt.
(2) If r = 1, the primal modified EWMA statistic coincides with Zt = (1−λ)Zt−1 + λXt +

(Xt−Xt−1).

The upper and lower control limits of the classical EWMA control chart are:

μ±Lσ

√
λ

2−λ
(2)

and the bound control limits of the modified EWMA control chart are:

μ±Lmσ

√
λ+ 2λr+ 2r2

2−λ
(3)

where μ is the process mean, σ is the process standard deviation and L and Lm are suitable
control width limits.

2.2 CUSUM Control Chart
The cumulative sum (CUSUM) chart has been widely used to detect small shifts similar to

the EWMA chart on the control process and was initially proposed by Page [6]. Let {Xt} for
t= 1, 2, 3, . . . be a sequence of random variables on the AR(1) process with mean μ and variance
σ 2. The upper CUSUM statistic can be expressed by:

Zt =max {0,Zt−1+Xt− q} ; t= 1, 2, 3, . . . (4)

where q is usually called a reference value or a constant of CUSUM chart, Z0 = u is an initial
value with u ∈ [0,b] and b is an upper control limit (UCL).

2.3 Modified EWMA Chart for the AR(1) Process
The equation of observations for the AR(1) process in the case of an exponential white noise

is defined as:

Xt = η+φXt−1+ εt (5)
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where Xt (t= 1, 2, 3, . . .) is a sequence of random variables, η is a suitable constant, φ is an autore-
gressive coefficient (|φ|< 1), and εt denotes white noise sequences of the exponential distribution
(εt ∼Exp (β)).

The modified EWMA statistic under the upper bound assumption for the AR(1) process
substituted from Eq. (5) into Eq. (1) can be arranged by recursion:

Zt= (1−λ)Zt−1+λXt+ r (Xt−Xt−1)

Zt= (1−λ)Zt−1+λ (η+φXt−1+ εt)+ r (η+φXt−1+ εt−Xt−1)

Zt= (1−λ)Zt−1+ (λφ + rφ − r)Xt−1+ (r+λ) εt+ (r+λ) η (6)

where Z0 = u is the initial value. Therefore,

Zt= (1−λ)u+ (λφ + rφ − r)Xt−1+ (r+λ) εt+ (r+λ) η.

The corresponding stopping time for detecting an out-of-control process on a two-sided
modified EWMA control chart can be written as:

τa,b= inf {t> 0; Zt < a or Zt > b} , a≤ u≤ b (7)

where a is the lower control limit and b is the upper control limit. If Zt is in an in-control process
and substituted with the term of εt, then

a≤Zt ≤ b

a≤ (1−λ)u+ (λφ + rφ − r)Xt−1+ (r+λ) εt+ (r+λ) η ≤ b

a− (1−λ)u− (λφ + rφ − r)Xt−1

(r+λ)
− η ≤ εt ≤ b− (1−λ)u− (λφ + rφ − r)Xt−1

(r+λ)
− η. (8)

The ARL of the modified EWMA control chart with the AR(1) model is given by:

ARL=Eθ

(
τa,b
)

(9)

where θ is the change-point time, Eθ (·) is the expectation under the assumption that the change-
point occurs at time θ .

3 Integral Equation Method for Solving ARL

For analytical solutions, the ARL on the modified EWMA control chart with the AR(1)
model is developed under the condition of a unique integral equation. L(u) is defined for an initial
ARL and L (u) = E∞

(
τa,b
)
. In accordance with the method of Champ et al. [30], L(u) can be

found as:

L (u)= 1+

b−(1−λ)u−(λφ+rφ−r)Xt−1
(r+λ) −η∫

a−(1−λ)u−(λφ+rφ−r)Xt−1
(r+λ)

−η

L [(1−λ)u+ (λφ + rφ − r)Xt−1+ (r+λ) y+ (r+λ) η] f (y) dy.

If k = (1−λ)u+ (λφ + rφ − r)Xt−1 + (r+λ) y+ (r+λ)η is defined for changing the variable
of integration, then L(u) is transformed as:

L (u)= 1+ 1
r+λ

∫ b

a
L (k) f

(
k− (1−λ)u− (λφ + rφ − r)Xt−1

(r+λ)
− η

)
dk. (10)
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Since f (y)= 1
β
e−

y
β ; y≥ 0, then

L (u)= 1+ e
(1−λ)u
β(r+λ) · e

(λφ+rφ−r)Xt−1
β(r+λ) · e η

β

β (r+λ)

∫ b

a
L (k) · e −k

β(r+λ) dk. (11)

From Eq. (11), the existence and uniqueness of the solutions for the integral equation are
proved by the mathematical theory. The integral equation for solving the ARL on the modified
EWMA chart with the AR(1) process is proved that can be existed and has a unique solution by
using Banach’s fixed point theory [31].

