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ABSTRACT

In the present study, we propose to integrate the bilateral filter into the Shepard-interpolation-based method for
the optimization of composite structures. The bilateral filter is used to avoid defects in the structure that may arise
due to the gap/overlap of adjacent fiber tows or excessive curvature of fiber tows. According to the bilateral filter,
sensitivities at design points in the filter area are smoothed by both domain filtering and range filtering. Then, the
filtered sensitivities are used to update the design variables. Through several numerical examples, the effectiveness
of the method was verified.
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1 Introduction

Advanced manufacturing technologies of fiber-reinforced composite structures, for instance
the automatic tape laying (ATL) and automatic fiber placement (AFP), allow composite structures
to be manufactured with curvilinear fibers [1,2]. Therefore, stiffness can be different at different
positions of the structure, and the freedom for improving the structural performance is larger than
the constant stiffness composite structures [3–5]. However, the gap/overlap and excessive curvature
of curvilinear fiber tows give rise to the appearance of manufacturing defects. The issue should
be carefully dealt with at the design stage. When curvilinear fiber tows are not parallel [6–9], gaps
and overlaps between adjacent fiber tows will appear. When the curvature of the fiber tow is too
large, the tension and compression on the edges of the fiber tows will result in delamination and
wrinkling [10,11].

How to avoid such defects has become an important topic in the design optimization of
composite structures with curvilinear fibers, and many efforts have been made in recent years.
Brampton et al. [8] employed the isolines of level set function to represent equally spaced fiber
paths, hence preventing gaps/overlaps. Brooks et al. [11] treated fiber paths as the streamlines
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of a vector field, and gaps/overlaps and curvatures are respectively controlled by the constraints
of the curl and divergence of this vector field. Hao et al. [12] proposed a multi-stage design
strategy based on lamination parameters, in which the curvature and parallelism constraints were
formulated as inequalities by using path functions. Hong et al. [13] developed an approach
that controls the curvature of a fiber path through the gradient of lamination parameters. Tian
et al. [14] proposed a parametric divergence-free vector field (pDVF) method for the optimization
of fiber angle arrangement, and it ensures that fibers in one-ply do not cross each other.

In our previous study, within the Shepard-interpolation-based framework for design optimiza-
tion, a gap/overlap constraint and a curvature constraint were proposed [15]. However, the two
constraints should be defined at each design point, thus there are a large number of constraints,
and the optimization is not efficient. In order to enhance the optimization efficiency, in [16] two
filters were proposed to address the issue of gap/overlap and excessive curvature. At each design
point, the sensitivity is first filtered in a rectangular region around the point, and by this means
the fiber curvature is controlled. Then, in another rectangular region around the point, the filtered
sensitivities are averaged to ensure fibers parallel to each other. Finally, the resulting sensitivity
information is used to update the design variable.

In the present study, we propose to integrate the bilateral filter into the Shepard-interpolation-
based fiber angle optimization (SFAO) [17,18]. According to the bilateral filter, a circular area is
defined at each design point, and sensitivities at design points in the circular area are smoothed
by both domain filtering and range filtering. The domain filtering is responsible for smoothing
the magnitude of sensitivities, and the range filtering is responsible for adaptively adjusting the
strength of smoothing according to the difference of fiber angles. The filtered sensitivities are
used to update the design variables. As compared to the two-filter approach in our previous
study [16], the bilateral filter approach is simpler and more convenient. In addition, the bilateral
filter developed for image processing [19–21] has also been applied to the SIMP (Solid Isotropic
Material with Penalization) [22,23] method for structural topology optimization, and it was proved
to be effective to suppress the checkerboard pattern and simultaneously obtain a high-contrast
black-white pattern of structure.

2 Optimization Problem

In this paper, the minimum compliance problem defined in Eq. (1) is considered

find θi (i= 1, 2, . . . , n)

min c= FTU

s.t. KU= F

θmin ≤ θi ≤ θmax (1)

where θi is the fiber angle at the i-th design point; n is the total number of design points; c is the
objective function, i.e., the compliance of the structure; F is the global load vector; U is the global
displacement vector; K is the global stiffness matrix; θmax and θmin are respectively the upper and
lower bounds of the design variables, aiming to avoid the “π -ambiguity” issue of fiber angles [18].

