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ABSTRACT

In hardware Trojan detection technology, destructive reverse engineering can restore an original integrated circuit
with the highest accuracy. However, this method has amuch higher overhead in terms of time, effort, and cost than
bypass detection. This study proposes an algorithm, called mixed-feature gene expression programming, which
applies non-destructive reverse engineering to the chip with bypass detection data. It aims to recover the original
integrated circuit hardware, or else reveal the unknown circuit design in the chip.
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1 Introduction

The term hardware Trojan refers either to a particular circuit module deliberately implanted
or changed during the process of designing or manufacturing an integrated circuit (IC), or to an
unintentional design defect in the IC [1–5]. Once activated, the Trojan may change the function
or specifications of the IC, which may cause leaking of sensitive information, a decrease in
performance, or even irreversible damage to the IC [6–9].

In the global semiconductor supply chain, the traditional security strategy of implementing
protection based on the underlying hardware, is no longer valid [1]. As shown in Fig. 1 [2],
untrusted entities participate, directly and indirectly, in all stages of the lifecycle of electronic
devices and ICs. This leads to hardware security vulnerabilities in the chain of design, man-
ufacturing, testing, deployment, and application [1,2]. In the design and production processes,
attackers are capable of implanting Trojans on target chips at any stage, through various methods.
The vulnerabilities further enable the attackers to tamper with the original design, reduce circuit
performance, monitor, control, and wage denial of service, and disclose confidential information
that may cause irreversible damage to IC [3,4].

In today’s hardware Trojan detection technology [1–9], destructive reverse engineering [1,3,
10–12] restores the original IC to be detected with the highest accuracy, but it incurs a great
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deal of time, effort, and money, and the chip will be destroyed after detection. Therefore, such
application of detection technology has been limited to sampling or replication of a specific type
of chip. Bypass detection [13–19] determines if an IC contains a Trojan by analyzing the bypass
signals, such as timing, power, electromagnetics, and heat. This detection technology is considered
as perhaps the most effective because it does not damage the chip and only a relatively small
amount of data and resources are required.

Figure 1: Threats in the IC and IP supply chain

Unlike some previous work that researched evolvable hardware [20–26] using evolutionary
algorithms, this paper proposes an evolutionary algorithm called mixed-feature gene expression
programming (MF-GEP) and attempts to find the original IC. The algorithm can be evolved by
using a single circuit component or a group of circuit structures as the node and mixing multiple
features into a single operator.

2 Related Works

2.1 Hardware Trojan
2.1.1 Composition and Attack Mechanism of Hardware Trojan

A hardware Trojan primarily consists of two components: the trigger logic and the payload.
A model of the structure of a hardware Trojan is shown in Fig. 2. In this model, the payload is
activated by the trigger logic through monitoring the input signal, data/control bus, register status,
or a set work time. The payload is responsible for executing the attack.

2.1.2 Destructive Detection Methods
Destructive detection methods usually use destructive reverse engineering to decapsulate an

IC and obtain images of each layer, so as to reproduce and verify the trusted design of the final
product [1,3,10–12]. However, the process of reverse engineering is irreversible, which means an
IC can no longer be used once the intrusion process is completed, and only the information of a
single IC sample is available [7–9].
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Figure 2: A hardware Trojan modifies signal S to S’ when triggered [3]

Courbon et al. [10] proposed a fast-intrusive technique, which divided the IC to be tested into
regions, and extracted images of each region by scanning before multiple images were stitched
to reproduce the original design. Although this invasive method only works for hardware Trojans
implanted by modifying functional units at the manufacturing stage, it significantly decreases the
time and cost of the reverse process. Bhasin et al. [9,10] proposed the use of machine learning
methods, such as support vector machine (SVM) and clustering (K-means), to identify an IC with
no hardware Trojans.