Theorem 1: Let X be a complete metric space (V ,‖·‖) . If 
 is a contraction mapping whereby

 : X →X , then 
 has a unique fixed point x.

Theorem 2: Let X be a complete metric space (V ,‖·‖). 
 : X → X is a contraction mapping
if L is any vector in X and 
 has a Lipschitz constant c ∈ [0, 1) such that L= lim

n→∞
(Ln) and

∥∥
 (Lg)−
(Lh)
∥∥≤ c

∥∥Lg−Lh
∥∥ for all Lg, Lh ∈X . (12)

Proof: For a first part, let 
 be a contraction mapping in the complete metric space (V ,‖·‖)
when L0 ∈ V , and define a sequence {Ln}n∈N given by Ln+1 = 
(Ln) for n ≥ 0. Show that
L= lim

n→∞
(Ln) such that {Ln}n∈N is supposed to be Cauchy sequence, so

‖Ln+1−Ln‖ = ‖
(Ln)−
(Ln−1)‖ ≤ c‖Ln−Ln−1‖ ≤ cn ‖L1−L0‖
where ‖L1−L0‖ is a finite number. After that, using this solution and the triangle inequality for
all m> n≥N can be solved as:

‖Ln+m−Ln‖ ≤
m−1∑
i=0

cn+i ‖L1−L0‖ ≤ cn

1− c
‖L1−L0‖< ε,

where ε > 0 and c∈ [0, 1). Therefore, the sequence {Ln}n∈N is a Cauchy such that:


(L)=

(
lim
n→∞Ln

)
= lim

n→∞
(Ln)= lim
n→∞Ln+1 =L.

Thus, L is called a fixed point of 
.

Next part has to show that this fixed point is unique. Given Lg, Lh ∈V in the complete metric
space (V ,‖·‖) for all u ∈ [a,b], then Eqs. (11) and (12) are considered as:∥∥
 (Lg)−
(Lh)

∥∥∞ = sup
u∈[a,b]

∣∣Lg (u)−Lh (u)
∣∣

∥∥
 (Lg)−
(Lh)
∥∥∞ ≤ sup

u∈[a,b]

⎧⎨
⎩∥∥Lg−Lh

∥∥∞ e
(1−λ)u
β(r+λ) · e

(λφ+rφ−r)Xt−1
β(r+λ) · e η

β

β (r+λ)

∣∣∣∣∣
∫ b

a
e

−k
β(r+λ) dk

∣∣∣∣∣
⎫⎬
⎭

∥∥
 (Lg)−
(Lh)
∥∥∞ = sup

u∈[a,b]

{
e

(1−λ)b
β(r+λ) · e

(λφ+rφ−r)Xt−1
β(r+λ) · e η

β

(
e

−a
β(r+λ) − e

−b
β(r+λ)

)}∥∥Lg−Lh
∥∥∞

∥∥
 (Lg)−
(Lh)
∥∥∞ ≤ c

∥∥Lg−Lh
∥∥∞ .
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Hence,
∥∥
 (Lg)−
(Lh)

∥∥∞ ≤ c
∥∥Lg−Lh

∥∥∞, where positive constant c ∈ [0, 1) and 
 is the
contraction mapping on a complete metric space (V ,‖·‖). Therefore, the integral equation for
solving of ARL on the modified EWMA chart with the AR(1) process has a unique solution.

