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ABSTRACT

The stereo matching method based on a space-aware network is proposed, which divides the network into three
sections: Basic layer, scale layer, and decision layer. This division is beneficial to integrate residue network and dense
network into the space-aware network model. The vertical splitting method for computing matching cost by using
the space-aware network is proposed for solving the limitation of GPU RAM. Moreover, a hybrid loss is brought
forward to boost the performance of the proposed deep network. In the proposed stereo matching method, the
space-aware network is used to calculate the matching cost and then cross-based cost aggregation and semi-global
matching are employed to compute a disparity map. Finally, a disparity-post processing method is utilized such
as subpixel interpolation, median filter, and bilateral filter. The experimental results show this method has a good
performance on running time and accuracy, with a percentage of erroneous pixels of 1.23% on KITTI 2012 and
1.94% on KITTI 2015.
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1 Introduction

Stereo matching is an important research topic in the field of computer vision. It is widely
used in three-dimensional reconstruction [1], autonomous navigation [2,3], and augmented real-
ity [4]. In the pipeline of stereo matching, an input of stereo matching consists of two epipolar
rectified images taken from different points of view, one of which serves as a reference image
and the other as a matching image. For each pixel (x, y) in the reference image, stereo matching
identifies a pixel (x− d, y) in the matching image, corresponding to the same points in the scene,
where d is the disparity of the pixel (x, y). According to the principle of triangulation, the depth

of the pixel (x, y) can be calculated as
fB
d
, where f is focal length and B is baseline length.

Stereo matching process is divided into four steps: Cost calculation, cost aggregation, disparity
calculation, and disparity refinement [5]. Cost calculation is the first step in stereo matching
process, and its quality largely affects the accuracy of stereo matching. For the past few years,
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deep learning has made great progress and is widely applied in intelligent traffic [6–9], network
security [10–14], privacy-protecting [15–18], and natural language processing [19–21]. Recently,
deep learning has also been applied to stereo matching to calculate matching cost because of its
powerful feature representation ability. It can improve the robustness of matching cost to radiation
difference and geometric distortion and enhance matching accuracy. Lecun et al. [22,23] first
employs Siamese network structure [24] to calculate matching cost, the matching cost is aggregated
by the cross-based cost aggregation method, a disparity map is produced by the semi-global
matching method [25], and finally, a disparity map is refined using some disparity post-processing
methods. Subsequently, Zagoruyko et al. [26] extends the Siamese network structure and proposes
three network structures, which are applied to stereo matching to calculate matching cost. Chen
et al. [27] put forward a deep embedding model, which was like the central-surrounding two-
stream network [26]. Luo et al. [28] propose an efficient deep learning model, which takes image
patches of different sizes as input of left and right branch networks. The right image patch is
larger than the left image patch in size and contains all disparities. In stereo matching, deep
learning is used to calculate matching cost, which has achieved good matching results. This kind
of method associates the depth of a network model with the size of training patches and the
network depth depends on the size of a training image patch. As a result, it is impossible to
increase the network depth to achieve high matching accuracy without changing the size of
training image patches, which makes this method unable to effectively use excellent deep network
structures such as residual network [29] and dense network [30].

To increase the depth of the network and improve matching accuracy, we propose a stereo
matching method based on the space-aware network. Firstly, matching cost is calculated by using a
deep network, then the matching cost is aggregated by cross-based cost aggregation method, and a
disparity map is computed by the semi-global method. Finally, the disparity map is further refined
by some disparity post-processing methods. The main contributions of this paper are as follows:
Firstly, we propose a space-aware network model, which can have the ability to integrate many
popular network models. Secondly, a hybrid loss function is designed to enhance the network
performance. Finally, a vertical splitting method is proposed to calculate feature maps for a whole
image to reduce the consumption of GPU memory.

