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ABSTRACT

ICU patients are vulnerable to medications, especially infusion medications, and the rate and dosage of infusion
drugsmay worsen the condition. The mortality prediction model can monitor the real-time response of patients to
drug treatment, evaluate doctors’ treatment plans to avoid severe situations such as inverse Drug-Drug Interactions
(DDI), and facilitate the timely intervention and adjustment of doctor’s treatment plan. The treatment process of
patients usually has a time-sequence relation (which usually has the missing data problem) in patients’ treatment
history. The state-of-the-art method to model such time-sequence is to use Recurrent Neural Network (RNN).
However, sometimes, patients’ treatment can last for a long period of time, which RNN may not fit for modelling
long time sequence data. Therefore, we propose to use the heterogeneous medication events driven LSTM to
predict the outcome of the patient, and the Natural Language Processing and Gaussian Process (GP), which can
handle noisy, incomplete, sparse, heterogeneous and unevenly sampled patients’ medication records. In our work,
we emphasize the semantic meaning of each medication event and the sequence of the medication events on
patients, while also handling the missing value problem using kernel-based Gaussian process. We compare the
performance of LSTM and Phased-LSTM on modelling the outcome of patients’ treatment and data imputation
using kernel-based Gaussian process and conduct an empirical study on different data imputation approaches.
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1 Introduction

ICU provides a tremendous amount of medical data, which is generated by the interactions
between patients and ICU staff and the continuous patients’ physical measurements. This large
amount of medical data provides a great opportunity for machine learning algorithms. Nowadays,
a substantial amount of existing research has utilized machine learning techniques in the med-
ical field, such as the diagnosis procedure [1], genetic information extraction [2], etc. With the
increasing popularity of Electronic Health Records (EHR), it provides a great opportunity for
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medical researchers. An Electronic Health Records (EHR) is a collection of the data measured
during the course of medical care for patients. EHR consists of heterogeneous data types with
different information: demographic information, textual clinical notes, medical exposures, etc. The
EHR data provides large enough information to build data-driven machine learning models for
ICU patients. However, challenges such as sparsity, irregularity, heterogeneity and noise inside
the data itself, increasing the difficulty of modeling and analyzing EHR data. A substantial
amount of existing research has utilized machine learning techniques on EHR data, targeting
specific prediction and modeling problems (such as time-series modeling, disease development
progress prediction, etc). Most efforts have focused on using statistical analysis [3–5] and tra-
ditional machine learning approaches [6–8], recently using deep learning [9–11]. Compared with
the traditional machine learning approaches, deep learning has comparatively better performance
in various application fields, such as image classification [12], speech recognition [13], natural
language processing [14], etc. Deep learning can be used to extract features from the data to
obtain concise representation of sample data. The feature representation in EHR data is a very
important issue, which can discover the information from rich historical medical record data.
In the development and application of EHR, deep learning and natural language processing
technology based on deep learning are also expected to extract feature representation on patients’
medical data.

However, the biggest challenge is to utilize the EHR data, which is due to the properties of
EHR data such as high dimension, heterogeneity, missing values, and long temporal dependency,
etc. EHR contains diverse medical features from different sources (e.g., vital sign measurements,
dose name, physicians’ notes, description of medical events, and so on) [15], which results in high
dimension and type heterogeneity of information. Different types of medical events have different
sampling frequencies. For example, the sampling frequency of drug related events usually is in the
unit of ‘days’, while the frequency of vital sign related events is in the unit of ‘hours’ and the
brainwave data sampling frequency is in the units of ‘seconds’ [16]. Moreover, not all the measures
within the same sampling unit would be recorded, or the data points may lose or have the “side
effect” problem. These create problems for data normalization and data imputation.

One of the most important characteristics of EHR is the time sequential data nature. Using
the recurrent neural network (RNN) has been the current state-of-the-art for modelling sequence
type of data because of its memory mechanism inside its cell structure. However, patients’ hospi-
talization typically spams over a long period of time, which using the RNN may have trouble with
the gradient explosion or gradient vanish. Hochreiter [17] proposed the idea of Long Short Term
based RNN (LSTM) in 1997 to model sequence type of data spamming over 1000 time steps. The
“dropout” mechanism enables LSTM to tackle down the long-time-lag tasks. The current usage of
EHR increases the volume of data in EHR at an astonishing rate, which unavoidably slows down
the training process of LSTM. With the envisioning of the development of EHR, LSTM may not
be a very optimal choice. Neil et al. [18] recently proposed a transformed LSTM, called Phased-
LSTM, which can accelerate the training process, especially for long and event-based sequence
data. However, as for the problem of heterogeneous data structure, it is not convenient to directly
use Phased-LSTM.

