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ABSTRACT

Due to the geological body uncertainty, the identification of the surrounding rock parameters in the tunnel
construction process is of great significance to the calculation of tunnel stability. The ubiquitous-joint model and
three-dimensional numerical simulation have advantages in the parameter identification of surrounding rock with
weak planes, but conventional methods have certain problems, such as a large number of parameters and large time
consumption. To solve the problems, this study combines the orthogonal design, Gaussian process (GP) regression,
and difference evolution (DE) optimization, and it constructs the parameters identification method of the jointed
surrounding rock. The calculation process of parameters identification of a tunnel jointed surrounding rock based
on the GP optimized by the DE includes the following steps. First, a three-dimensional numerical simulation based
on the ubiquitous-joint model is conducted according to the orthogonal and uniform design parameters combing
schemes, where the model input consists of jointed rock parameters and model output is the information on the
surrounding rock displacement and stress. Then, the GP regress model optimized by DE is trained by the data
samples. Finally, the GPmodel is integrated into the DE algorithm, and the absolute differences in the displacement
and stress between calculated and monitored values are used as the objective function, while the parameters of the
jointed surrounding rock are used as variables and identified. The proposed method is verified by the experiments
with a joint rock surface in the Dadongshan tunnel, which is located inDalian, China. The obtained calculation and
analysis results are as follows:CR= 0.9,F = 0.6,NP= 100, and the difference strategyDE/Best/1 is recommended.
The results of the back analysis are compared with the field monitored values, and the relative error is 4.58%,
which is satisfactory. The algorithm influencing factors are also discussed, and it is found that the local correlation
coefficient σf and noise standard deviation σn affected the prediction accuracy of the GP model. The results show
that the proposed method is feasible and can achieve high identification precision. The study provides an effective
reference for parameter identification of jointed surrounding rock in a tunnel.
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1 Introduction

The ability to identify the mechanical parameters of surrounding rock of a tunnel based on
field monitoring information is crucial for the construction mechanics in the geotechnical engi-
neering field. The identification of surrounding rock parameters is also called the back analysis.
Using different monitoring information, the stress back analysis, displacement back analysis, and
mixed back analysis can be concocted. The combined displacement–stress back analysis method
has been widely applied to geotechnical engineering [1].

Different constitutive models can describe a different mechanical behavior of surrounding
rock. In the 1970s, a surrounding rock of a tunnel was simplified into a uniform elastic consti-
tutive model, and the parameter inversion was mainly to identify the elastic modulus. Kavanagh
et al. [2] presented a finite element method for inverting the elastic modulus of elastic solids.
Kirsten [3] proposed the back analysis method of measured deformation at the conference of
geotechnical investigation in Johannesburg. With the development of computational mechanics,
the parameter identification methods of more complex constitutive models have attracted great
attention of scholars [4]. Gioda et al. [5,6] studied the back analysis methods of the elastic-plastic
model. Gao et al. [7] developed a displacement back analysis algorithm, considering the time-
dependent effect of the rock mass. Vardakos et al. [8] presented a numerical back-analysis of the
response of the Shimizu Tunnel No. 3 during the construction process based on distinct element
modeling. It is worth noting that most of the studies on the back analysis have been limited
to two-dimensional models. However, it is very common for a tunnel to cross the weak joints,
so the isotropic homogeneous model cannot accurately describe the mechanical behavior of the
surrounding rock. Recently, the anisotropic elastoplastic constitutive model called the ubiquitous-
joint model has been proposed. This model can reflect how a weak plane affects the rock mass
deformation after yielding. Das et al. [9,10] and Ismael et al. [11] studied the ubiquitous-joint
model in different engineering fields.

Rich research results have been achieved in the field of tunnel surrounding rock parameter
identification. However, limited studies have been conducted using the ubiquitous-joint model
and three-dimensional (3D) model. The main reason is that the complex constitutive model and
3D numerical calculation are time-consuming, which makes the parameters identification more
difficult [12,13]. In order to improve the computing speed, more and more evolutionary intelligent
optimization algorithms, including the genetic algorithm (GA) [14], evolution strategy algorithm
(ESA) [15], and particle swarm optimization (PSO) [16,17], have been combined with numerical
algorithms for back analysis. Furthermore, the nonlinear respond surface methodology (RSM) has
been employed to map the nonlinear relation between the mechanical parameters and displacement
of surrounding rock. The multivariate adaptive regression splines and logistic regression [18],
artificial neural network (ANN) [19,20], support vector machine (SVM) [21], and other algorithms
have been used to construct the RSM model. However, due to the complexity of parameters
identification of jointed surrounding rock, there are certain problems in the field of the mechanical
parameters identification of surrounding rock of a tunnel, and they can be summarized as follows:

(1) Optimization algorithms have certain shortcomings; for instance, the GA includes encoding
and decoding, and its operation is complex; the PSO algorithm is relatively simple, but its
mathematical theory is not strict enough. The optimization algorithms can also be limited to the
local optimal problem and become precocious easily [22].

(2) The ANNs are based on the empirical risk minimization and have the disadvantages of
requiring a large amount of training data, over-learning, and poor generalization ability.
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(3) Although the SVM can be used for the sequential minimum optimization and other fast
learning algorithms, its operating speed is slow when the number of learning samples is too
large, and the estimated output is not probabilistic [23]. Therefore, it is necessary to explore
other machine learning-based algorithms and intelligent optimization methods for ubiquitous-joint
model parameter identification.