2 Space-Aware Network Model

2.1 Basic Model
Deep learning is applied to calculation of matching cost and can produce good matching

results [23]. The deep network is called Siamese network, which consists of two parts: Feature
layer and decision layer, and its network structure is shown in Fig. 1. The feature layer is
composed of two branches with the same structure and weight, which receive an image patch,
respectively. The two image patches are fed into convolution layers, ReLU layers, and max-pooling
layers. When they pass through a convolution layer, their size will be decreased. Finally, each
branch obtains a one-dimensional feature vector, and these two feature vectors are concatenated
and fed into a decision layer. The decision layer consists of a linear fully connected layer followed
by a ReLU layer and outputs a scalar value, which is a probability value and denotes whether
left and right image patches are similar. Fig. 1 shows a deep network including 4 convolution
layers with a convolution kernel of size 3×3 and the depth of this network model determines its
input of size 9× 9. In other words, the size of training image patches is subject to the count of
convolution layers. When the kernel size is fixed, the more convolution layers are, the larger the
image patch size is. This characteristic of the network model limits its depth and the application
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of ResNet [29] and DenseNet [30]. If the network depth is deepened, it will inevitably increase
the size of training image patches, which will cause over-fitting.

Figure 1: Deep network for stereo matching

2.2 Residual Model
He et al. [29] proposed a residual network model, which has been applied to image classifi-

cation and achieved very good results. Up to now, it is still a popular network model and there
are many variants. The basic idea of this model is to add an Identity Shortcut Connection to the
network model, which skips several convolution layers at one time. A residual block structure is
shown in Fig. 2. A residual block can be expressed as H (X) = F (X) +X and is composed of
two parts, one part of which is called residual F (X) and the other part is identity mapping X.
In general, a residual block consists of two or three convolution layers, and these residual blocks
comprise a residual network.

Convolution Layer

Convolution Layer

Relu

Relu

X

X

(X)

(X) + X

Figure 2: Residual block
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The idea of residual connection is extended to propose a dense connection network [30]. As
shown in Fig. 3, each convolution layer in a dense block has an Identity Shortcut Connection
connecting to the convolution layers coming before it. The input of each convolution layer is made
of the concatenation of feature maps of all convolution layers coming behind it along feature
dimension. A layer in a dense block can be denoted as X� =H� ([X0, X1, . . . , X�−1]), where X� is
the output of the layer � and [X0, X1, . . . , X�−1] represents the concatenation of feature maps, H�

denotes a composite function of three consecutive operations: Batch normalization (BN), followed
by a rectified linear unit (ReLU) and a 3× 3 convolution. A DenseNet consists of these dense
blocks followed by transition layers. A transition layer is mainly composed of normalization layers,
1× 1 convolution layers, and pooling layers.

Figure 3: Dense block

2.3 Space-Aware Network Model
For each pixel p in a reference image, stereo matching first calculates matching cost c (p, d),

which forms a cost volume. Then, a series of steps such as cost aggregation, disparity calculation
and disparity refinement are performed, and finally, a disparity map is obtained. In general,
absolute values of gray difference, normalized cross-correlation function and so on are used
to calculate matching cost. This paper will present a method for computing matching cost by
using deep learning. At present, the size of a training image patch depends on the number of
convolution layers in the deep learning-based methods for computing matching cost. If the number
of convolution layers is increased to obtain more accurate matching cost, the size of training
image patches will be large, which results in over-fitting and reduces matching accuracy.

To solve this problem and use a more advanced network model to calculate the stereo
matching cost, we propose a space-aware network model. The main characteristic of this model
is that the feature layer is divided into two parts: Basic layer and scaling layer. The main purpose
of the basic layer is to extract features, which can use advanced network models such as residual
network and dense network. Fig. 4 shows the overall structure of the space-aware network model.
The input of the basic layer is a pair of the image patches PatchL (p) and PatchR (p− d) of size
9×9, and the output of the basic layer is the feature maps of size 9×9. In the basic layer, the size
of feature maps is the same as the size of input. However, the main purpose of the scaling layer is
to reduce the spatial size of feature map to 1×1. Our proposed scaling layer consists of only one
convolution layer, whose size is the size of image patches. We do not choose max-pooling layer or
average pooling layer. This is because the scaling convolution layer is like cost aggregation based
on filter and thus can gather more space information to learn more discriminative features. For
instance, when the training image patches of size 9× 9 are taken as input of the network model,
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the filter kernel size of the convolution layer in the scaling layer is selected as 9× 9. When the
training image patches of size 9× 9 are fed into the basic layer, the feature maps of size 9× 9
are produced. Subsequently, these feature maps are fed into the scaling layer and the scaling layer
outputs the feature maps of size 1× 1. Finally, the feature maps of left and right image patches
are concatenated to form a one-dimensional vector, which is taken as input to a decision layer,
whose output is a probability, denoting the similarity between the left and right image patches.