The specific operation process of the SVM method is depicted in Fig. 3. This has been
modified from [11].
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Figure 3: Hardware Trojan detection based on SVM

The author uses the golden layout of N chips to classify parameter values with grid size and
noise margin dnm as input. First, the images of each layer of N chips are obtained. Then, each
layer of the chips is divided into a non-overlapping grid based on the obtained images. The size
and noise margin dnm of each grid are tested in the classification conditions. These grids are used
to train the classifier and are subsequently classified as Trojan-free (TF) or Trojan-inserted (TI)
through SVM. Finally, the classification results are used to identify whether the chip contains a
Trojan.

2.1.3 Logic Test and Bypass Analysis Method
The main goal of the logic test method is to activate a hardware Trojan by applying function,

structure, or random test vectors, and then compare the response result with the correct one [1,7].
However, by devising rare triggering conditions, attackers can escape traditional functional and
structural tests during production testing. In addition, it is not practical to list all of the state
nodes and gate circuits inside the IC. Methods based on logic testing cannot detect Trojans that do
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not aim at tampering with the data or functions of the original circuit, but can detect an attempt
to disclose confidential information through antennas or to modify design specifications [6].

The bypass analysis method detects hardware Trojans through the parameters of an IC during
normal operation, such as delay [14], power consumption [13,15], thermal radiation [16], and
electromagnetic [17,18]. The method makes full use of the features of changed bypass information
that are caused by additional circuits or hardware Trojans, which compensates for the lack of logic
test [1,3,9,19]. However, one of the biggest challenges of this method is that bypass information
analysis techniques assume a comparable “golden model,” which is often difficult to achieve in
practical applications.

2.2 Evolvable Hardware
The concept of evolvable hardware (EHW) was initially proposed in 1993 by Hugo de Garis

while at the Advanced Telecommunications Research Institute in Japan and scientists from the
Swiss Federal Institute of Technology. EHW aims to make use of the reconfigurable internal
structure of programmable devices, as well as the capabilities of the evolutionary algorithm in
combinatorial optimization and universal search. The algorithm can help to locate the structure
of the bit string combination of programmable devices for specific tasks, which obtains the
hardware circuit with expected functions [21–27] through programming and configuration during
the programmable periods.

For example [22], Fig. 4 illustrates the array of logic cells, and Fig. 5 shows its genotype.

Figure 4: A digital circuit encoded within a genotype by an array of logic cells

Figure 5: The genotype with respect to the rectangular array of logic cells
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Xie et al. [27] proposed a two-phase EHW framework, which consists of an evolution phase
based on an express tree genetic programming (ETGP) algorithm and an optimization phase based
on a mining frequency digital circuit (MFDC) algorithm. It is believed that the application of
GEP to EHW can rapidly generate the optimal solution of an evolutionary circuit.

2.3 Introduction to GEP
Gene expression programming (GEP) [28] follows the basic steps of evolutionary computation

(EC), which combines the advantages of genetic algorithms and genetic programming. Genetic
material consists of two kinds of symbols: terminators and functions. A gene consists of a linear,
fixed-length string of symbols and the code for expression trees, in different sizes and shapes.
A chromosome can be composed of a single gene or multiple ones, decoded to map as a candidate
solution for problem response.

F is the set of functions, and T is the set of terminals. GEP’s gene contains a head and a
tail. The head contains symbols that represent both F and T , whereas the tail only contains T .
For each problem, the length of the head h is chosen, and the length of the tail e is a function
of h. The number of arguments of the function with more arguments n (also called maximum
order) is evaluated by expression 1:

e= h× (n− 1)+ 1. (1)

For example, consider a gene for the set of functions F = {+, −, *, /, Q} and the set of
terminals T = {a, b}. In this case, n= 2, and if h= 10, then e= 11, and the length of the gene
is 21. String 1 describes such a gene (the tail is shown in bold).

+Q− /b ∗ abQbabababbaaab String 1

Fig. 6 shows the expression tree (ET) decoded from String 1.

+

/

Q -

b *

a b Q b

a

Figure 6: The expression tree decoded from String 1
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The algebraic expression represented by Fig. 6 is√
a/b+ b−√

a ∗ b. (2)

The redundant symbols in the tail are discarded directly. Then GEP can use fixed-length
encoding to express different sizes and shapes of expression trees.