The Gaussian process (GP) regression combines nuclear machine learning and Bayesian rea-
soning, which provides many outstanding advantages, such as flexible non-parametric inference,
adaptive parameter acquisition, and simple implementation process [24,25]. Difference evolution
(DE) optimization has good robustness, strong global search ability, and simple structure, and
it is not dependent on the characteristic information on the problem itself, which makes it be
suitable for solving all types of complex optimization problems [26,27]. Therefore, the aim of this
paper is to introduce the GP and DE to the surrounding rock parameter identification based on
a 3D model and a ubiquitous-joint model. In this work, the GP is used to reflect the nonlinear
relationship between the jointed parameters and displacement and stress of surrounding rock.
In addition, the 3D numerical simulation and orthogonal design are conducted to obtain the
training data samples. In order to improve the mapping effect, the super-parameters of the GP
model are optimized by the DE algorithm. Then, the trained GP model is integrated into the
DE algorithm to identify the parameters of the jointed surrounding rock. Finally, the proposed
method is verified by an experiment with the Dadongshan tunnel of Dalian city, China, and the
algorithm performances are discussed in detail. The proposed method realizes the back analysis
of the joint parameters of the surrounding rock in Dadongshan tunnel and effectively guides the
safe construction.

The remainder of this paper is organized as follows. In Section 2, the background of back
analysis of tunnel surrounding rock is introduced. In Section 3, the parameter identification
method based on the GP-DE is introduced. In Section 4, the application of the proposed method
in engineering is presented. In Section 5, the parameters of GP and DE are analyzed. Finally,
conclusions are drawn in Section 6.

2 Background of Back Analysis of Tunnel Surrounding Rock

With the rapid development of computational mechanics and computer technology, numerical
analysis methods have begun to be applied in the field of rock mechanics research, with strong
universal applicability. However, the numerical analysis method is under a strong dependence
on the selection of model parameters. The accuracy of the parameters will directly affect the
final calculation results. How to obtain surrounding rock parameters effectively and reasonably
has become a key issue in tunnel engineering calculations [13]. For these problems, the method
of back-analyzing and calculating the equivalent parameters of surrounding rock by using field
monitoring data has become an effective means to solve such problems [4]. Back analysis is a
method of calculating geotechnical parameters or initial ground stress of geotechnical engineering
based on field observation data and through mechanical inversion analysis model. From 1970s to
now, scholars have begun back analysis research in geotechnical engineering and got rich relatively
researching results. The classification of back analysis methods is shown in Fig. 1.

According to different kinds of monitored information, back analysis is divided into stress
back analysis [28], displacement back analysis [13] and mixed back analysis [27]. Displacement
back analysis has problems such as lagging and being affected by three-dimensional spatial
effects [29]. Stress back analysis is also insensitive to elastic modulus and other reflections, which
may cause the back analysis to have a non-unique solution. Therefore, the mixed back analysis
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can make full use of monitoring information and improve the accuracy of parameter inversion.
According to calculation methods, the analytical method and the numerical method are distin-
guished. Moreover, numerical method is divided into reverse solving method and forward solving
method. The reverse solving method is based on inverse process of finite element analysis, and the
advantage is that the analysis efficiency is very high, but it is only suitable for relatively simple
models [30]. The forward solving method is to use the forward solver and certain optimization
techniques to can carry out complex calculation procedures. Therefore, the analytical method and
reverse solving method require a lot of simplification of tunnel engineering, which is limited to the
actual tunnel, while forward solving method has more powerful adaptability and is increasingly
widely used. The optimization algorithms play a key role in the back analysis method. Early time
the traditional algorithms were adopted such as the golden section method, the simplex method,
and the Newton method [2–5]. Since the 1990s, modern computational intelligence methods
represented by genetic algorithms and neural network methods have been applied in geotechnical
engineering and have continued to develop.

Figure 1: Classification of geotechnical back analysis

The selection of constitutive model is the basis for determining the accuracy of numerical
calculation of the tunnel surrounding rock. The constitutive models used in the back analysis are
generally divided into elastic models [2,3], elastoplastic models [5,6] and viscoelastic models [7].
Furthermore, the elastoplastic models are divided into isotropic models and anisotropic models.
The actual rock mass includes various discontinuous bodies or even broken bodies, so the con-
ventional models of elasticity or isotropic elastoplasticity cannot reflect the characteristics of rock
mass well. The ubiquitous joint model is an excellent anisotropic which is to use the form of
traditional strength criteria, introduce a tensor composed of the shear strength (or tensile strength)
in the main direction of the material, and find the most likely failure surface under certain stress
conditions [9,10,31].

The trend of back analysis is to adopt more complex constitutive models which can describe
the actual rock mass, however, there no report about back analysis of ubiquitous joint model
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parameters can be seen now. The numerical calculation based on ubiquitous joint model concerns
more parameters, the relation between parameters and monitoring data is more complex. There-
fore the general back analysis methods are limited. The intelligent optimization algorithms with
better robust and the RSM with better nonlinear fitting capabilities should be adopted. Therefore,
this study proposes the new GP-DE algorithm for ubiquitous-joint model parameters inversion,
and comprehensively utilizes displacement and stress information, finally provides an effective back
analysis method for the surrounding jointed rock of tunnel engineering.