Basic Network Layer Scale Layer

Basic Network Layer Scale Layer

Decision Layer

Dot product

Hinge

Binary
Cross

Entropy

Dot product

Hinge

Mixed Loss

Similarity score

Convolution,ReLU

Concatenate

Fully-connected,ReLU

Fully-connected,Sigmoid

Figure 4: Space-aware network

3 Hybrid Loss

Because the proposed network model consists of three parts: Basic layer, scaling layer and
decision layer, we combine the outputs of these three parts to define a hybrid loss function. The
outputs of two branches of the basic layer are flattened to a one-dimensional vector, and then
the cosine similarity is calculated by using an inner product layer:

s= uTLuR
‖uL‖‖uR‖ (1)

where uL and uR denote the output of the left and right branches of the basic layer. The output
of the left and right branches in the scaling layer is a one-dimensional vector, so we do not need
to flatten the scaling layer output and can directly utilize the cosine similarity. Because ReLU is
used as an activation function, the output of the network is greater than 0, and the output range
of the inner product layer is [0, 1]. For these two outputs, Hinge loss is used:

loss1 =max
(
0, m+ s1− − s1+

)
+max

(
0, m+ s2− − s2+

)
(2)
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where s1+ and s1− denote the output of the basic network layer for positive and negative samples,

s2+ and s2− represent the output of the scaling layer for positive and negative samples, m is a
constant and is set to 0.2 during training. For output of the decision layer, mutual entropy loss
is used:

loss2 =− (log (v−)+ log (1− v+)) (3)

where v+ and v− are outputs of the decision layer for positive and negative samples. Finally, the
total loss is:

loss= θ loss1+ (1− θ) loss2 (4)

where θ is a constant and is set to 0.3.

4 Vertical Splitting Method

During training, the proposed deep network produces three outputs: One output of the
decision layer and two outputs of the inner product layer, but only the output of the decision
layer is used as matching cost to compute disparities:

CCNN (p, d)=−network
(
PatchL (p) , PatchR (p− d)

)
(5)

where PatchL (·) and PatchR (·) denotes left and right image patches respectively, and network (·)
denotes the output of the decision layer. To calculate an initial cost volume by using the space-
aware network, it is necessary to take as input to the network the left and right image patches for
every pixel in a reference image and the corresponding pixel in a matching image at all possible
disparities. The advantage of this method is that it can reduce the consumption of GPU memory,
but greatly increase the running time. An alternative method [23] uses a whole image as input
to calculate matching cost. This method only calculates a feature map for left and right images
one time, so it can greatly decrease running time and improve efficiency, but this method requires
more GPU memory.

Therefore, we propose a vertical splitting method to reduce the consumption of GPU memory.
The main idea of this method is to divide left and right images into several patches vertically:

leftPatch= {
IiL (p) | py ≥ iK and py < (i+ 1)K

}
rightPatch= {

IiR (p) | py ≥ iK and py < (i+ 1)K
}

(6)

where py denotes vertical coordinate of p and K denotes patch height. Then, an initial cost volume
is produced for each pair of vertical patches using the space-aware network:

Ci
CNN (p, d)=−network (

IiL (p) , IiR (p− d)
)

(7)

where IiL (·) and IiR (·) denotes ith patch of left and right images, respectively. Finally, these sub-

cost volumes Ci
CNN (p, d) are concatenated vertically to form a complete cost volume CCNN (p, d).