EHR data consists of various medical event, which contains rich latent relationships, e.g.,
cholesterol tests should be more related to heart/liver than kidney. The semantic representa-
tion can preserve the similarities between related medical events, while capturing the difference
among different medical events. The medical events then were arranged based on their occurring
time stamp and imputed the missing medical event using the GP. Feature representation is an
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important technique for textual clinical notes. As for medical textual information, topical mod-
elling, medical name entities recognition, and sentiment analysis all have been used in research.
Recently, some research has been focused on multivariate data imputation for solving the missing
value problem [19]. We use natural language processing technology to build the embedding space
for semantic relations among different medical events. Constructing a word embedding space is
one of the approaches in which the whole note can be represented as a matrix. In our data-
preprocessing component of the system, each missing medical event information will be imputed
Gaussian Process and then to the deep learning models for morality prediction. In this paper,
we propose to use Phased-LSTM for studying the effect of irregular heterogeneous event-based
long sequence medical data on the patient’s mortality prediction. During the experiment, we
evaluate the performance of the Phased-LSTM with the original LSTM model. In addition, we use
semantic representation for each medical event. The contributions of this paper are as follows:

(1) We propose a feature representation learning framework for the problems of heterogeneous
type of time-series data from multi-source irregular sampling in EHR. This framework is
to build models based on natural language processing and Guassian Process to improve
time-series data.

(2) Through experiments of mortality risk prediction by MIMIC III clinical fluid-related med-
ical events and diagnosis report, we demonstrate the effectiveness of the model framework
that we proposed this data process methods and using proposed networks.

(3) We compared several popular data imputation approaches for time-series missing values
problem. We present that the Gaussian Process with squared exponential (SE) covariance
kernel function has the best performance.

2 Related Work

2.1 Medical Word Embedding Space
Recent research has proposed various methods to generate textual health care data representa-

tion. One approach is to construct a latent space representation for patients. Using the latent space
representation can preserve the patients’ features and model the patients’ condition. Caballero
Barajas et al. [20] proposed a method using Generalized Linear Dynamic Models to model
patients using mortality probability as latent state. The latent state is changing over time. They
show the model can detect increasing mortality probability before it happens. Krompass et al. [21]
used a personalized temporal multidimensional latent embedding space to describe the state of
each patient. This latent space can preserve the features for each individual patient. Jonnagaddala
et al. [22] used Latent Dirichlet Allocation (LDA) to generate topic distribution weights for each
patient as features to identify patient’s smoking status. In recent research, people use biomedical
text mining to construct word2Vec models based on biomedical research articles [23]. The semantic
meaning of medical vocabulary can be better preserved in the way of studying the similarities or
relations between them.

Some other researches have used natural language processing techniques to train differ-
ent word representations to construct potential spaces. There are various approaches developed
recently to generate the word embedding such as word2Vec [24,25], GloVe [26], and fast-
Text [27,28]. Krishnan et al. [29–31] evaluated the above 3 approaches with different parameters
to generate the word embedding space and the word embedding space was the features input
for machine learning algorithm. They lastly compared the word embedding space feature rep-
resentation with the 4 traditional scoring systems. In their results, the word embedding space
feature inputs using Skipgram approaches and Random Forest classifier is able to outperform
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SAPS-II, SOFA, APS-III and OASIS by 43–52%. Other NLP techniques such as topic modeling
also have been used in recent patients’ mortality prediction tasks. Chan et al. [32] investigated the
effectiveness of using topic modeling latent space for mining cancer clinical notes. They applied
the topic modeling on patient clinical text and studied the correlation between the result of
topic modeling and the available panel of mutation data. Their results indicate the successful
identification of several genotype-phenotype relationships. Recent research in patients’ mortality
prediction has used the word embedding space on clinical notes. However, because the EHR
contains a large number of unstructured medical text annotations, there may be a problem with
sparse vector representation or the inability to represent the entire context.

In our work, we want to study the effects of a sequence of clinical medication events for
patients. Those events can be homogeneous and heterogeneous. Using the word2Vec model can
better preserve the similarities between homogeneous medication events and capture the difference
between heterogeneous medication events.