3 Using GEP to Represent Circuit

GEP has performed well in mining association rules, clustering, classification rules, time-series
predictions, and sunspot predictions [29–32].

As the structure shows, GEP performs well in resolving tree-structured problems. In other
words, if one circuit can be represented as a tree-shaped structure with n leaf nodes, it can be
described directly with GEP. The logic circuit of the 6-in/1-out in Fig. 7a can be easily represented
in an ET in Fig. 7b, which replaces the logic gate function with the logic symbol. The effective
gene in GEP is shown as String 2.

And, And, And, A, Not, And, And, B, C, Not, E, F , D String 2

(a)

(b)

A B C D E F

And

And And

A Not

B

And

C Not

D

And

E F

Figure 7: (a) The 6-in/1-out circuit represented by String 2 and (b) ET of the circuit shows in (a)
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In GEP, uppercase letters represent operators and lowercase letters represent terminators. In
this paper, however, we use the name string of the logic gate to represent logic gate, and uppercase
letters to represent input parameters. The purpose of this modification is to facilitate the use of
circuit simulation software.

However, if only logical values are used to represent the circuit, there would be too many
isomorphic situations, For example, the circuit and its ET in Fig. 7 can be replaced with the
circuit and the ET in Fig. 8.

(a)

(b)

A B C D E F

C

Not

D E F

And

A

B

And

And

And

And

Not

Figure 8: (a) A circuit isomorphic to Fig. 7 and (b) ET of the circuit shows in (a)

String 3 describes the corresponding effective gene of Fig. 8.

And, A, And, Not, And, B, C, And, Not, And, D, E, F String 3

The two circuits are fully equivalent in terms of logic values, and both are shown in
expression (3):

Y =AB′CD′EF . (3)

This example is only for the logic value of the circuit. A similar situation exists in terms of
bypass information detection, and many different circuit structures could result from any single
bypass information, which is referred to as Isomorphic in this paper.

Therefore, if a circuit is described only by logical values or a certain kind of bypass infor-
mation, the circuit structure cannot be confirmed because of so much isomorphism. This paper
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proposes an algorithm called mixed-feature GEP (MF-GEP), which represents multiple circuit
features by using the same structure in GEP. This algorithm can reduce the number of isomorphic
circuits and can be used to detect hardware Trojans.

4 Formal Definition of Trojan Circuit

For a circuit R, we provide the following symbols:

Let A = {Ak | k = 1,. . ., c} be the set of all c feature values that can be tested on R.

ik = [i1, i2,. . ., in] is the input value vector corresponding to feature value Ak, and n is the
number of input parameters of the circuit.

ok = [o1, o2,. . ., om] is the output value vector of input vector ik corresponding to circuit R,
denoted as ok = R(ik), and m is the number of output values of R.

Ik = {ik | k = 1, 2,. . ., d} is the domain of ik, Ok = {ok | k = 1, 2,. . ., d} is the value domain
of Ik.

We provide the following definitions:

Def 1

For two circuits R �= S, if there is a feature value set Ak ∈A:
For ∃ ik ∈ Ik, there is R (ik)= S(ik).

Then we call circuits R and S the same-valued isomeric circuits (SVIC) on feature Ak for
input vector ik.

Def 2

For ∀ ik ∈ Ik, there is R (ik)= S(ik).

Then we call circuits R and S the full same-valued isomeric circuits (FSVIC) on feature Ak.

Def 3

For ∃ Ik ⊂ Ik, there are

∀ i′k ∈ I ′k,R
(
i′k

)= S
(
i′k

)
, and ∀ ik ∈ Ik− I ′k,R (ik) �= S (ik).

Then we call circuits R and S the part same-valued isomeric circuits (PSVIC) on feature Ak.