5 Disparity Calculation

The output of the space-aware network is an initial 3D cost volume. Cost aggregation, dis-
parity calculation, and disparity postprocessing are used to obtain a more accurate disparity map.
Firstly, cross-based cost aggregation is employed, and secondly, semi-global matching is adopted.
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Finally, a series of disparity post-processing methods are utilized, such as left-right consistency
check, sub-pixel enhancement, median filtering, and bilateral filtering.

5.1 Cross-Based Cost Aggregation
The cross-based cost aggregation method [31] firstly constructs a cross arm for each pixel,

then uses cross arms to define a supporting area for each pixel. A left-arm of the pixel p can be
defined as:

left (p)= {q | ‖I (q)− I (p)‖< α and ‖p− q‖< β} (8)

where I (·) represents a gray value, α and β is a predefined gray threshold and a predefined
distance threshold, respectively. Eq. (8) shows that pixel point p is taken as a starting point,
and continuously extends to the left under the constraint of the predefined gray threshold and
predefined distance threshold. right (p), top (p) and bottom (p) of the pixel p are constructed in the
same way. After these arms are defined, the supporting area support (p) can be defined as:

support (p)= {left (q)∪ right (q) | q ∈ top (p)∪ bottom (p)} (9)

Then, cost aggregation is carried out on the supporting area support (p):

CCBCA (p, d)= 1
|support (p)|

∑
q∈support(p)

CCNN (q, d) (10)

where CCNN (· , ·) denotes an initial matching cost.

5.2 Semi-Global Matching
Disparity calculation is usually classified into a local optimization method and a global opti-

mization method. Global optimization methods generally obtain a high accuracy map, including
dynamic programming, belief propagation, and graph-cut optimization. A global optimization
method transforms the stereo matching problem into an energy function minimization problem:

E (D)=
∑
p

C (p,d)+
∑

q∈N(p)

P1
[∣∣d−Dq

∣∣ = 1
]+

∑
q∈N(p)

P2
[∣∣d−Dq

∣∣ > 1
]

(11)

where D denotes a disparity map, N (p) the neighborhood of pixel p, P1 and P2 the constant
penalty, Dq the disparity of point q. The semi-global method [25] approximately solves the energy
function by dynamic programming in multiple directions:

Cr (p, d)=CCBCA (p, d)+min

⎛
⎝
Cr (p− r, d) , Cr (p− r, d± 1)+P1,

min
k
Cr (p− r, k)+P2

⎞
⎠−min

k
Cr (p− r, k) (12)

where r denotes direction and Cr (p, d) is a cost volume in direction r. The final matching cost is
the sum of matching costs in all directions:

CSGM (p, d)=
∑
r

Cr (p, d) (13)

Then, disparities are calculated by the “winner-takes-all” method:

D (p)= argmin
d
CSGM (p, d) (14)
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5.3 Disparity Post Processing
To improve the accuracy of stereo matching, we use disparity post-processing methods such as

left-right consistency check, sub-pixel enhancement, median filtering, and bilateral filtering. There
are inevitably some erroneous disparities in a disparity map, which may be caused by non-textured
areas and occlusion. These erroneous disparities can be detected by left-right consistency check
of left and right disparity maps, and each pixel can be marked by the following rules:
⎧⎪⎪⎨
⎪⎪⎩

correct match, if
∣∣d−DR (p− d)

∣∣ ≤ 1, d =DL (p)

error match, if
∣∣d−DR (p− d)

∣∣ ≤ 1, other d

occlusion, otherwise

(15)

where DL (p) is a left disparity map and DR (p) is a right disparity map. Background dispari-
ties are used to fill occlusion, and correct disparities in the neighborhood are used to replace
erroneous matches.