4 Explicit Formula for ARL

The explicit analytical solutions of the ARL on the modified EWMA control chart with the
AR(1) model constructed after checking for unique solutions are:

L (u)= 1−
λe

(1−λ)u
β(r+λ)

(
e

−b
β(r+λ) − e

−a
β(r+λ)

)
λe−

(λφ+rφ−r)Xt−1+(r+λ)η

β(r+λ) + e
−λb

β(r+λ) − e
−λa

β(r+λ)

. (13)

Proof: In the first step, the solution of Eq. (11) as: L (u) = 1 + e
(1−λ)u
β(r+λ) · e

(λφ+rφ−r)Xt−1
β(r+λ) · e η

β

β (r+λ)

b∫
a
L (k) · e −k

β(r+λ) dk is determined as: D=
b∫
a
L (k) · e −k

β(r+λ) dk which is a constant and C (u)= e
(1−λ)u
β(r+λ) ·

e
(λφ+rφ−r)Xt−1

β(r+λ) · e η
β ; a≤ u≤ b such that it can be rewritten as:

L (u)= 1+ C (u)
β (r+λ)

·D. (14)

Consider D and take turns L(k) with Eq. (14), then

D=
∫ b

a
L (k) · e −k

β(r+λ) dk

D=
∫ b

a

(
1+ C (k)

β (r+λ)
·D
)
e

−k
β(r+λ) dk

D=
∫ b

a
e

−k
β(r+λ) dk+

∫ b

a

C (k)
β (r+λ)

·D · e −k
β(r+λ) dk

D=−β (r+λ)

[
e

−b
β(r+λ) − e

−a
β(r+λ)

]
− D

λ
· e

(λφ+rφ−r)Xt−1
β(r+λ) · e η

β

[
e

−λb
β(r+λ) − e

−λa
β(r+λ)

]

D=
−β (r+λ)

[
e

−b
β(r+λ) − e

−a
β(r+λ)

]
1+ 1

λ
· e

(λφ+rφ−r)Xt−1
β(r+λ) · e η

β

[
e

−λb
β(r+λ) − e

−λa
β(r+λ)

] . (15)

Finally, by substituting constant D from Eq. (15) into Eq. (14), then L(u) can be found:

L (u)= 1+ C (u)
β (r+λ)

·D

L (u)= 1+ e
(1−λ)u
β(r+λ) · e

(λφ+rφ−r)Xt−1
β(r+λ) · e η

β

β (r+λ)

⎛
⎜⎝ −β (r+λ)

[
e

−b
β(r+λ) − e

−a
β(r+λ)

]
1+ 1

λ
· e

(λφ+rφ−r)Xt−1
β(r+λ) · e η

β

[
e

−λb
β(r+λ) − e

−λa
β(r+λ)

]
⎞
⎟⎠
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L (u)= 1−
λe

(1−λ)u
β(r+λ) · e

(λφ+rφ−r)Xt−1
β(r+λ) · e η

β

[
e

−b
β(r+λ) − e

−a
β(r+λ)

]
λ+ e

(λφ+rφ−r)Xt−1
β(r+λ) · e η

β

[
e

−λb
β(r+λ) − e

−λa
β(r+λ)

]

L (u)= 1−
λe

(1−λ)u
β(r+λ)

[
e

−b
β(r+λ) − e

−a
β(r+λ)

]
λe−

(λφ+rφ−r)Xt−1
β(r+λ) · e− η

β +
[
e

−λb
β(r+λ) − e

−λa
β(r+λ)

]

L (u)= 1−
λe

(1−λ)u
β(r+λ)

(
e

−b
β(r+λ) − e

−a
β(r+λ)

)
λe−

(λφ+rφ−r)Xt−1+(r+λ)η

β(r+λ) + e
−λb

β(r+λ) − e
−λa

β(r+λ)

.

Therefore, the solution to Eq. (13) is obtained.

For an in-control process, the exponential parameter is set to β = β0 and the explicit formula
with β0 called ARL0 can be written as:

ARL0 = 1−
λe

(1−λ)u
β0(r+λ)

(
e

−b
β0(r+λ) − e

−a
β0(r+λ)

)

λe
− (λφ+rφ−r)Xt−1+(r+λ)η

β0(r+λ) + e
−λb

β0(r+λ) − e
−λa

β0(r+λ)

. (16)

On the other hand, the exponential parameter for an out-of-control process is defined as
β1 = (1+ δ)β0, where β1 > β0 and δ is the shift size such that the explicit formula of β1 can be
described as:

ARL1 = 1−
λe

(1−λ)u
β1(r+λ)

(
e

−b
β1(r+λ) − e

−a
β1(r+λ)

)

λe
− (λφ+rφ−r)Xt−1+(r+λ)η

β1(r+λ) + e
−λb

β1(r+λ) − e
−λa

β1(r+λ)

. (17)

5 Numerical Method for Solving the Integral Equation

The NIE method is used to solve the ARL for the AR(1) process of the two-sided modified
EWMA control chart in Eq. (10). The ARL solution or LNIE(u) is approximated with the m linear
equation systems over the interval [a,b] by using the composite midpoint quadrature rule [32]. This
NIE method is proposed for the two-sided modified EWMA control chart by using the length of

m equal divided intervals wj = b− a
m

and the middle point of the jth interval xj =
(
j− 1

2

)
wj + a.