Inspired by Kang et al. [24,25], the Shepard interpolation was proposed in our previous study
to describe the fiber angles in the design domain. The fiber angles at finite element centers are
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computed by using a continuous function. This function is constructed by the Shepard method
that interpolates the fiber angles at scattered design points, and it is given by [18]

�(x)=
∑
i∈Ix

ωi(x)θi (2)

where �(x) is the fiber angle at point x; Ix is the set of design points in the influence domain of
point x; θi is the fiber angle at the design point at pi; ωi(x) is a weight function given by [26–28]

ωi(x)=
∥∥x− pi

∥∥−p∑
i∈Ix

∥∥x− pi
∥∥−p (3)

where
∥∥x− pi

∥∥ is the Euclidean distance between point x and design point pi; p is a positive
parameter, and in the present study p = 2 because this makes ωi(x) infinitely differentiable [29].
This guarantees that the spatial variation of the fiber angle is continuous and smooth.

Another useful property of Shepard interpolation is expressed as

min
i

{θi} ≤�(x)≤max
i

{θi} (4)

According to Eq. (4), when the fiber angle at any point in the design domain needs to be
constrained as �(x) ∈ [θmin, θmax], this goal can be readily achieved by constraining the design
variables θi as θi ∈ [θmin, θmax] .

The equilibrium equation KU= F is solved by the finite element method. The global stiffness
matrix K is obtained by assembling the element stiffness matrix Ke given by

Ke =
∫

�e

BTD (θe)Bd� (5)

where B is the displacement strain matrix; D (θe) is the elastic matrix depending on the fiber angle
(denoted as θe) in the e-th element, i.e.,

D (θe)=T (θe)D0T (θe)
T (6)

where D0 is the elastic matrix when the fiber is not rotated, and T (θe) is the rotation matrix.

3 Sensitivity Analysis and Bilateral Filter

The sensitivity of the objective function with respect to design variables is given by [18]

∂c
∂θi

=−
N∑
e=1

uTe
∂Ke

∂θe

∂θe

∂θi
ue (7)

The derivative of the fiber angle θe with respect to design variable θi is obtained through
Eq. (2) as

∂θe

∂θi
=

{
ωi(xe), i ∈ Ixe
0, i /∈ Ixe

(8)

where xe is the coordinate of the centroid of the e-th element; Ixe is the set of design points in
the influence domain of xe.
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After the sensitivity of each design variable θi has been obtained according to Eq. (7), they
are smoothed by the bilateral filter, as shown in Fig. 1. In order to improve the effects of filtering,
the bilateral filter is usually applied to the sensitivities several times in each iteration of the
optimization. The black dots represent the design points, and the yellow area is the bilateral
filtering area. In this paper, the radius of the circular filtering area (denoted as rmin) is 10 times
the grid size of design points to include more design variables.

The bilateral filtering of sensitivities is written as

∂̂c
∂θi

= 1
H(pi)

∑
pj∈Ni

Wc
(∥∥pj− pi

∥∥)
Ws

(∣∣θj − θi
∣∣) ∂c

∂θj
(9)

where Ni is the circular filtering area centered at the design point i; H(pi) is defined for normal-
ization; Wc(

∥∥pj − pi
∥∥) is the domain filtering function; Ws(

∣∣θj − θi
∣∣) is the range filtering function.

They are respectively given by [19,20]

H(pi)=
∑
pj∈Ni

Wc
(∥∥pj− pi

∥∥)
Ws

(∣∣θj − θi
∣∣) (10)

Wc
(∥∥pj − pi

∥∥)= e
− 1

2

(‖pj−pi‖
σd

)2

(11)

Ws
(∣∣θj − θi

∣∣) = e
− 1

2

( |θj−θi|
σr

)2

(12)

where σd and σr are the parameters of domain filtering and range filtering respectively. The two
parameters directly affect the performance of bilateral filtering [19,21]. σd controls the strengthen
of Gaussian filtering, and σr controls the discrimination ability of fiber angles.