Sub-pixel refinement can further improve matching accuracy. We use a sub-pixel refinement
method based on quadratic curve fitting in the cost domain, which uses optimal matching cost
and its left and right immediate matching costs to fit a quadratic curve to obtain a sub-pixel-
level disparity:

DSE = d− C+ −C−
2 (C+ − 2C+C−)

(16)

where C− =CSGM (p, d− 1), C+ =CSGM (p, d+ 1), C =CSGM (p, d).

The final step of stereo matching uses a 5× 5 median filter and a bilateral filter:

DBF (p)= 1
W (p)

∑
q∈Np

DSE (p) · g (‖p− q‖) · 1
{
IL (p)− IL (q) < γ

}
(17)

where g (·) is Gaussian function, W (p) = ∑
q∈Np

g (‖p− q‖) · 1 {
IL (p)− IL (q) < γ

}
denotes a

normalized constant, and γ is a predefined threshold.

6 Experimental Analysis

We use LUA and Torch7 to implement the proposed stereo matching method based on a deep
space-aware network and the network is trained on GeForce GTX1080Ti GPU. The experimental
parameters are set as α = 4, β = 0.00442, P1 = 1, P2 = 32, γ = 5. The experimental data sets
are KITTI 2012 and KITTI 2015. KITTI 2012 stereo dataset contains 194 training images and
195 test images, while KITTI 2015 stereo dataset contains 200 training images and 200 test
images. Training data set is generated according to [6,17]. The training data set is composed
of positive and negative samples. Positive samples are defined as matching image patches, while
negative samples are defined as unmatched image patches. The number of positive samples is the
same as the number of negative samples, which can prevent it from loss of accuracy caused by
imbalanced samples.
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6.1 Training Strategy
The choice of training strategy is very important for deep learning, and a good training

strategy can accelerate convergence and improve accuracy. In our experiment, the SGD optimizer
algorithm is adopted, and its momentum is set to 0.9. The learning rate adjustment method is
OneCycleLR with a cosine annealing strategy and the initial learning rate is set to 0.003. Its
learning rate curve is shown in Fig. 5. The space-aware network is trained for 14 epochs.

Figure 5: Learning rate curve

6.2 Classification Accuracy Analysis
The computation of matching cost with deep learning is a binary classification problem. The

higher the classification accuracy is, the more accurate the matching cost is, and the higher the
matching accuracy is. In this experiment, 80% of training data is used as training data and
20% as validation data to analyze the classification accuracy of the proposed network model.
The comparison of classification accuracy is shown in Fig. 6a, which indicates that the vali-
dation accuracy increases steadily with the increase of training epochs, and our classification
accuracy is 98.40%. With the increase of epochs, the classification accuracy of [22] shows a
slight fluctuation and its classification accuracy is 94.25%. We also compare training loss and
validation loss. The comparison of training loss is shown in Fig. 6b, which indicates that our
proposed method obtains lower training loss and better convergence effect. Fig. 6c shows vali-
dation loss. With the increase of epochs, the validation loss of our proposed method gradually
decreases, and our validation loss is lower than [22], which shows that our network model is better
than [22].
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(a) (b)

(c)

Figure 6: Classification accuracy and loss for the proposed method and Ref. [22]. (a) Classification
accuracy (b) Training loss (c) Validation loss

6.3 Matching Accuracy Analysis
In this paper, we implement two space-aware network models. In the first network called

SADenseNet, DenseNet with 20 DenseNet blocks is selected as the feature layer, the scale layer
consists of a convolutional layer with the filter kernel of size 11× 11, and four fully connected
layers are included in the decision layer. We train SADenseNet network on the KITTI2012 data
set and the KITTI2015 data set, respectively. Then 40 stereo image pairs are extracted from every
data set to calculate the average number of bad pixels of 3 pixels. The experimental results are
shown in Tabs. 1 and 2. The second network is called SAResNet. In this network, the basic
layer is composed of the residual network of 18 residual blocks, and the scaling layer is one
convolution layer of size 11× 11, and the decision layer consists of four fully connected layers.
The experimental results are also shown in Tab. 1 and Tab. 2. Disparity maps for the two pro-
posed networks are shown in Fig. 7, in which the first row is left image and ground truth; the
second row is the calculated disparity map and the error map for SAResNet, in which green
denotes correct disparities and red denotes erroneous disparities, and whose error percentage of
3 pixels is 0.16%; The third row shows the calculated disparity map and the error map for
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SADenseNet, and whose error percentage of 3 pixels is 0.46%. It can be observed from the
disparity map that the error of the blue rectangle in the disparity map calculated by the SAResNet
network has been improved obviously.