3 The Parameters Identification Method Based on GP-DE

3.1 Ubiquitous-Joint Model of Rock Mass Engineering
Because of the excavation unloading effect, the surrounding rock deformation toward the

empty surface increases continuously, which causes that part of the surrounding rock to change
from the elastic stage to the plastic stage, and the loose zone occurs. In this process, the joints
combined with the rock matrix of the surrounding rock all play important roles, which can be
expressed by a ubiquitous-joint model. The rock matrix and joints considered in the ubiquitous-
joint model satisfy the Mohr–Coulomb yielding criteria. The direction of the joint surface and
the stress state can be represented by the three directions (x, y, z) in the overall Cartesian
coordinate system. When selecting a set of joints for analysis, the normal direction of the joint
surface is the σf -axis, the projection of the joint dip on the joint plane is the σn-axis, and the
horizontal direction id the y′-axis. The local coordinate system established by the right-hand rule
and configuration of ubiquitous joints in the rock mass is shown in Fig. 2.

Figure 2: Configuration of ubiquitous joints in rock mass

Therefore, the relationship between the stress tensors σ and σ ′ that correspond to the global
and local coordinate systems, respectively, can be expressed as:[
σ ′] = [C]T [σ ] [C] , (1)
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where [C] denotes the directional tensor and the cosine of the angle between the local coordinate
system and the global coordinate system in the three directions, and it is defined as:
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⎡
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Further, the shear yield criterion and tensile yield criterion of joints can be respectively
expressed as follows:

f s = τ + σ3′3′ tanφj− cj = 0, (3)

f t = σ3′3′ − σ tj = 0, (4)

where cj represents the cohesion, φj denotes the rock inner friction angle, σ tj is tensile strength, τ

represents the shear stress on the joint plane, and σ3′3′ is the normal stress of a joint in the local
coordinate system. The shear and tensile plastic flow of the joint surface are expressed as functions
gs and gt. The potential function gs represents the uncorrelated flow rule, and it is expressed as
follows:

gs= τ + σ3′3′ tanψj, (5)

where ψj denotes the weak-plane dilation angle.

The potential function gt corresponds to the associated flow rule, and it is defined as follows:

gt= σ3′3′ , (6)

Based on Eqs. (1)–(6), the joint parameters include cj, φj, σ tj , and ψj. When the joint dip

angle and joint dip direction are considered, there are six parameters. To simplify the presentation,
the mentioned six parameters are denoted as follows: joint surface cohesion as Jcoh, joint surface
friction angle as Jfric, joint surface tensile strength as Jten, joint surface dilatation angle as Jdila,
joint surface dip as Jdip, and joint surface dip angle as Jdd.

3.2 The Problem of Jointed Rock Parameters Identification
The identification of the jointed surrounding rock parameters is essentially an optimization

problem. The upper and lower limits are defined based on the specific physical meaning of model
parameters. Assuming that there are m observed values in the region, the constrained optimization
problem can be expressed as:

minE (x1,x2, . . . ,xN)=min

⎛
⎝ 1
m

m∑
k−1

∣∣∣Y0
k −Yk

∣∣∣
⎞
⎠

xak ≤ xk ≤ xbk (k= 1, 2, . . . ,N)

, (7)

where Y0
k denotes the measured displacement or stress, Yk represents the calculated displacement

or stress, m is the number of observed values, xk is the surrounding joint rock parameter,
N denotes the number of parameters, and xak and xbk are the upper and lower limits of the
surrounding joint rock parameters, respectively. The identification process is shown in Fig. 3.
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Figure 3: Geotechnical engineering parameters identification process

As shown in Fig. 3, the parameters process needs many forward calculations and consumes
much time when the 3D numerical simulation is used. Therefore, the GP is used to construct the
responding surface of jointed parameters and displacements of the surrounding rock.

3.3 The GP Respond Surface Optimized by DE
The GP is a fast developing machine learning method that has good nonlinear performance,

but suffers from the problems of high dimension, and small sample regression. According to [23],
the brief introduction of GP is as follows:

Assume X = [x1, x2,. . ., xn] is the d× n input matrix, and y = [y1, y2, . . ., yn] is the output
vector, then the training dataset can be expressed as {X, y}; thus, the standard linear regress model
with the Gaussian white noise can be expressed as:

yi = f (xi)+ ε, (8)

where ε denotes an independent random variable, and ε ∼ N
(
0,σ 2

n
)
, while σ 2

n represents the
variance.

The prior distribution of the observed target value y can be expressed as:

y∼N
(
0,C + σ 2

n I
)
, (9)

where C =C(X, X) denotes a symmetric positive definite covariance matrix of the nth order.

For the test sample (x*, y*), where x* = (x∗1, x
∗
2, x

∗
3, . . ., x

∗
n), y

* = (y∗1, y
∗
2, y

∗
3, . . ., y

∗
n), the

joint Gaussian prior distribution of y and y* can be obtained and expressed as:[
y
y∗

]
∼N

(
0,

[
C (X,X)+ σ 2

n I C (X,x∗)
C (x∗,X) C (x∗,x∗)

])
, (10)

where C(X,X) denotes an n× n symmetric positive definite covariance matrix, and I represents
the identity matrix; C(X, x*) =C(x*, X)T is an n × 1 covariance matrix consisted of new input
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test points x∗ and all input points; C(x*, x*) is the covariance matrix consisted of new input test
points x∗.

When the training set D and the input value x* of a test sample are known, the GP can use
the posterior probability formula to calculate the output value y* of the test sample, which be
expressed as:

y∗| x∗, D ∼ N
(
uy∗ ,σ 2

y∗
)
, (11)

uy∗ =C
(
x∗,X

)(
C (X,X)+ σ 2

n I
)−1

y, (12)

where uy∗ and σ 2
y∗ denote the expectation and variance of y*, respectively.