Although Strings 2 and 3 represent two different circuits, they are exactly the same in the
logical value test, and both represent the circuits in expression (2). According to Def 2, Strings 2
and 3 are FSVIC in logical values. However, it is always possible to find a certain feature (such as
current) that makes Strings 2 and 3 PSVIC. Therefore, Strings 2 and 3 are considered as PSVIC.

A formal definition of a Trojan circuit is as follows:

Def 4: Definition of Trojan Circuit

If the circuits R and S meet the following conditions, we call circuit R a Trojan circuit with
a Trojan added to circuit S if:

(1) R claims it is circuit S.
(2) In fact, R is one of the PSVICs of S.

For the input domain I :

(1) There are two sets of X and Y , X ∩Y =� and X ∪Y = I .
(2) For ∀ i ∈X , there is R(i)= S(i), and a Trojan will not be triggered.
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(3) For ∀ i ∈Y , there is R(i) �= S(i), and a Trojan will be triggered.

The smaller the scale of Y , the more difficult it is to detect the difference between R and S,
and the deeper the Trojan is.

5 Mixed-Feature GEP

In order to make set Y in Def 4 easier to find, multiple features of the circuit were detected
at the same time. Although the detection results of each feature value can build many FSVICs,
different FSVICs of different features will form some PSVICs, of which the same part is possible
in the real circuit.

Fig. 9 shows a Not gate designed by a triode. It is used as an example to illustrate the concept
of a mixed-feature GEP algorithm.

A

Y

Vcc

A Y

Figure 9: A Not gate designed by triode

• Feature Value 1:

In digital logic terms, the description of this circuit is:

Y = !A (4)

• Feature Value 2:

In terms of voltage, the description of this circuit is:

Vy=VA <VSH ? VCC : VCES, (5)

where VSH represents the higher threshold and lower potential limit of “1” in the circuit, and
VCES represents a saturation voltage drop of the triode.

• Feature Value 3:

In terms of current, the description of this circuit is:

Cy=N ·CA, (6)

where N is the magnification of the current.

In addition, there are a variety of other bypass information detection items, such as delay
and spectrum.
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With any of the above three feature values, the circuit structure cannot be determined.
However, it is possible to determine the circuit structure if the three features are combined.

In GEP, an operator represents only one computation. A GEP individual only represents a
description of one feature value and obtains an unlimited number of isomorphic circuits. It is
impossible to determine the actual circuit structure.

The MF-GEP proposed in this paper combines the test results of multiple feature values on a
circuit into a single function representation, which integrates them into a composite function, i.e.,
a function that represents multiple calculations at the same time. Then it evolves representations
close to the original circuit by using GEP’s functional evolutionary ability.

Detection values are included in a function. The input comes from multiple feature values
and the output is a vector, like the Not-gate circuit. In GEP’s ET, it is still represented by “Not,”
but the implication becomes the calculation of the vector below:

Not (A1, A2, . . . , An)= [F1(A1), F2(A2), . . . , Fn(An)], (7)

where Ak (k = 1,. . ., n) is the input value of a type of feature detection, and Fk (Ak) (k = 1,. . .,
n) is the result of this feature value detection corresponding to input value Ak.

However, in an electronic component, each feature value should have a different importance.
So, each member of this vector should be multiplied by a weight:

Not(A1, A2, . . . , An)= [c1, c2, . . . , cn] · [F1(A1), F2(A2), . . . , Fn(An)] (8)

For normalization, it can be specified as

n∑
i=1

ci = 1. (9)

For example, corresponding to this Not gate circuit, the symbol Not indicates the following
meaning:

Not(A, VA, CA)= [0.4, 0.3, 0.3] · [!A, VA <VSH?VCC : VCES, N ·CA], (10)

where A represents the logical value (1 or 0) by the voltage entered at point A, VA represents the
input voltage of point A, and CA represents the input current of point A. [0.4, 0.3, 0.3] is the
weight vector.

Therefore, when using GEP evolution, a single symbol Not also represents multiple feature
values that are not associated with each other.

6 Experiments

6.1 Experimental Settings
In this paper, four groups of experiments (Experiments 1–4) were designed initially. Later, in

order to verify the new problems in Experiments 1–4, Experiment 5 was added. As comparison
experiments, most of the parameters and fitness functions are exactly the same.