Table 1: Comparison result for 2012 dataset

Algorithm Error% Running time (s)

SAResNet 1.23 35.37
SADenseNet 1.74 57.23
λ-ResMatch [32] 2.49 47.35
MC-CNN [22] 2.61 36.98
Improved MC-CNN [33] 2.61 38.98
Deep Embed [27] 3.10 3.32
Efficient Deep [28] 2.82 2.54

Table 2: Comparison result for 2015 dataset

Algorithm Error% Running time (s)

SAResNet 1.94 35.37
SADenseNet 2.23 57.23
λ-ResMatch [32] 3.20 47.35
MC-CNN [22] 3.25 36.98
Improved MC-CNN [33] 3.25 38.98
Deep Embed [27] 3.74 3.32
Efficient Deep [28] 5.04 2.54

Figure 7: Comparison for disparities map of two proposed deep network
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6.4 Comparision of Experimental Results
In this section, we first use the KITTI2012 dataset to test the performance of our proposed

stereo matching method based on a space-aware network model and compare it with other
methods. We randomly select 40 stereo pairs and compute the average error percentage of 3 pixels.
The comparison results are shown in Tab. 1. Our proposed method gives a good performance,
whose average error percentage is 1.23%. Fig. 8 shows the calculated disparity maps for four
methods with low error percentage. Fig. 8a shows the left and right images and the ground
truth, and Fig. 8b shows the calculated disparity and the error map for SAResNet, with an error
percentage of 0.65%; Fig. 8c for SADenseNet, with an error percentage of 1.2%; Fig. 8d for [32],
with an error percentage of 4.97%; Fig. 8e for [22], with an error percentage of 5.90%. From
these error maps, it can be observed that our method can obviously reduce the erroneous pixels
in the blue rectangle.

(a)

(b) (c) (d) (e)

Figure 8: Results of disparity estimation for KITTI 2012. (a) The left and right images and the
groud truth (b) SAResNet (c) SADenseNet (d) [32] (e) [22]

In this section, we use the KITTI2015 dataset to test the performance of our space-aware
network and compare it with other methods by using the same metric as the KITTI2012 dataset.
The comparison results are shown in Tab. 2. Fig. 9 shows the calculated disparity maps for four
methods with low error percentage. Fig. 9a shows the left and right images and the ground truth,
and Fig. 9b shows the calculated disparity map and the error map for SAResNet with the 3-pixel
error percentage of 0.64%; Fig. 9c for SADenseNet with the 3-pixel error percentage of 1.30%;
Fig. 9d for [32] with the 3-pixel error percentage of 2.80%; Fig. 9e for [22] with the 3-pixel error
percentage of 2.90%. These experimental results show that our proposed method can give a more
accurate disparity. The blue rectangles in these error maps show that the erroneous pixels marked
by red are less than other methods.
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(a)

(b) (c) (d) (e)

Figure 9: Results of disparity estimation for KITTI 2015. (a) The left and right images and the
groud truth (b) SAResNet (c) SADenseNet (d) [32] (e) [22]

7 Conclusion

In this paper, a stereo matching method based on the space-aware network is proposed, which
can combine the advanced network model with our network model, and then solve the GPU
memory limitation problem through a vertical splitting method, and further improve the network
performance by using hybrid loss. Our proposed method is trained on KITTI 2012 and KITTI
2015 datasets and compared with other methods. The experimental results show that the proposed
method gives a better performance, with an error rate of 1.23% on KITTI 2012 and 1.94% on
KITTI 2015.
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