Therefore, the ARL solution of the NIE method can be rewritten as:

LNIE (u)≈ 1+ 1
r+λ

m∑
j=1

wjL
(
xj
)
f
(
xj − (1−λ)u− (λφ + rφ − r)Xt−1

(r+λ)
− η

)
. (18)
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6 Comparison of the ARL Results

In this section, the performances of the explicit formula and the NIE method are compared
by using the ARL solutions such that the NIE method determines the number of division points
m = 1,000. ARL0 of 370 is used for the experiments with the classical and modified EWMA
control charts and the AR(1) process; a lower ARL value signifies better effective detection. For
the in-control process, the initial parameter values β0 = 1, u= 1, X0 = 1 as this process mean are
determined. In addition, the process mean is tested with shift sizes (δ) of 0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.08, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.80 and 1.00. The optimization procedure in
Fig. 1 can be summarized as follows:

Step 1: Specify λ, φ, η, r and ARL0.

Step 2: Determine the initial values of the process mean on an exponential distribution as:
β0, u, X0.

Step 3: Compute b when a is known by using Eq. (13) for the explicit formula or Eq. (18)
for the NIE method.

Figure 1: The summarized processing diagram
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Step 4: Compute ARL1 from the b solution in Step 3 by shifting mean (δ) where
β1 = (1+ δ)β0.

The efficiency comparison of the ARL between the explicit formula and the NIE method is
measured using the absolute relative change (ARC) [33] which can be calculated as:

ARC (%)=
∣∣∣∣L (u)−LNIE (u)

L (u)

∣∣∣∣× 100%. (19)

Table 1: Comparison of ARL values on the modified EWMA control chart with the AR(1) model
using explicit formulas against the NIE method given λ = 0.05, η = 2, r = 1, a = 0 at φ = 0.1
(b= 0.333987011), φ =−0.1 (b= 0.408730497) for ARL0 = 370

Shift
size (δ)

φ = 0.1 φ =−0.1

Explicit
(CPU time)

NIE
(CPU time)

ARC (%) Explicit
(CPU time)

NIE
(CPU time)

ARC (%)

0.00 370.00008812 370.00008589 6.03× 10−07 370.00004893 370.00004557 9.08× 10−07

(<0.001) (9.281) (<0.001) (9.359)
0.01 78.37858370 78.37858335 4.11× 10−07 82.65057512 82.65057456 6.78× 10−07

(<0.001) (8.969) (<0.001) (9.312)
0.02 43.82837788 43.82837770 4.11× 10−07 46.53183718 46.53183689 6.23× 10−07

(<0.001) (10.313) (<0.001) (10.453)
0.03 30.42557907 30.42557895 3.94× 10−07 32.39371610 32.39371591 5.87× 10−07

(<0.001) (9.281) (<0.001) (9.328)
0.04 23.30847758 23.30847749 3.86× 10−07 24.85646420 24.85646406 5.63× 10−07

(<0.001) (10.468) (<0.001) (10.328)
0.05 18.89793321 18.89793314 3.70× 10−07 20.17481918 20.17481907 5.45× 10−07

(<0.001) (9.344) (<0.001) (9.547)
0.06 15.89855292 15.89855286 3.77× 10−07 16.986143197 16.986143105 5.42× 10−07

(<0.001) (10.438) (<0.001) (10.156)
0.08 12.08490680 12.08490676 3.31× 10−07 12.925534561 12.925534495 5.11× 10−07

(<0.001) (9.406) (<0.001) (9.500)
0.10 9.765566083 9.765566052 3.17× 10−07 10.452061817 10.452061767 4.78× 10−07

(<0.001) (9.562) (<0.001) (9.468)
0.20 5.090970157 5.090970145 2.36× 10−07 5.453366997 5.453366978 3.48× 10−07

(<0.001) (10.392) (<0.001) (10.515)
0.30 3.554052055 3.554052049 0.69× 10−07 3.802097396 3.802097385 2.89× 10−07