6.1.1 Parameters
The circuit has multiple inputs and only one output. Experiment 1 used one feature, Exper-

iments 2 and 3 used two features, Experiment 4 used three features, and Experiment 5 used two
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features. The three features are logical value, voltage value and current value. The GEP parameters
of all the experiments are exactly the same. Tab. 1 lists the GEP parameters.

Table 1: Experiment parameters

Parameter Value

Fitness =1
Selection mode Tournament, size = 3
Population size 10000
Head length 20
Tail length 21
Chromosome length 1
Mutation rate 0.05
Insert rate 0.1
Root insert rate 0.01
One-point cross rate 0.1
Two-point recombination rate 0.1
Number of inputs 4
Number of outputs 1
Function set Not, And, Or

6.1.2 Fitness Functions
The feature data includes logical data, voltage data, and current data, and each has its

respective fitness function:

(1) Logical fitness function:

F1 = 1−
∑N

i=1 |ŷi− yi|
N

, (11)

where N is the amount of test data, ŷi is the logical value calculated from the expression
represented by the individual, and yi is the actual logical value in the test data. The range of F1
is now discussed as follows:

a) If all ŷi are exactly equal to yi, there is∑N
i=1 |ŷi− yi|

N
= 0. (12)

Then

F1 = 1−
∑N

i=1

∣∣ŷi− yi
∣∣

N
= 1. (13)

Then the maximum value of F1 is 1.
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b) Because of the logic value, the worst case is that every ŷi is only against yi, then every
|ŷi− yi| (i = 1,. . ., N) equals 1. There is:

N∑
i=1

∣∣ŷi− yi
∣∣=N. (14)

Then

F1 = 1−
∑N

i=1

∣∣ŷi− yi
∣∣

N
= 0. (15)

Then the minimum value of F1 is 0.

c) Suppose there are two GEP individuals, G1 and G2. For the same set of test data,

For G1, there are m ŷis equal to yi..
For G2, there are n ŷis equal to yi. (0 < m < n < N).

For G1, a rearrangement of (ŷi, yi) leads to ŷi = yi when i = 1,. . ., m, then

F1(G1) = 1−
∑N

i=1

∣∣ŷi− yi
∣∣

N
.

= 1−
∑m

i=1

∣∣ŷi− yi
∣∣+∑N

i=m+1

∣∣ŷi− yi
∣∣

N
,

= 1− N −m
N

,

= m
N
.

(16)

For G2, a rearrangement of (ŷi, yi) leads to ŷi = yi when i = 1, . . ., n, then

F1 (G2)= n
N
. (17)

Because m < n, so F1(G1) < F1(G2).

Therefore, the conclusion can be drawn as follows:

(i) The range of F1 is in [0, 1].
(ii) With the improvement of the matching degree between the calculated value ŷi and the

tested value yi, the value of F1 increases monotonically.

(2) Voltage fitness function

F2 = 1−
∑N

i=1

∣∣ŷi− yi
∣∣

N(VCC −VDD)
(18)
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N is the amount of test data. ŷi is the voltage value calculated from the expression represented
by the individual. yi is the actual voltage value in the test data. (VCC − VDD) is a fixed value.
If Vmx= (VCC − VDD), then F2 can be defined as

F2 = 1−
∑N

i=1

∣∣ŷi− yi
∣∣

N ·Vmx (19)

The range of each |ŷi− yi| is [0, Vmx]. The function forms of F2 are discussed as follows:

a) If all ŷi are exactly equal to yi, there is∑N
i=1

∣∣ŷi− yi
∣∣

N
= 0. (20)

Then

F2 = 1−
∑N

i=1

∣∣ŷi− yi
∣∣

N ·Vmx = 1. (21)

Then the maximum value of F2 is 1.

b) The worst case is that every ŷi has the max distant to the yi, which means that every
|ŷi− yi | = Vmx (i = 1,. . ., N). Then

F2= 1−
∑N

i=1

∣∣ŷi− yi
∣∣

N ·Vmx ,

= 1− N ·Vmx
N ·Vmx = 0.