The covariance function is used to measure the similarity degree between the training sample
and prediction samples. According to Eq. (11), the kernel function of traditional machine learning
can be expressed by the covariance function. The covariance function used in this work is the
square exponential covariance function (SE), and it is expressed as:

kse
(
xp,xq

)= σ 2
f exp

(
− 1
2J2

∥∥xp−xq
∥∥2)+ σ 2

n δpq, (13)

where xp and xq can represent the learning samples, prediction samples, or combinations of
learning and prediction samples depending on a particular situation; J is the distance correlation
between the two data points xp and xq; σf is the local correlation; σn is the standard deviation
of the noise; and lastly, δpq is a sign function, and when p= q, then δpq= 0; otherwise, δpq= 1.

The GP-based surface should be trained by representative data samples before it can map the
complex nonlinear relation between the jointed parameters and displacements. The data samples
can be obtained by model tests, field tests, numerical simulation, and other methods. In this
study, the data samples are collected using the orthogonal design, uniform design, and numerical
simulation. In the GP training process, hyper-parameters σf and σn affect the GP training effect
and prediction accuracy, so this process can be described as an optimization problem, which is
expressed as:

minE (θ)=min

⎛
⎝ K∑
n−1

∣∣∣∣GPh (θ)−Yh
Yh

∣∣∣∣
⎞
⎠ , h= 1, 2, . . . ,K, (14)

where GPh (θ) and Yh denote the estimated output data of the tentative GP and the real output
corresponding to the hth test sample. The test sample number is h= 1, 2,. . ., K; and, θ = (σf , σn)
represents the hyper-parametric vector.

It is difficult to select the above parameters artificially, so in this study, an intelligent optimiza-
tion algorithm DE is used to optimize θ . The DE was proposed by Stom and Price in 1995, and
it has an excellent performance in solving the global minimum convergence problems and complex
problems with many parameters, constraints, and objectives [25]. The DE directly converts the
solution to the optimization problem into a D-dimensional solution vector, and each solution
vector is the basic individual of the evolution. The basic operation of the DE algorithm includes
the following four steps:
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(1) Initial population generation

The original population that includes the NP individuals is generated randomly and uniformly
distributed in the solution space as follows:

xi,j,0 = xLi,j + rand(xUi,j −xLi,j), i= 1, 2, · · · ,NP; j= 1, 2, · · · ,D, (15)

where rand is a random number between zero and one, and xUi,j and xLi,j are upper and lower

boundary of variables, respectively.

(2) Mutation operation

For each target vector of the Gth generation xi,G, the mutation vector is defined as:

Vi,G+1 =Xr1,G+F
(
Xr2,G−Xr3,G

)
, (16)

where r1, r2, r3 ∈ [1, 2, . . ., NP] denote different random integers, F is the mutation factor, which
is used to adjust the step amplitude of the vector difference, and it is the main control parameter
whose value is between zero and one.

(3) Crossover operation

In order to increase the diversity of the population, a new test vector ui,G+1 is obtained by
the hybridization of target vectors xi,G and vi,G+1 as follows:

ui,G+1 =
{
Vi,G+1, rj ≤CR ‖ j= ni
Xi,G, rj >CR & j �= ni

, (17)

where rj ∈ [0, 1] is a random number corresponding to the j; CR ∈ [0, 1] is the crossover factor,
ni is a random integer having the value form the set (1, 2,. . ., D), which guarantees that vector
vi,G+1 has at least one component of the test vector ui,G+1.

(4) Selection operation

The new generation of the population obtained by the selection operation is expressed as:

xi,G+1 =
{
ui,G+1 if

(
f

(
ui,G+1

)≤ f
(
xi,G

))
xi,G f

(
f

(
ui,G+1

)
> f

(
xi,G

)) , (18)

where f (·) represents the fitness function that correspond to Eq. (14). By using the DE, the GP
hyper-parameters can be obtained quickly, as well as the training samples with the parameters,
so the GP respond surface mapping with the input consisted of the jointed parameters, and the
output consisted of displacement and stress values can be constructed.

3.4 The Parameters Identification Flowchart
Based on Eq. (7), Yk can be calculated using the GP model instead of the ubiquitous-joint

model, and in that case, it is expressed by Eq. (19). Also, by using the DE algorithm, the jointed
rock parameters can be identified

minE (x1,x2, . . . ,xN)=min

⎛
⎝ 1
m

m∑
j=1

∣∣∣GP (x1,x2, . . . ,xN)0j −Yj
∣∣∣
⎞
⎠

xak ≤ xk ≤ xbk (k= 1, 2, . . . ,N)

, (19)
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In Eq. (19), m denotes the number of key points (or measure lines), and Yj represents
the monitored information of the jth key point. The flowchart of the jointed rock parameters
identification is displayed in Fig. 4.

Figure 4: Flow chart of joint rock parameters identification

The specific algorithm steps are as follows:

(1) By using the orthogonal and uniform design methods, the six parameters of the joint
model, including the joint surface cohesion, joint surface dilatation angle, joint surface
friction angle, joint surface tensile strength, joint surface dip, and joint surface dip angle,
are designed in different parameter combination schemes.
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(2) For each analysis task, the training datasets that correspond to the jointed surrounding
rock parameters and displacement and stress values at key points are constructed. Numer-
ical analysis is used to calculate the dataset for each set of the orthogonal and uniformly
experimental schemes. To improve the generation performance of the GP, the test dataset
is selected from the training dataset and used to assess the applicability of the GP.