2.2 Data Imputation
Clinical data has the challenges of irregular-sampling, high-dimensionality, sparsity, hetero-

geneous data types. Many methods have been proposed to address these challenges, such as
Matrix Factorization [33] for solving high-dimensional and sparsity data, kernel density estimation
smoothing technique [34], and non-uniform fast frontier transformation for irregular sampling
problem [35], etc. Gaussian Process has been shown to be very effective in modeling time-series
data. Chen et al. [36] used the Gaussian Process to forecast the wind-power based on time-series
wind speed data. Their Gaussian Process model is able to predict the wind-power up to one day
ahead.

Besides, the Gaussian Process is also used for handling the missing-value problem. The
missing-value problem can be viewed as the prediction of the missing values over a set of contin-
uous quantities. Thus, we can train Gaussian Process regression model over the observed values
and output the predicted results for missing values. The common way of interpreting the Gaussian
Process is a distribution over functions and inference occurs in the space of functions [37].
Therefore, the prediction of Gaussian Process regression model has the form of a full predictive
distribution, and the missing values can be imputed with the maximum-likelihood values. The
details of data imputation using Gaussian Process will be discussed in Section 3.2.

2.3 Recurrent Neural Network
Deep learning has been proven to be an effective approach to making predictions on patient

outcomes, compared with other machine learning algorithms. A common feed-forward network
fails to model the data with temporal time-dependency relationship because model requires to use
the information from previous time into current calculation. Data with temporal time-dependency
is also called sequence data. Recurrent Neural Network are commonly applied to sequence data.
However, patient’s data commonly has long-term dependency, which also represents the long
sequence length. During the training, the back propagation of the RNN requires longer calcula-
tion. Sometimes, we cannot train a RNN based deep neural network model when the data has
a long temporal dependency property. This is mainly because of the vanish gradient problem or
gradient explosion problem discussed by Sepp Hochreiter [38]. The vanishing gradient problem
is caused by exponentially updating the weights using vanishingly small gradients. This problem
prevents the model from training and may occur when there is long-term dependency in the
training data. The Long Short Term Memory based RNN (LSTM) proposed by Sepp Hochreiter
adds a set of “gates” in the neuron structure [17]. This set of “gates” determines the drop out
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and update information and the calculation of the neuron status does not involve any of the
exponentially fast decaying factor.

The dramatically growing of the EHR scales the amount of data. The patients’ data has
even longer temporal time-dependency. The base structure of LSTM does not meet this trend.
Recent research has been focusing on modifying the structure of the RNN/LSTM neuron. Kounik
et al. [39] proposed a different RNN network called Clockwork RNN (CN-RNN). In CN-RNN,
the hidden layer is partitioned into several modules. Each module has its prescribed clock, and
each clock has its own fixed clock rate. This design of the CN-RNN utilizes the different clock
rates so that the slower clock rate neuron connects with faster clock rate neurons and helps to
contain the information from previous computation. The utilization of clocks with different clock
rate allows the CN-RNN to work well in longer time-dependencies. Daniel Neil developed an
improved LSTM neuron, called phased-LSTM, which adds a time gate to the LSTM to control
the phase of the neuron, enabling the Phased-LSTM training error to be maintained in back
propagation, thus achieving a very fast convergence rate, and accelerating the training process for
long-term sequence clinical data [18]. The more details will be discussed later in this article.

3 Model Design for Data

3.1 Medical Event Representation
We extracted fluid-input-related event records from MIMIC III database [15], and we

extracted the following information from this table: (1) “itemid” is the identifier for a single
measurement type, (2) “rate” lists the rate at which the drug or substance was administered
to the patient, (3) “totalamount” lists the total amount of the fluid in the bag containing the
solution, (4) “starttime” and “endtime” record the start and end time of an input/output event.
This information will be used to build per-patient time-series event data.

Our framework pipeline is shown in Fig. 1. The input data of the pipeline is the word vector
representation of the drug/substance. Then, we will increase the vector dimension with the rest
numeric value variables mentioned above. Each input vector can be represented as [< event >,
total amount, rate, body temperature, pulse rate, respiration rate, blood pressure], where < event > is
the semantic word vector representation for this medication event and the rest variables inside the
vector are the numerical measurement values. For body temperature, pulse rate, respiration rate, blood
pressure vital variables, we use the mean value in that interval.