(22)

Then the minimum value of F2 is 0.

c) Suppose there are k (0 ≤ k < N) ŷis equal to yi in a GEP individual G. A rearrangement
of (ŷi, yi) leads to ŷi = yi when i = k + 1, . . ., N, then

F2 (G)= 1−
∑N

i=1

∣∣ŷi− yi
∣∣

N ·Vmx ,

= 1−
∑N−k

i=1

∣∣ŷi− yi
∣∣+∑N

i=k+1

∣∣ŷi− yi
∣∣

N ·Vmx ,

= 1−
∑N−k

i=1

∣∣ŷi− yi
∣∣

N ·Vmx ,

(
∣∣ŷi− yi

∣∣ ∈ (0,Vmx] , i= 1, . . . , N − k). (23)

Let us define EA (k, ŷi, yi) (Absolute Error for (k, ŷi, yi)).

EA
(
k, ŷi,yi

)= N−k∑
i=1

∣∣ŷi− yi
∣∣ (24)
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Then,

F2 (G)= 1− EA
N ·Vmx . (25)

Because
∣∣ŷi− yi

∣∣ ∈ (0, Vmx], so when
∣∣ŷi− yi

∣∣ ∈ (0, Vmx] is input into Eq. (23), the following
may result:

∣∣ŷi− yi
∣∣ lim→ 0 (26)

Then

EA
lim→ 0, F2(G)

lim→ 1. (27)

When∣∣ŷi− yi
∣∣=Vmx, (28)

Then

EA= (N − k) ·Vmx (29)

F2 (G)= 1− (N− k) ·Vmx
N ·Vmx = k

N
. (30)

d) Suppose there are two GEP individuals, G1 and G2.

For G1, k=m, and for G2, k= n, (0<m< n<N). The function forms of F2(G1) and F2(G2)
are shown in Fig. 10.

1

N-mN-n
0

EA / Vmx

n / N

m / N

F2(G1)

F2(G2)

F2(G)

Figure 10: The function forms of F2(G1) and F2(G2)

Therefore, we can draw the conclusion that:

(i) The range of F2 is in [0, 1].
(ii) If individual G2 is more similar to the destination circuit than G1, there is F2(G2) >

F2(G1).
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(3) Current fitness function

F3 = 1− SSE
SST

,

SSE =
N∑
i=1

(yi− ŷi)2,

SST =
N∑
i=1

(yi− yi)
2. (31)

N is the amount of test data. ŷi is the current value calculated from the expression represented
by the individual. yi is the actual current value in the test data. yi is the average of y. SSE is
residual sum of squares. SST is sum of squares of deviations. F3 is the square of the multiple
correlation coefficient in statistics, whose value is in [0, 1].

(4) Individual’s fitness

According to the previous description of the algorithm, the individual’s fitness should be a
combination of the three fitness functions, and therefore the individual’s fitness is defined as:

F = [c1 c2 c3] ·

⎡
⎢⎣
F1
F2
F3

⎤
⎥⎦ . (32)

ci is the weight of corresponding Fi in final fitness. The sum of ci is 1:

1=
3∑
i=1

ci. (33)

If we set the weight vector

C = [c1 c2 c3] , (34)

then

F =C

⎡
⎢⎣
F1
F2
F3

⎤
⎥⎦ . (35)

6.2 Experimental Results
Fig. 11 shows a circuit that has no Trojan.

Its Boolean expression is:

Y =A+BC+BD. (36)
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The circuit makes the computation:

Y =
⎧⎨
⎩
0, (ABCD)2 < 5

1, else
(37)

After several logic gates are added to the circuit of Fig. 11, it becomes a circuit with Trojan
(Fig. 12). In the new circuit, Y will also get a value of 0 when (ABCD)2 = 7:

Y =
⎧⎨
⎩
0, (ABCD)2 < 5 or (ABCD)2 = 7

1, else
. (38)

Its Boolean expression becomes:

Y =A+BCD′ +BC′D. (39)

String 4 describes the corresponding effective gene of Fig. 12.