(3) The GP model is constructed such that to describe the nonlinear relationship between the
joint parameters and key displacement and stress values. The orthogonal design samples
are used to train the GP model, and the uniform design samples are used to test the GP
model.

(4) The parameters of the DE-GP model, including the population size, evolutionary genera-
tion number, and hyper-parameter ranges of the GP kernel function, are initialized. Each
hyper-parameter group is considered as an individual in the GP. A dataset is randomly
generated in the solution space as the initial population according to Eq. (15).

(5) The operations of mutation and crossover are performed according to Eqs. (16) and (17),
respectively. The GP model is trained using the hyper-parameters’ values, and the predicted
values are compared with the corresponding test values. The fitness value of the current
individual is evaluated by Eq. (14), and the selection operation according to Eq. (18) is
adopted.

(6) If the preset termination conditions for the iteration number or the minimal error are
satisfied, and the identified parameters are given, the GP training procedure terminates,
and the algorithm turns to the next step; otherwise, the algorithm returns to Step 5.

(7) The parameters of the DE-GP model, including the population size, evolutionary gener-
ation number, and the parameter range for the jointed rock, are initialized. A dataset is
randomly generated in the solution space as the initial population according to Eq. (15).

(8) The operations of mutation and crossover are performed according to Eqs. (16) and (17).
A set of data obtained above is input to the GP model to calculate the displacement of
key points. The fitness value of the current individual is evaluated by Eq. (19), and the
selection operation is conducted following Eq. (18).

(9) If predefined termination conditions for the iteration number or the minimal error are
satisfied, the optimal parameters are obtained; otherwise, the algorithm returns to Step 8.

4 Engineering Application

4.1 Engineering Overview
The proposed method was verified by the experiment with the Dadongshan tunnel, which is

part of the Bohai Avenue Engineering of high way in Dalian city, China. It includes two super
large section tunnels with a small clear distance. The lengths of the western and eastern tunnels
are 1,113.8 and 1,110.3 m, respectively. The height and width of tunnel clearance are 10.1 and
18.2 m, respectively, and the maximum depth of the tunnel from the ground surface is 155 m.
The minimum thickness of the rock column between the two holes is 15.9 m. The map location
and field scene of the tunnel under study are shown in Fig. 5.

The regional strata were mainly thick quartz sandstone of the qiaotou formation (Qnq) of
the Xihe District group of Qingbaikou series. The joints and fissures of rock mass around the
construction site were developed. Four groups of main joints were found through the exploration,
most of which were closed to microtensioned and not filled.
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Figure 5: The location of the Dadongshan tunnel

4.2 Numerical Simulation Model
The tunnel interval mileage K7 + 620 m–K7 + 660 m, where the third group of joint faces

was located, was selected as a study object. The 3D numerical model established by the geotech-
nical engineering software FLAC3D is shown in Fig. 6. The surrounding rock displacements and
stress measurement points of the left tunnel were arranged in a way that is presented in Fig. 6.
The size of the calculation model was 166 m × 80 m × 40 m. The overlying strata were converted
to the equivalent loads. The constitutive model adopted the ubiquitous-joint model.

Figure 6: Tunnel numerical calculation model

The surrounding rock medium was mainly apoplexy fossil English sandstone. The parameters
of the corresponding rock matrix were as follows: Young’s modulus was 1200 MPa, Poisson’s
ratio was 0.2, cohesion was 1.0 MPa, and the angle of internal friction was 30◦. The left and
right tunnels were constructed using the double-sided guide pit method. The excavation sections of
each excavation step were staggered. The null, shell, and cable elements were adopted to simulate
the excavation, lining, and bolts in the construction process, respectively. The ubiquitous-joint
model parameters were considered to be identified. As mentioned in Section 3.1, the six joint
parameters denoted as Jcoh, Jfric, Jten, Jdila, Jdip, Jdd, were determined based on the experience
and geological prospecting data; the obtained parameters’ ranges are shown in Tab. 1. Based on
the six joint parameters’ ranges, 25 orthogonal design schemes and five uniform design parameter
combination schemes were generated. The monitoring points of the arch waist were B and C,
and the convergence displacement of them was BC. The settlement of the top arch and the floor
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lifting were denoted as AZ and DZ, respectively. Three stress monitoring points were arranged
on the top arch, as shown in Fig. 6. The parameters of each scheme were fed to the numerical
model to conduct the numerical simulation. The orthogonal parameters schemes, uniform design
parameter combination schemes, and calculated displacements are shown in Tabs. 2 and 3.

The data given in Tab. 2 were used as the training data of the GP model, and the data
given in Tab. 3 were used as the test data. Following the procedure presented in Section 3.3, the
response surface model of the Gaussian process was constructed, which represented the mapping
of the nonlinear relationship between the jointed rock mass parameters and the corresponding
displacements and stress values.