Figure 1: Patient mortality risk assessment model pipeline
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The process of preparing medical event representation for each patient is illustrated in Fig. 2.
We represent each medication event using the context of patient’s medical record under the
assumption that the target medical event and its context medical events are related. This kind
of relationship can be captured using the NLP word vector representation technique. The related
medical events should theoretically be close to each other in the embedding space constructed
by the NLP word vector model. For example, Anticardiolipin Antibody is a fluid medicine in
Hematology. Based on its context medical events, it should be close to Heparin, which is also a
fluid medicine in Hematology and both of them are related to the treatment of blood clots. If
two fluid medicine that are not semantically related to the treatment, one of the reasons could
be human errors. The semantic relation inside EHR could be used to reduce the possibility of
medical accidents.

We used the word2Vec model to construct word vector representation. word2Vec is a deep
neural network model that can implement the vector representation of the word [40]. In our
design, illustrated in Fig. 3. We consider each event as a “word”, and all of these “words”
construct the patient “document”. Then, all patients build up the entire corpus. There are two
algorithms to train the word2Vec model: Continuous-Bag of Words (CBOW) and skip-gram.
CBOW uses the target word to predict the context words, while skip-gram uses the context words
to predict the target words. Both of the algorithms can be used for constructing the word vector
representation. Each medical event can be represented as a dense vector, which is one of the input
features of our model.

The process of building our own word2Vec model is very similar to the normal NLP process.
Fig. 2 demonstrates the whole process of constructing vector representation of patient’s medical
event and other numerical medical data in his/her EHR, and then concatenate together to be the
input of the neural network.

Given a collection of medical events for patient i records Ei =
{
Ei1 ,Ei2,Ei3, · · ·,Ein

}
, where n is

the number of time points when events occur, and a set of vital signs and other numerical medical
records, Ri =

{
Ri1 ,Ri2,Ri3, · · ·,Rin

}
, where m is the number of time points when vital signs are

recorded. After the word2Vec model, each medical event e∈R1∗b and the for each Eij ∈Rn∗1∗(k∗b),
where k is the time point that has the most medical events. Therefore the Ei has the dimension of
Ei ∈Rn∗1∗(k∗b). Similarity, the numerical medical records Ri has the dimension of Ri ∈Rn∗1∗(k∗a),
where m is the number of timestamps that have the records, a is the number of vital sign records.
After the Gaussian Process, Ei and Ri will concatenate together to become the input tensor with
dimension max(m,n) ∗ 1 ∗ (a+ k ∗ b) for the network. We first do the stemming by removing all
the information except the fluid related infusion item name ordered by time sequence. Those item
names reconstruct each patient’s document and the entire corpus. Even though item names may
consist of multiple English names, we still treat each item as a single word. Then, we build the
dictionary, and our goal is to find the word vector. We trained our own word2Vec model based on
this corpus using the CBOW algorithm. Then, an event ei can be represented as a word vector �ei.
Word vector events representation can distinguish different types of events. However, the difference
between the same type of events cannot be captured. For the same type event that gives patients,
the total dose amount, the infusion rate of the dose and the vital sign measurements account for
the similarities of the events. Therefore, each event is represented as ei =< �ei, total amount, rate,
body temperature, pulse rate, respiration rate, blood pressure >, where the total amount, rate, and all
the representative vital signs take into consideration of representing a medical event.
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Figure 2: The word2Vec model transformed patient’s clinical notes into vector representation

The Gaussian process imputes the missing values until all the values are uniformly distributed
over time. Then, two vectors concatenate together as the input to the neural network. The
dimension of the word vector may be too high and also increases the number of parameters in
our model. The large number of parameters in the model could lead to problems like over-fitting,
long training time, etc. We decided to apply the dimensional reduction technique on the word
vector. We currently use the Principle Component Analysis (PCA) to reduce the dimension so that
the length of event vector representation will be optimal for model input, while the similarities
and dissimilarities of the event vector can still be preserved.