Or, A, Or, And, And, B, And, B, And, Not, D, C, Not, C, D String 4

Only a portion of the values can be tested if there are too many pins. The input value used to
activate the Trojan (ABCD)2 = (0111)2 may be missed at this time. In the following experiment,
the input value (0111)2 will not be provided, and the output will be determined by the evolved
circuit.

A B C D

Y

Figure 11: A circuit has no Trojan

A B C D

Y

Figure 12: The circuit formed by injecting Trojan into the circuit shown in Fig. 11
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Four groups of experiments were designed using different provided values and weight vectors.
Considering that the logic values are first required to be correct in the circuit, the voltage and
current values must be based on the correct logic values in order to make sense. The individual’s
fitness is a combination of several data, in which the proportion of logical value is larger.

6.2.1 Experiment 1
Tab. 2 lists the setting of Experiment 1. None of the 100 exercises were able to discover the

Trojan circuit if only logical values were provided. Fig. 13 shows some typical results.

Table 2: Setting of Experiment 1

Parameter Value

Logic gate And, Or, Not
Values provided Logic values
Weight vector C = [1, 0, 0]
Exercise count 100
Trojans discovered 0

(a)

(b)

(c)

A B C D

Y

A B C D

Y

A B C D

Y

Figure 13: (a) One of the circuits evolved by mixed-feature GEP in Experiment 1, (b) Another
circuit evolved by mixed-feature GEP in Experiment 1, and (c) The 3rd circuit evolved by mixed-
feature GEP in Experiment 1
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The simplified Boolean expression of all the circuits above is:

Y =A+BC+BD (40)

6.2.2 Experiment 2
Tab. 3 lists the setting of Experiment 2. None of the 100 exercises were able to discover the

Trojan circuit if both logical values and voltage values were provided. Fig. 14 shows some typical
results.

Table 3: Setting of Experiment 2

Parameter Value

Logic gate And, Or, Not
Values provided Logic values, voltage values
Weight vector C = [0.8, 0.2, 0]
Exercise count 100
Trojans discovered 0

A B C D

Y

(a)

(b)

(c)

A B C D

Y

A B C D

Y
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(d)

A B C D

Y

Figure 14: (a) One of the circuits evolved by mixed-feature GEP in Experiment 2, (b) Another
circuit evolved by mixed-feature GEP in Experiment 2, (c) The 3rd circuit evolved by mixed-feature
GEP in Experiment 2, and (d) The 4th circuit evolved by mixed-feature GEP in Experiment 2

The simplified Boolean expression of all the circuits above is:

Y =A+BC+BD. (41)

A Trojan still cannot be found, although both the logical value and the voltage value were
provided. The reason is that in digital circuits, the logic value is expressed in the form of voltage
values. For example, a voltage value less than 3V is considered to be 0, and one that is greater
than 3V is considered to be 1. Therefore, the choice of logical value and voltage value as feature
values on this issue is as same as if only the logical value were provided.

6.2.3 Experiment 3
Tab. 4 lists the setting of Experiment 3. During the 100 exercises, the Trojan circuit was

discovered 72 times when logical values and voltage values were provided. Fig. 15 shows some
typical results.

Table 4: Setting of Experiment 3

Parameter Value

Logic gate And, Or, Not
Values provided Logic values, current values
Weight vector C = [0.8, 0, 0.2]
Exercise count 100
Trojans discovered 72

The simplified Boolean expression of both Figs. 15a and 15b is:

Y =A+BCD′ +BC′D. (42)

The equivalent circuit has been discovered, although the original circuit was hidden.