Table 1: Jointed surrounding rock parameters range

Parameter Minimum value Maximum value Mean value

Joint cohesion (Jcon)/MPa 0.05 0.1 0.075
Joint friction angle (Jfric)/◦ 20 30 25
Joint dilatation angle (Jdila)/◦ 20 25 22.5
Joint tensile strength (Jten)/MPa 0.02 0.06 0.04
Joint dip angle (Jdip)/◦ 16 20 18
Joint dip direction (Jdd)/◦ 190 198 194

4.3 Parameters Identification Results
Using the engineering monitoring data as the control value, the back analysis of the joint

parameters was carried out. The CR was set to 0.9, F was set to 0.6, the maximum evolution
algebra was 100, and the population sizes (NP) were set to 100. In the monitoring results of the
K7 + 630 m sections, AZ was 14.62 mm, DZ was 13.73 mm, BC was 9.22 mm, P1 was 68.76
kPa, P2 was 131.61 kPa, and P3 was 65.24 kPa. The back analysis results are shown in Tab. 4.

The back analysis joint surface parameters were used to carry out the numerical simulation
calculation under the reinforcing measures of the initial lining and pipe-roof of the tunnel, and the
displacement variation values of the monitoring points were calculated. The numerical simulation
results were compared with the field monitoring data of the K7 + 650 m section, and the
comparison results are shown in Tab. 5. As shown in Tab. 5, the maximum relative error of the
two methods was 4.58%. Thus, the accuracy of the back analysis results was verified.

The fitness values of the GP-DE algorithm population in the first, 3rd, 10th, and 30th
generations are presented in Fig. 7, where it can be seen that the distribution of solution vectors
in the space gradually decreased and tended to converge with the increase in the evolutionary
algebra. The population of the first evolution was relatively dispersed, and the overall fitness value
was less than 0.9. The overall fitness value of the 3rd evolution decreased, and it less than 0.4.
The overall fitness value of the 10th evolution was also reduced, and it was less than 0.05. The
overall fitness value of the 30th evolution was further reduced, and the overall fitness value was
less than 1.4 × 10−4.

The changes in the six parameters of the GP-DE algorithm with the number of iterations are
presented in Fig. 8. As shown in Fig. 8, at the beginning of the iteration process, the parameters
fluctuated and were far away from the optimal solution. With the increase in the iteration step
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number, the parameters’ values increased, and when the number of iterations reached a value of
30, the parameters tended to the optimal solution and remained stable. Thus, the optimal solution
was obtained after 30 iterations, which shows good convergence.

Table 2: The orthogonal parameters schemes and calculated displacements and stress

Sample
No.

Jcoh
(MPa)

Jdila
(◦)

Jfric
(◦)

Jten
(Mpa)

Jdd
(◦)

Jdip
(◦)

AZ
(mm)

DZ
(mm)

BC
(mm)

P1
(kPa)

P2
(kPa)

P3
(kPa)

1 0.05 20 20 0.02 190 16 20.78 15.75 10.65 77.60 133.4 75.37
2 0.05 21 22 0.03 192 17 19.14 15.49 10.31 77.68 124.9 74.25
3 0.05 22 24 0.04 194 18 17.92 15.23 10.00 77.48 122.3 73.56
4 0.05 23 26 0.05 196 19 16.94 15.02 9.72 78.14 124.9 73.23
5 0.05 24 28 0.06 198 20 16.20 14.85 9.50 76.83 130.9 71.66
6 0.06 20 22 0.04 196 20 17.29 15.30 10.13 80.10 123.7 72.06
7 0.06 21 24 0.05 198 16 16.89 14.70 10.00 78.54 122.0 73.47
8 0.06 22 26 0.06 190 17 16.14 14.37 9.70 72.24 122.9 73.02
9 0.06 23 28 0.02 192 18 15.93 14.54 9.45 71.48 128.4 69.61
10 0.06 24 20 0.03 194 19 18.50 15.81 10.35 81.10 128.2 72.78
11 0.07 20 24 0.06 192 19 15.88 14.42 9.80 75.20 123.7 72.73
12 0.07 21 26 0.02 194 20 15.58 14.50 9.54 74.26 128.1 71.33
13 0.07 22 28 0.03 196 16 15.28 14.09 9.47 72.00 130.1 69.74
14 0.07 23 20 0.04 198 17 17.45 15.22 10.36 82.45 125.3 72.14
15 0.07 24 22 0.05 190 18 16.65 14.77 10.01 75.31 124.2 72.77
16 0.08 20 26 0.03 198 18 15.08 14.12 9.55 73.91 129.4 71.44
17 0.08 21 28 0.04 190 19 14.64 13.84 9.29 68.89 132.6 65.28
18 0.08 22 20 0.05 192 20 16.36 14.87 10.15 78.17 125.9 71.41
19 0.08 23 22 0.06 194 16 15.98 14.35 10.01 75.46 122.6 72.63
20 0.08 24 24 0.02 196 17 15.66 14.36 9.74 75.32 123.2 72.65
21 0.09 20 28 0.05 194 17 14.22 13.52 9.30 69.04 134.3 65.72
22 0.09 21 20 0.06 196 18 15.84 14.50 10.16 78.91 124.6 71.03
23 0.09 22 22 0.02 198 19 15.44 14.44 9.87 77.69 124.1 70.76
24 0.09 23 24 0.03 190 20 15.00 14.07 9.56 71.57 125.2 71.72
25 0.09 24 26 0.04 192 16 14.69 13.71 9.47 70.20 126.9 70.15

Table 3: The uniformly parameters schemes and calculated displacements and stress

Sample
No.