(<0.001) (9.546) (<0.001) (9.500)
0.40 2.807071681 2.807071677 1.42× 10−07 2.996034011 2.996034005 2.00× 10−07

(<0.001) (10.063) (<0.001) (10.422)
0.50 2.373151393 2.373151390 1.26× 10−07 2.525809691 2.525809687 1.58× 10−07

(<0.001) (9.515) (<0.001) (9.391)
0.60 2.093319852 2.093319850 9.55× 10−08 2.221328911 2.221328908 1.35× 10−07

(<0.001) (10.219) (<0.001) (10.109)
0.80 1.759313098 1.759313097 5.68× 10−08 1.855915275 1.855915274 5.39× 10−08

(<0.001) (10.500) (<0.001) (10.079)
1.00 1.570797672 1.570797671 6.37× 10−08 1.648205459 1.648205458 6.07× 10−08

(<0.001) (9.657) (<0.001) (9.484)
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In addition, the speed test results are computed by the CPU time (PC System: Windows
10 Education, i7-6500U CPU@2.50 GHz Processor, 8.00 GB RAM, 64-bit Operating System)
in seconds.

Table 2: Comparison of the ARL values between the CUSUM, the classical EWMA and modified
EWMA control charts given λ= 0.05, η = 2, a= 0 at ARL0 = 370

φ Shift
size (δ)

CUSUM
(q= 4)

EWMA
(r= 0)

Modified EWMA

Adjusted r= 0.5 Basic r= 1 Adjusted r= 2

(b= 5.45278) (b= 1.145388× 10−8) (b= 0.150278601) (b= 0.301950105) (b= 0.604752895)
0.2 0.00 370.000 370.000 370.000 370.000 370.000

0.01 338.746 297.174 134.052 76.388 53.985
0.02 310.682 239.724 80.967 42.581 29.372
0.03 285.440 194.207 57.568 29.521 20.296
0.04 262.698 157.991 44.414 22.599 15.576
0.05 242.174 129.058 35.997 18.313 12.684
0.06 223.623 105.850 30.157 15.401 10.731
0.08 191.601 72.056 22.602 11.701 8.262
0.10 165.199 49.824 17.945 9.452 6.768
0.20 85.904 9.981 8.493 4.926 3.761
0.30 50.819 3.130 5.435 3.442 2.765
0.40 33.462 1.617 3.992 2.722 2.275
0.50 24.017 1.210 3.180 2.304 1.987
0.60 18.436 1.081 2.673 2.036 1.799
0.80 12.507 1.017 2.091 1.716 1.570
1.00 9.553 1.005 1.780 1.536 1.437

RMI 15.058 3.955 1.411 0.481 0.168

(b= 4.150138) (b= 1.70872× 10−8) (b= 0.225127154) (b= 0.452229145) (b= 0.905706536)
−0.2 0.00 370.000 370.000 370.000 370.000 370.000

0.01 345.684 298.349 145.780 84.954 60.565
0.02 323.398 241.604 89.916 48.004 33.268
0.03 302.945 196.471 64.581 33.470 23.068
0.04 284.146 160.426 50.138 25.705 17.735
0.05 266.843 131.521 40.817 20.876 14.456
0.06 250.895 108.251 34.313 17.584 12.238
0.08 222.579 74.193 25.848 13.388 9.427
0.10 198.341 51.632 20.599 10.830 7.722
0.20 118.297 10.600 9.850 5.654 4.277
0.30 76.717 3.336 6.325 3.940 3.128
0.40 53.181 1.692 4.643 3.101 2.558
0.50 38.902 1.240 3.687 2.611 2.220
0.60 29.728 1.095 3.084 2.293 1.998
0.80 19.212 1.020 2.385 1.910 1.725
1.00 13.717 1.006 2.005 1.692 1.565

RMI 18.278 3.487 1.498 0.539 0.211

The performance comparison of the explicit formula and the NIE method is explained with
the ARL, the ARC and the CPU time (Tab. 1). The first results indicate that the ARL values of
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the explicit formula are similar to those of the NIE method according to the ARC criterion such
that ARC solutions are very low and converge to 0. For the CPU time for calculating the ARL,
the explicit formula is faster than the NIE method by around 9 s.