Figure 1: Schematic diagram of the sensitivity bilateral filtering area (the black dots represent the
design points)
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4 Numerical Examples

In this section, the proposed optimization method is applied to several 2D structures subjected
to in-plane loads. In these examples, the mechanical properties of the composite material are
assumed as Ex = 1, Ey = 0.05, Gxy= 0.03, vxy = 0.3, vxy = 0.015. Plane-stress quadrilateral elements
are used for the finite element analysis, and self-weight of the structure is not considered. The
criterion of convergence is that the number of iterations is no more than 50. According to our
experience, 50 iterations are enough for convergence. When the initial value of the fiber angle
is set as 0◦, the upper and lower bounds of the design variables are set as θmin = −90◦ and
θmax = 90◦ − ε; ε is set as a very small value to avoid “π -ambiguity” [18]. In this paper, ε is set
as 1×10−8. When the initial value of the fiber angles is set as 90◦, the upper and lower limits of
design variables are set as θmin = 0◦ and θmax = 180◦ − ε.

The fiber angle distribution obtained by the optimization is post-processed by using the
Tecplot software to generate fiber paths. In fluid dynamics, it is well known that the velocity of
any point in a flow field is tangent to the streamline through the point. For the element e in the
design domain, a vector at the element center is defined by

ve = (cos θe, sin θe) (13)

This vector is tangent to the fiber path through the element center. After importing the vector
field constructed by Eq. (13), the Tecplot generates fiber paths.

4.1 Example 1
The first design problem is shown in Fig. 2. The size of the design domain is 1 m× 4 m.

The lower-left corner is fixed, and the lower right corner is fixed vertically. The center of the top
edge is subjected to a downward concentrated load F of 1 N. Because of the symmetry of the
structure, only the right half is considered in the optimization.

Figure 2: Design problem of the first example

Firstly, 10× 20 design points are evenly arranged in the design domain. The initial value of
θi at each design point is set as 0◦, as shown in Fig. 3a. Then, the design domain is divided into
20× 40 square elements. The initial fiber angles θe at the center points of all the elements are
calculated by using the Shepard interpolation, as shown in Fig. 3b. The bilateral filter is applied
to the sensitivities six times in each iteration of the optimization, and the parameters are set as
σr = 1 and σd = 5. The results of optimization are shown in Fig. 4. The convergence history is
shown in Fig. 5, and it can be seen that the optimization gradually converges after 20 steps.
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(a) (b)

Figure 3: The initial arrangement of fiber angles for the first example. (a) Initial fiber angles at
design points, (b) initial fiber angles at center points of finite elements

(a) (b)

Figure 4: The results of the first example with σ r = 1, σ d = 5 and six repetitions of bilateral
filtering in each iteration, and the structural compliance is 178.14. (a) The optimized fiber angles,
(b) the fiber paths obtained by Tecplot

Figure 5: The convergence history of the first example

Next, we investigate the influence of the number of bilateral filtering on the optimization
results. We will also analyze the influence of domain filtering parameter σd and range filtering
parameter σr on the optimization results.

When the number of bilateral filtering in each iteration is investigated, the parameters are set
as σr = 1 and σd = 3. The optimization results with different numbers of repetitions of bilateral
filtering in each iteration are summarized in Tab. 1. Without bilateral filtering, although the
structural compliance can reach a smaller value of 72.39, severe overlaps of fibers can be found
in the optimized structure, which does not meet the requirement of ATL or AFP manufacturing



CMES, 2021, vol.127, no.3 1093

technology, and such results have no practical use. With the increase of the number of bilateral
filtering in each iteration, the distribution of fiber paths becomes more uniform, since the fiber
paths are almost parallel and the curvature of fiber paths are smaller. These results proved that
bilateral filtering is effective.

Table 1: The optimization results with different numbers of repetitions of bilateral filtering in each
iteration (with fixed parameters σ r = 1, σ d = 3)

Filtering times Fiber angles Fiber paths Compliance

0 72.39

1 95.09

2 105.84

4 116.90

5 116.47

6 116.26

8 138.98
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Next, the influence of the domain filtering parameter σd and the range filtering parameter σr
on the results are discussed. The number of repetitions of bilateral filtering in each iteration is
set as six; the initial angle of the design point is set as 0◦; the results are shown in Tabs. 2 and 3.
It can be seen from Tab. 2 that when σr is 0.1, the change of fiber angle is quite sharp; the fiber
paths are not so smooth; the distance between fiber paths is not uniform. With the increase of
σr, the spatial variation of the fiber angles becomes smoother. When σr increases from 3 to 5,
the effect gradually weakens because the optimization results are almost the same. In addition,
it can be seen from Tab. 3 that the larger value of σd leads to significant smoothing of fiber
angles [19,21]. Therefore, when the bilateral filter is used to optimize fiber angle, the parameters
σr and σd need to be properly set. According to our experience gained from numerical examples,
we suggest that σr should be selected between 0.5∼2 and σd should be selected between 3∼5.