3.2 Gaussian Process Regression for Missing Values
The hallmarks of EHR data are the missing values, high dimensionality, irregular sampling

and heterogeneous data types. These problems can greatly influence the performance of the
prediction model. Fig. 3 illustrates the missing value and irregular sampling problems in a patient’s
record. Some values are missing for some medical records and medical records may not be
regularly distributed at patient’s timeline. One of the major problems in the medical data time
series is the missing values of data caused by sparse data and irregular sampling. Gaussian process
(GP) has been widely used for data imputation process [41–43] for time series data. It utilizes the
“kernel trick”, Kernel function measures the similarities between observed samples, then imputes
the missing value with the maximum likelihood.

This major problem in the time series of medical data is caused by sparse data and unbal-
anced sampling, which brings certain limitations to the application of model on mortality risk
assessment task. Gaussian Process Regression is a machine learning method developed based on
Bayesian theory and statistical learning theory. Its advantage is that the high predictive accuracy
of data imputation can be achieved by a small number of hyper parameters.

EHR data is a time-series data that commonly has the missing-value and irregular sampling
problem over time. We select Gaussian Process to pre-process the EHR data of each patient.
Given a training set {X, Y}, Gaussian Process is able to predict a probability distribution of Y*
over given X*. Thus, it can be used to do imputation for the “missed data”.

In Probability and Gaussian theory, the Gaussian process is a random process on the obser-
vations is a continuous variable. Here, we can assume that all the features about the patients’
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medical records can be continuous and time-based random variable. The most important part of
the Gaussian Process can be defined as its mean and kernel function.{
m(x)=E[f (x)]
k(x,x′)=E[(f (x)−m(x))(f (x′)−m(x′))]

(1)

t1      t2       t3       t4        t5       t6       t7       t8 

v5

v4

v3

v2

v1

clinical
notes

clinical
notes

clinical
notes

clinical
notes

time

Figure 3: An illustration of the problem: missing value, irregular sampling, and heterogeneous data
types

Here, x, x′ ∈Rd is the arbitrary random variable. Therefore, Gaussian Process can be defined
as:

f (x)∼GP(m(x),k(x,x′)) (2)

As for data set x, y consists of n observations, its predicted value can be satisfied by the
following model:

y= f (x)+ ε (3)

The x is an input vector with the d dimension, y is the output vector. ε is the noise we added
to the model by following the normal distribution, ε ∼N(0,σ 2

n ), its standard deviation is σ 2
n . The

output of y satisfies the distribution as illustrated below:

y∼N(m(x),k(x,x)+ σ 2
n In) (4)

Here, In is the identity matrix. When we usually preprocess the data and make it the mean
function be 0. Based on the definition of Gaussian Process, the joint distribution of any finite
random variables can also satisfy the Gaussian distribution.

Let x= {x1, x2, x3,. . ., xn} be the collection of patient’s event occurring time-stamp sequence
from the patient record with n number of events, in particularly, we can denoted it as {f (xi):
xi ∈ x}, which is the corresponding observed measurement value y, The predicted imputation value
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f∗ and kernel function k(·,·). Then, the distribution of the set x is denoted as:[
y
f∗

]
∼N

(
0,

[
k(x,x)+ σ 2

n In k(x,x∗)
k(x∗,x) k(x∗,x∗)

])
(5)

The k(x,x) is the covariance matrix with the dimension of n by n, matrix element ki,j =
k(xi,xj), k(x,x∗)= k(x∗,x)T is the covariance matrix between the predicted imputation x∗ and the
training input vector x that has the dimensionality of n by 1. k(x∗,x∗) is the covariance of the
predicted imputation x∗. Hence, the posterior probability distribution f∗ and variance σ(x∗) can
be calculated as follows:

f∗|x,y,x∗ ∼N(f∗,σ(x∗)) (6)

f∗ = k(x∗,x)[k(x,x)+ σ 2
n In]

−1y (7)

σ(x∗)= k(x∗,x∗)− k(x∗,x)[k(x,x)+ σ 2
n ]

−1k(x,x∗) (8)

where, the mean vector f∗ is the output of the Gaussian Process Regression model, so, the output
value of the imputation point is:

f∗ =m(x)+ f∗ (9)

For the choice of the kernel function k(xi,xj), we select squared exponential (SE) covariance
kernel function, which is defined as formula (8). The purpose of kernel function is to transform
to a valid co-variance matrix corresponding to some multivariate Gaussian distribution while pre-
serving the similarities between two observations. For a kernel transformation, the kernel function
must satisfy the Mercer’s condition (illustrated in definition 1). In Mercer’s condition, the function
needs to be square-integratable (illustrate in definition 2) Therefore, the squared exponential kernel
is the commonly used kernel function, which is defined in Eq. (1), where parameter σ 2

f denotes

the amplitude (y-scaling) and τ determines the smoothness of the Gaussian process prior with
kSE(·,·).