The performance of the modified EWMA control chart on varying scales of constant r,
different bound control limits [a,b] and various λ are further tested by using the relative mean
index (RMI) [34] which can be written as:

RMI= 1
n

n∑
i=1

[
ARLi (c)−ARLi (s)

ARLi (s)

]
(20)

where ARLi(c) is the ARL of the control chart for the shift size of row i, ARLi(s) is the smallest
ARL of all of the control charts on row i and the RMI value is smaller, then the control chart
has more performance for detecting shifts.

Figure 2: Plot of the CUSUM, the classical EWMA and modified EWMA control charts given
(a) φ = 0.2 and (b) φ =−0.2

The CUSUM, the classical EWMA (r = 0), the classical modified EWMA (r = 1) and the
modified EWMA control charts with adjusted r = 0.5 and r = 2 measured a capability by using
the ARL and the RMI at φ = 0.2, −0.2 for ARL0 = 370 are compared and reported in Tab. 2
and Fig. 2. When the process mean is shifted, the ARL results of the modified EWMA control
charts have abrupt decrease and lower values in small and intermediate shifts. For large shifts,



34 CMES, 2021, vol.127, no.1

the classical EWMA chart is obtained the least ARL. Therefore, the performance of modified
EWMA control charts is better than the classical EWMA scheme for small and intermediate shifts.
Moreover, the results show that the CUSUM chart has lower performance than modified EWMA
control charts for all levels of shifts. From ARL and RMI comparisons, the modified EWMA
control charts with higher r values are more effective.

Table 3: Comparison of the ARL values on the modified EWMA control chart with difference
control bounds given λ= 0.05, η = 2, r= 1 at ARL0 = 370

φ Shift size (δ) a= 0 a= 0.1 a= 0.3 a= 0.4

(b= 0.273008016) (b= 0.374461655) (b= 0.57735612) (b= 0.67879871)
0.3 0.00 370.000 370.000 370.000 370.000

0.01 74.484 69.483 60.267 56.043
0.02 41.394 38.391 32.967 30.528
0.03 28.663 26.553 22.770 21.079
0.04 21.926 20.317 17.440 16.158
0.05 17.760 16.469 14.165 13.140
0.06 14.930 13.860 11.951 11.101
0.08 11.338 10.552 9.148 8.523
0.10 9.157 8.544 7.450 6.962
0.20 4.771 4.509 4.037 3.825
0.30 3.336 3.186 2.914 2.790
0.40 2.642 2.544 2.365 2.283
0.50 2.240 2.171 2.045 1.986
0.60 1.982 1.931 1.837 1.793
0.80 1.676 1.645 1.587 1.560
1.00 1.504 1.484 1.445 1.427

RMI 0.232 0.168 0.052 0

(b= 0.500416482) (b= 0.603072843) (b= 0.80836715) (b= 0.911008116)
−0.3 0.00 370.000 370.000 370.000 370.000

0.01 87.389 81.769 71.317 66.487
0.02 49.572 46.055 39.668 36.781
0.03 34.619 32.105 27.577 25.546
0.04 26.612 24.674 21.196 19.641
0.05 21.626 20.059 17.254 16.001
0.06 18.224 16.916 14.577 13.534
0.08 13.884 12.913 11.178 10.404
0.10 11.236 10.474 9.110 8.501
0.20 5.869 5.533 4.927 4.654
0.30 4.087 3.890 3.532 3.370
0.40 3.214 3.083 2.843 2.733
0.50 2.702 2.608 2.436 2.356
0.60 2.370 2.299 2.168 2.108
0.80 1.968 1.924 1.842 1.804
1.00 1.739 1.709 1.652 1.626

RMI 0.238 0.173 0.054 0
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For Tab. 3, the ARL results with ARL0 = 370 show the performance of the modified EWMA
control chart on various bound control limits [a,b] for φ = 0.3, −0.3 and a = 0, 0.1, 0.3, 0.4.
The RMI values of the lower bound a= 0.4 are 0. When the lower bound (a) is higher, then the
modified EWMA control chart can detect better shifts when comparing the ARL and the RMI
values in one direction.