Table 2: The optimization results obtained with different σ r

Parameters
Fiber angles Fiber paths Compliance

3 0.1 134.83

3 0.5 111.44

3 1 116.26

3 2 117.97

3 3 117.87

3 5 118.04
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Table 3: The optimization results obtained with different σ d

Parameters
Fiber angles Fiber paths Compliance

1 1 90.13

3 1 116.26

5 1 178.14

8 1 216.39

4.2 Example 2
The second design problem is shown in Fig. 6. The design domain is 1 m×3 m in size, fixed

at the left edge. Also, it is subjected to in-plane load F of 1N, and evenly distributed along the
boundary at the top right with a width of 0.5 m. In the design domain, there are 10× 30 design
points uniformly arranged, and the initial values of all the θi are 0◦, as shown in Fig. 7a. The
design domain is divided into 20×60 square elements. The initial fiber angle θe at the center points
of all the elements are calculated by the Shepard interpolation, and they are shown in Fig. 7b.
The bilateral filter is applied to the sensitivities six times in each iteration of optimization, and the
parameters are set as σr = 1 and σd = 5. The results of the second example are shown in Fig. 8.

Figure 6: Design problem of the second example
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(a) (b)

Figure 7: The initial arrangement of fiber angles for the second example. (a) Initial fiber angles at
design points, (b) initial fiber angles at center points of finite elements

(a) (b)

Figure 8: The results of the second example with σ r = 1, σ d = 5 and six repetitions of bilateral
filtering in each iteration, and the structural compliance is 195.63. (a) The optimized fiber angles,
(b) the fiber paths obtained by Tecplot

It can be seen from Fig. 8b that the fiber paths are almost parallel to each other, which means
that there exists no gap or overlap between adjacent fiber tows. In addition, the fiber paths are
fairly smooth, which means that their curvatures are not large. At the same time, the optimization
results also show that the suggested values of the parameters for the bilateral filter in the first
example are reasonable.

Figure 9: Design problem of the third example

4.3 Example 3
The third design problem is shown in Fig. 9. The design domain is 1 m× 4 m in size. The

lower-left corner is fixed and the lower right corner is fixed vertically. The concentrated load F of
1 N is applied at the middle point of the bottom edge. There are 10×40 design points uniformly
arranged in the design domain, and the initial value of θi at all the design points are 0◦, as shown
in Fig. 10a. The design domain is divided into 20× 80 square elements. The initial fiber angle
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θe at the center points of all the elements are shown in Fig. 7b. The bilateral filter is applied
to the sensitivities four times in each iteration, and the parameters are set as σr = 1 and σd = 5.
The results are shown in Fig. 11. Through this example, the effectiveness of bilateral filtering in
fiber angle optimization is proved again. As can be seen in Fig. 11b, the fiber paths are parallel,
equidistant, and without large curvature.

Figure 10: The initial arrangement of fiber angles for the third example. (a) Initial fiber angles at
design points, (b) initial fiber angles at center points of finite elements

Figure 11: The optimization results of the third example with σ r = 1, σ d = 5 and four repetitions
of bilateral filtering in each iteration, and the structural compliance is 82.05. (a) The optimized
fiber angles, (b) the fiber paths obtained by Tecplot
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5 Conclusions

In this paper, the bilateral filter was integrated into the Shepard-interpolation-based method
for the optimization of composite structures. According to the bilateral filter, sensitivities at design
points in the filter area are smoothed by both domain filtering and range filtering. Then, the
filtered sensitivities are used to update the design variables. Through several numerical examples,
it was found out that the bilateral filter is useful to avoid gap/overlap between adjacent fiber tows
or excessive curvature of fiber tows.
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