Fig. 15c is a failed result in finding the right circuit. Its Boolean expression is:

Y =A+BC+BD. (43)
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(a)

(b)

(c)

A B C D

Y

A B C D

Y

A B C D

Y

Figure 15: (a) One of the circuits evolved by mixed-feature GEP in Experiment 3, (b) Another
circuit evolved by mixed-feature GEP in Experiment 3, and (c) The 3rd circuit evolved by mixed-
feature GEP in Experiment 3

6.2.4 Experiment 4
Tab. 5 lists the setting of experiment 4. During the 100 exercises, the Trojan circuit was

discovered 67 times when all three feature values were provided. Fig. 16 shows a different result.

Table 5: Setting of Experiment 4

Parameter Value

Logic gate And, Or, Not
Values provided Logic values, voltage values current values
Weight vector C = [0.6, 0.2, 0.2]
Exercise count 100
Trojans discovered 67
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A B C D

Y

Figure 16: Typical circuit evolved by mixed-feature GEP in Experiment 4

Its simplified Boolean expression is:

Y =A+BCD′ +BC′D. (44)

A circuit equivalent to the original circuit has been found. The equivalent circuit has been
discovered even though the original circuit was hidden.

In this group of experiments, some wrong circuits were found by the failed evolution. As
shown in Fig. 17, their Boolean expressions are:

Y =A+BC+BD. (45)

(a)

(b)

A B C D

Y

A B C D

Y

Figure 17: (a) One of the false results in Experiment 4 and (b) Another false result in Experi-
ment 4



1172 CMES, 2021, vol.127, no.3

Although three feature values were used in this group of experiments, the efficiency in dis-
covering the Trojan was similar to that in Experiment 3, which used only two feature values. This
is because the logical value itself is expressed in the form of voltage values and the three feature
values are equal to the two feature values.

6.2.5 Experiment 5
As discussed in Experiments 2 and 4, in digital circuits, the logical value is expressed in the

form of voltage value, e.g., a voltage value less than 3V is referred to as 0, while a voltage value
3V and above is considered to be 1. Therefore, the result of using the logical value as the feature
value should be similar to that of the voltage value. To verify this hypothesis, Experiment 5 is
designed as a control test to Experiment 3. Tab. 6 shows the parameters and results. It differs from
Experiment 3 in the replacement of the logical value by the voltage value, and the modification
of the fitness function page accordingly.

Table 6: Setting of Experiment 5

Parameter Value

Logic gate And, Or, Not
Values provided Voltage values, current values
Weight vector C = [0, 0.8, 0.2]
Exercise count 100
Trojans discovered 53

We can see that in 53 of the 100 experiments, results equivalent to Trojan circuits were
obtained, but these circuits failed to make breakthrough findings in Experiments 3 and 4.
However, several false circuits were found, as shown in Fig. 18. The Boolean expressions are:

Y =A+BC+BD. (46)

Experiment 5 shows a lower probability in detecting Trojan circuits than Experiment 3.
Nevertheless, the result is acceptable considering the randomness of evolutionary calculation.
Results indicate that voltage data and logical value data in the mixed-feature GEP algorithm
produce similar results. This verifies the hypothesis in Experiments 2 and 4 that two feature values
are inter-replaceable in the algorithm if there is a simple correlation between them. Therefore,
the maximization of variance between feature values helps to improve the effectiveness of the
algorithm when the simple and direct correlation is uncertain.
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(a)

(b)

A B C D

Y

A B C D

Y

Figure 18: (a) One of the false results in Experiment 5 and (b) Another false result in Experi-
ment 5

7 Conclusions

This paper proposes a mixed-feature GEP (MF-GEP) algorithm in which multiple feature
values were fused into the same operator. There is a specific probability that Trojan circuits could
be detected by MF-GEP, which automatically discovers the evolutionary power of mathematical
formulas. The fewer features that are used, the higher the efficiency of the GEP evolution, but the
conclusion is in wider disparity from the real circuit. At the same time, as the number of features
used increases, the efficiency of GEP evolution decreases, but the conclusion drawn gets closer to
the real circuit. However, if there is a direct conversion relationship between the multiple feature
values used, these values can be considered as one and the accuracy of MF-GEP evolution will
not be increased.
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