Table 4: Comparison of the ARL values on the modified EWMA control chart with various λ

given η = 2, r= 1, a= 0.4 at ARL0 = 370

φ Shift size (δ) λ= 0.01 λ= 0.05 λ= 0.10 λ= 0.20

(b= 0.672828274) (b= 0.67879871) (b= 0.686452008) (b= 0.702326332)
0.3 0.00 370.000 370.000 370.000 370.000

0.01 58.170 56.043 53.700 49.853
0.02 31.757 30.528 29.182 26.993
0.03 21.934 21.079 20.146 18.632
0.04 16.808 16.158 15.448 14.299
0.05 13.662 13.140 12.571 11.649
0.06 11.535 11.101 10.627 9.861
0.08 8.844 8.523 8.172 7.605
0.10 7.215 6.962 6.686 6.240
0.20 3.940 3.825 3.700 3.498
0.30 2.859 2.790 2.715 2.592
0.40 2.331 2.283 2.231 2.147
0.50 2.022 1.986 1.948 1.885
0.60 1.821 1.793 1.763 1.714
0.80 1.578 1.560 1.540 1.508
1.00 1.440 1.427 1.412 1.388

RMI 0.118 0.088 0.0542 0

(b= 0.897887577) (b= 0.911008116) (b= 0.92785533) (b= 0.962983493)
−0.3 0.00 370.000 370.000 370.000 370.000

0.01 68.657 66.487 64.109 60.251
0.02 38.078 36.781 35.370 33.100
0.03 26.460 25.546 24.553 22.962
0.04 20.343 19.641 18.880 17.662
0.05 16.568 16.001 15.387 14.404
0.06 14.008 13.534 13.021 12.200
0.08 10.758 10.404 10.020 9.407
0.10 8.782 8.501 8.198 7.713
0.20 4.784 4.654 4.513 4.288
0.30 3.450 3.370 3.283 3.143
0.40 2.789 2.733 2.672 2.575
0.50 2.398 2.356 2.310 2.237
0.60 2.141 2.108 2.072 2.014
0.80 1.826 1.804 1.779 1.740
1.00 1.642 1.626 1.608 1.579

RMI 0.106 0.078 0.048 0
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Moreover, the modified EWMA control chart is compared for various λ = 0.01, 0.05, 0.10 and
0.20 at ARL0 = 370, a= 0.4 and φ = 0.3, −0.3 (Tab. 4). The RMI values of λ = 0.20 are 0. The
ARL and the RMI results show that more λ values affect for increasing a detected performance
of the modified EWMA control chart.

Figure 3: Plot of the noise residual of COVID-19 data in Thailand

Figure 4: Plot of the noise residual of COVID-19 data in Singapore
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7 Application to Real Data

As an example, the modified EWMA control chart is applied to COVID-19 data in Thailand
and Singapore [35,36] such that the 100 days of newly infected cases are studied when the more
summation of 100 cases. These data are checked to a suitable AR(1) process with an exponential
white noise at parameters of COVID-19 data in Thailand β0 = 34.78, η = 10.06, φ = 0.664
and Singapore β0 = 159.47, η = 48.99, φ = 0.863. Moreover, their error term have be tested an
exponential distribution and plotted graphs in Figs. 3 and 4, respectively.

Table 5: Comparison of ARL values between the CUSUM, the classical EWMA and modified
EWMA control charts for COVID-19 data in Thailand with β0 = 34.78, η = 10.06, φ = 0.664,
a= 0 at λ= 0.05 and ARL0 = 370

Shift
size (δ)

CUSUM
(q= 100)

EWMA
(r= 0)

Modified EWMA

Adjusted r= 0.5 Basic r= 1 Adjusted r= 2

(b= 167.3) (b= 1.386× 10−6) (b= 18.5648) (b= 37.2657) (b= 74.6315)
0.00 370 370 370 370 370
0.01 343.476 300.868 180.287 113.091 83.291
0.02 319.132 245.645 118.387 66.819 47.287
0.03 296.959 201.362 87.706 47.459 33.189
0.04 276.733 165.712 69.400 36.826 25.669
0.05 258.253 136.898 57.248 30.105 20.993
0.06 241.345 113.522 48.602 25.475 17.805
0.08 211.636 78.935 37.134 19.512 13.738
0.10 186.554 55.686 29.889 15.841 11.253
0.20 106.523 12.056 14.660 8.301 6.181
0.30 67.202 3.840 9.494 5.751 4.462
0.40 45.918 1.881 6.971 4.483 3.598
0.50 33.445 1.318 5.507 3.729 3.078
0.60 25.638 1.130 4.566 3.233 2.732
0.80 16.897 1.029 3.452 2.624 2.298
1.00 12.397 1.009 2.828 2.267 2.039