Jcoh
(Mpa)

Jdila
(◦)

Jfric
(◦)

Jten
(Mpa)

Jdd
(◦)

Jdip
(◦)

AZ
(mm)

DZ
(mm)

BC
(mm)

P1
(kPa)

P2
(kPa)

P3
(kPa)

1 0.05 21 22 0.04 196 20 17.82 16.31 9.62 78.21 121.2 17.82
2 0.06 22 26 0.03 198 19 16.64 15.75 9.32 79.94 130.4 16.64
3 0.07 20 20 0.06 194 18 17.72 13.79 9.68 77.21 117.3 17.72
4 0.08 24 24 0.02 192 17 14.78 13.54 9.12 71.98 122.5 14.78
5 0.09 23 28 0.05 190 16 14.63 13.69 8.98 71.58 127.9 14.63
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Table 4: The back analysis results of joint parameters

Jcoh (Mpa) Jdila (◦) Jfri (◦) Jten (Mpa) Jdd (◦) Jdip (◦)
0.081 20.98 27.98 0.036 190.65 18.84

Table 5: The results of back analysis and measured data

Measured values The field measured values Back analysis calculation values Relative error (%)

AZ 14.62 14.34 1.92
DZ 13.73 13.31 3.06
BC 9.22 9.48 2.82
P1 68.76 66.43 3.39
P2 131.61 130.12 1.13
P3 65.24 62.25 4.58

4.4 Surrounding Rock Stability Analysis Based on Identified Parameters
In order to analyze the stability of a jointed surrounding rock and select a rational supporting

scheme, the inversion parameters of the jointed rock were used to conduct a numerical simulation
to compare the plastic zone of the surrounding rock with different supporting schemes. The four
possible reinforcing measures were: initial lining, initial lining + pipe roof, initial lining + pipe
roof + pre-stressed anchor, and initial lining + pipe roof + advance grouting anchor. The plastic
zones of the tunnel under different reinforcing measures are shown in Fig. 9, where it can be
seen that the distributions of the plastic zones around the two tunnels were relatively independent,
and the mutual influences of the two tunnels were small. The tunnel construction had a great
influence on the stability of the surrounding rock at the top of the tunnel. For the low-grade
surrounding rock, the quality of the surrounding rock was poor. The plastic zone distribution of
the surrounding rock was minimal when the scheme of the initial lining + pipe roof + advance
grouting anchor was used for construction, which was mainly related to the obvious effect of the
grouting on improving the surrounding rock parameters.

Under the condition of surrounding rock with joints, the effect of the pre-stressed bolt was
small, which was related to the large deformation in the low-grade surrounding rock and the
pre-stress loss. When the surrounding rock was grouted, the effect of reinforcement was obviously
improved. Therefore, for the reinforcement of a rock wall of a tunnel with a small spacing,
it is preferred to grout the surrounding rock to improve the surrounding rock conditions and
parameters. Therefore, the scheme of the initial lining + pipe roof + advance grouting anchor is
suggested.

5 Discussion

5.1 The Prediction Accuracy of GP Model
The local correlation coefficient σf and noise standard deviation σn denote important hyper-

parameters of the GP model. According to the results obtained for the afore-mentioned learning
samples and forecast test samples, the hyper-parameters affected the prediction accuracy of the
GP model in the logarithmic coordinate system, as shown in Fig. 10. The variations in σf and σn
affected the prediction error of the GP, which indicates that proper selection of model parameters
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is crucial to guarantee the prediction performance. As shown in Fig. 10, at lnσf below −2, the
forecast relative error was approximately 12.52%. The mean forecast relative error decreased with
the increase in lnσf . When lnσf = 5.42 and lnσn = −4.83, the prediction relative error reduced
to 2.08%. The variations in the local correlation coefficient σf and noise standard deviation
σn affected the GP model prediction error, which shows that it is necessary to select proper
parameters to guarantee the prediction performance of the GP. Therefore, the DE algorithm can
avoid the random selection of the GP parameters.
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Figure 7: Fitness values with different evolution (a) 1st evolution (b) 3rd evolution (c) 10th
evolution (d) 30th evolution

The GP-DE model was compared with the general GP and ANN models, and comparison
results are given in Tab. 6. As shown in Tab. 6, among all of the models, the DE-GP algorithm
had the highest prediction accuracy of arch settlement and horizontal convergence, while the
prediction capabilities of the general GP and ANN algorithm were similar. Compared with the
general GP and ANN models, the prediction accuracy of the DE-GP model was greatly improved,
and the prediction results were close to the actual displacement calculation results.
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Figure 8: Variation of the parameters (a) Variation of jcoh and jten (b) Variation of jfric and jdip
(c) Variation of jdila and jdd

5.2 Influence of Differential Evolution Parameters on Optimization Results
In the GP-DE algorithm, the control of the DE algorithm is relatively complex, involving

many influencing factors, and it plays a decisive role in the GP-DE algorithm. The back analysis
of the joint parameters in the construction site was conducted to discuss the DE algorithm from
the two aspects, the control parameters, and different difference strategies.

In the DE, the variation factor F , crossover factor CR, population scale NP, and different
difference strategy perhaps have an effect on the convergence speed. In the analysis, the values of
variation factor F and crossover factor CR were fixed, and the convergence values of different F
and CR values in the iterative process of the algorithm were selected to obtain a comparison curve
to analyze their influence on the search process. The iterative convergence curves under different
F and CR values are shown in Fig. 11.