RMI 13.085 2.367 1.797 0.752 0.380

Table 6: Comparison of ARL values between the CUSUM, the classical EWMA and modified
EWMA control charts for COVID-19 data in Singapore with β0 = 159.47, η = 48.99, φ = 0.863,
a= 0 at λ= 0.05 and ARL0 = 370

Shift
size (δ)

CUSUM
(q= 500)

EWMA
(r= 0)

Modified EWMA

Adjusted r= 0.5 Basic r= 1 Adjusted r= 2

(b= 745.43) (b= 5.115× 10−6) (b= 68.1366) (b= 136.8) (b= 273.966)
0.00 370 370 370 370 370
0.01 343.887 300.195 169.332 103.606 75.401
0.02 320.094 244.582 108.987 60.300 42.324
0.03 298.381 200.081 79.937 42.565 29.584

(Continued)



38 CMES, 2021, vol.127, no.1

Table 6: Continued

Shift
size (δ)

CUSUM
(q= 500)

EWMA
(r= 0)

Modified EWMA

Adjusted r= 0.5 Basic r= 1 Adjusted r= 2

0.04 278.536 164.327 62.867 32.917 22.836
0.05 260.371 135.488 51.644 26.854 18.657
0.06 243.720 112.138 43.711 22.693 15.816
0.08 214.385 77.685 33.255 17.353 12.200
0.10 189.532 54.613 26.691 14.075 9.995
0.20 109.528 11.662 13.006 7.375 5.509
0.30 69.646 3.701 8.408 5.122 3.995
0.40 47.802 1.828 6.175 4.005 3.236
0.50 34.882 1.296 4.886 3.344 2.781
0.60 26.737 1.120 4.062 2.910 2.478
0.80 17.558 1.026 3.089 2.379 2.101
1.00 12.812 1.008 2.549 2.071 1.876

RMI 14.423 2.689 1.697 0.678 0.320

Figure 5: Plot of the classical EWMA and modified EWMA control chart with r = 2 for
COVID-19 data in (a) Thailand and (b) Singapore
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From Tabs. 5 and 6, the results of ARL and the RMI are used to compare the CUSUM,
the classical EWMA and modified EWMA control charts with real-world data of COVID-19 data
in Thailand and Singapore. The results are in accordance with the simulation data in Tab. 2 and
show that the modified EWMA control chart adjusted for high r performs well for small and
intermediate level shifts.

In Fig. 5, the modified EWMA control chart with r = 2 and the classical EWMA control
chart are plotted by calculating Zt of COVID-19 data in Thailand and Singapore at the expo-
nential smoothing parameter λ = 0.05 with the optimal control width limit of EWMA chart
L = 2.615 [37] and the calculated control width limit of the modified EWMA chart Lm = 0.204
at bound control limits of Thailand [10.92, 49.84] and bound control limits of Singapore
[519.16, 237]. The results show that Zt values of the modified EWMA control chart with r= 2
exceed the bound since the 4th observation, while Zt values of the classical EWMA control chart
are the out-of-control limit at the 9th observation for Thailand. In Singapore, Zt values of the
modified EWMA control chart with r= 2 exceed the bound since the first observation, while the
classical EWMA control chart signals an alarm in the 10th observation. Therefore, the modified
EWMA control chart can detect shifts more quickly than the classical EWMA control chart.

8 Discussion and Conclusions

The performance of a control chart can be evaluated by using the ARL. In this paper, the
explicit formula and the numerical integral equation (NIE) method of ARL solutions are estab-
lished on a two-sided modified EWMA control chart for an AR(1) process with an exponential
white noise. The ARL results of both methods are computed and their performances compared
via the ARC and the CPU time. The explicit formula shows the actual values of the ARL and
is faster calculation than the NIE approach. Moreover, the ARL and RMI results are compared
between the CUSUM, the classical and modified EWMA control charts with various r, for which
the latter provides better detection for small and intermediate shifts. Next, the performance of the
modified EWMA control chart is tested on various bound control limits and is found to be better
for higher upper bound values. In addition, this model is applied to the real-world data (COVID-
19 data in Thailand and Singapore), with which it obtains similar results as with the simulated
data; this result supports the excellent performance of the modified EWMA control chart. In
future research, we will establish the optimal bound control limits of the modified EWMA control
chart and hope to extend our approach to many new control charts currently under development
for different processes.
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