For the DE/Best/1 difference strategy and NP= 100, and F = 0.7 and CR between 0.5 and
0.9, the iterative process was stable, and the convergence effect was good. However, there was a
difference in the convergence speed. When CR= 0.9, the number of iterative steps reaching the
convergence was small. Next, CR was set to 0.9 and F was changed between 0.5 and 0.9. When
F = 0.6, the convergence speed was relatively fast. The results show that appropriate initial values
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of the model parameters can improve convergence speed. Based on the obtained results, CR= 0.9
and F = 0.6 are recommended.

When the DE/Best/1 difference strategy was used, and CR= 0.9 and F = 0.6, and when NP
changed from 10 to 200, the iterative convergence curves corresponding to different population
sizes were as shown in Fig. 12. As displayed in Fig. 12, with the increase in the population size,
the precision of parameter optimization was improved, but the convergence efficiency was reduced.
When the population size reached a value of 100, the number of the population continued to
increase, and the precision of parameter optimization no longer changed significantly.

(a) (b)

(c) (d)

Figure 9: The plastic zone of the tunnel under different reinforcing measures. (a) Initial lining
(b) initial lining and pipe-roof (c) initial lining, pipe-roof and pre-stressed bolt (d) initial lining,
pipe-roof and advanced grouting bolt
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Figure 10: The forecast relative error changing according to σf and σn

Table 6: The comparison between the predicted results and the calculated results

Sample No. DE-GP (%) GP (%) ANN (%)

AZ DZ BC AZ DZ BC AZ DZ BC

1 0.81 2.52 5.07 2.00 3.89 6.10 1.61 6.06 5.77
2 1.16 3.75 2.14 2.69 6.02 3.60 2.61 5.01 5.81
3 5.19 4.80 1.77 3.14 8.49 6.61 3.23 9.89 6.71
4 3.92 3.61 3.07 8.25 6.00 6.74 5.96 3.95 5.44
5 1.03 0.68 2.63 2.84 1.42 3.54 3.35 0.86 5.78

P1 P2 P3 P1 P2 P3 P1 P2 P3

1 2.01 1.55 3.82 4.21 2.18 4.99 2.09 2.85 5.96
2 2.84 1.94 2.39 3.34 3.25 3.86 3.37 2.53 5.02
3 2.37 2.78 4.40 3.07 3.65 5.34 4.59 4.30 5.08
4 0.63 0.91 0.51 1.38 1.04 1.29 1.50 2.49 3.09
5 2.32 1.37 1.18 6.71 2.99 1.84 3.12 1.45 1.62

In the DE algorithm, different difference strategies can be used to achieve mutation operation,
as given in Eq. (20). Selecting F = 0.6, CR= 0.9, and NP= 100, these strategies were compared.
As shown in Fig. 13, the convergence efficiency and optimization accuracy of different differential
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strategies varied in the calculation process. Compared with the other strategies, the DE/Best/1 had
a faster convergence speed and higher optimization accuracy in the calculation process.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DE/rand/1: vi,g = xr1,g+F
(
xr2,g−xr3,g

)
DE/best/1: vi,g = xbest,g+F

(
xr2,g−xr3,g

)
DE/rand/2: vi,g = xr1,g+F

(
xr2,g−xr3,g+xr4,g−xr5,g

)
DE/best/2: vi,g = xbest,g+F

(
xr1,g−xr2,g+xr3,g−xr4,g

)
DE/rand− to− best/2: vi,g = xr1,g+F

(
xbest,g−xr2,g+xr3,g−xr4,g

)
, (20)
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Figure 11: Iteration curve with change of CR and F
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6 Conclusions

Aimed at solving the problems of jointed rock parameters identification based on the
ubiquitous-joint model and 3D numerical model, the paper proposed a hybrid GP-DE algorithm.

The main contributions of this work can be summarized as follows:

1. In this paper, an orthogonal design, GP, DE, and ubiquitous-joint model are combined to
develop a hybrid method for the joint parameters identification of surrounding rock of a tunnel.
The proposed method makes full use of the advantages of GP and DE, improves the computing
speed, and avoids the problem of result limitation to the local optimal solution. Since hyper-
parameters of the GP affect its forecast precision, the DE is used to optimize the GP parameters.
Compared with the general GP and ANN models, the proposed GP-DE model has a smaller
forecast error.

2. The proposed method is verified by the experiment with a real tunnel, namely, the proposed
method is used to invert and analyze the parameters of a joint rock surface in the Dadongshan
tunnel project. The results of the back analysis are compared with the field monitored values. The
relative error of 4.58% is obtained, which can be considered as a good result. The calculation
results show that the proposed method has fast calculation speed, good convergence, and high
precision, which can meet the engineering requirements. The variations in the DE parameters have
an effect on the convergence speed. Through the calculation and analysis, it has been found that
the recommended parameters’ values are CR= 0.9, F = 0.6, and NP = 100, and the difference
strategy DE/Best/1 should be used.

3. The identified jointed parameters are considered in the tunnel construction scheme selection
and surrounding rock stability analysis. The results show that under the condition of surrounding
rock with joints, it is preferred to grout the surrounding rock and rock wall to improve the
surrounding rock conditions and parameters. The scheme of the initial lining + pipe roof +
advance grouting anchor is suggested.

The results and conclusions presented in this work have guiding significance for tunnel
engineering. The paper provides an effective means for the tunnel information construction and
feedback analysis with the jointed surrounding rock. However, in the calculation process, different
covariance functions need to be selected according to different learning samples.
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According to the above discussion, and on the basis of fully grasping the characteristics of
various covariance functions, a combined covariance function can be used to improve the accuracy
and practicability of the model.
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