Definition 1. Definition A real-valued kernel function K(x,y) satisfies Mercer’s condition if∫∫
k(x,y)g(x)g(y)dxdy≥ 0 for all square-integrable functions g(·).
Definition 2. Definition A function g(x) is square-integrable if

∫ +∞
−∞ |g(x)|2 dx<∞

kSE(xi,xj)= σ 2
f ∗ exp

(
− 1
2τ 2

∥∥xi−xj
∥∥2) (10)

The squared exponential covariance function has only two hyper parameters, namely signal
variance σ 2

f and length-scale τ . We used the maximum likelihood approach to find the appropriate

initials value of them, and then apply the Newton method optimization approach during the
model training, in order to find the best optimal values. First, we build the negative logarithm
likelihood function L (θ).

L(θ)= 1
2
yTk−1y+ 1

2
log |k| + n

2
log(2π) (11)
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The find the derivative with respective to the θi

∂L(θ)

∂θi
= 1

2
tr(αTα− k−1)

∂k
∂θi

) (12)

where, k= kf +σ 2
n In, α = k−1y. Once we find the best optimal parameters on the training dataset,

we use the formulas (7) and (8) to obtain the corresponding prediction value f∗ and standard
deviation σ 2

f∗ for imputed value x.

Then, suppose we want to impute the missing value f(xk), we need to calculate the new co-
variance matrix using the kernel function. We need to calculate the new vectors k*SE(xk, ·) and
k*SE(xk, xk), where are

k∗SE(xk, ·)=

⎡
⎢⎢⎢⎣
kSE(xk,x1)
kSE(xk,x2)

...
kSE(xk,xj)

⎤
⎥⎥⎥⎦ (13)

And k∗∗SE(xk,xk)= [kSE(xk,xk)]

Then, the new co-variance matrix can be k(·, ·)= k∗SE(xk, ·)Tk(·, ·)k∗SE(xk, ·)+ k∗∗SE(xk,xk). The
imputed value can be the value calculated using the new co-variance matrix with maximum
likelihood.

For each patient, the vector representation of the medical event has the missing-value problem
on “rate”, “total amount”, and all the vital sign measurements. The “rate”, “total amount” are
discrete variables associated with their medical events. For each medical event, we can simply use
the above Gaussian Process to compute the max-likelihood values of “rate”, “total amount” for
missing-value imputation. However, for the vital sign measurements, each medical event vector
uses their mean values during the interval with the assumption that they must be uniformly
distributed during the interval. In fact, all the vital measurements are irregularly sampled or even
missing during the interval. We normalized the time stamps where this vital measurement was
recorded and assumed the Using the Gaussian Process, we can impute the missing values for all
vital sign measurements to make them regularly sampled and calculate the mean, illustrated in
Figs. 4 and 5.

Data imputation is vital to the performance of our pipeline. For example, the missing value
of the “rate” and “total amount” at time point Xi is likely to be affected/similar by Xj if these
two time points are close to each other. However, a potential shortcoming of such method is
that the computation workload could be heavy, especially when we want to build the model
using more features. If one of the input feature dimension suffers irregularly-sampling or missing
value problem, we need to build a new Gaussian Process Regressor. Finally, each patient will be
represented as a fixed-length sequence of medical events with imputed data. Such sequence will
be the input of our model.
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Figure 4: Gaussian process effect visualization on rate

Figure 5: Gaussian process effect visualization on pulse rate

4 Recurrent Neural Network Model

4.1 LSTM (Long Short Term Memory Recurrent Neural Network)
RNN based neural network is currently the state-of-the-art modeling method for sequential

data. However, patients’ treatment process usually spams over a long period of time, and there is
“vanishing gradient” problem. A variation of recurrent neural network, so called Long Short-Term
Memory Unit (LSTM) has the better performance than RNN. The architecture of the LSTM can
be viewed as a gated cell. The cell decides which information will be remembered or forgotten
through gate opening and closing. By maintaining this gate switch, it allows LSTM to continue
to learn over a long-time interval. There are three gate functions in LSTM neurons, namely input
gate, output gate and forget gate.

it = σi(Wxixt+Whiht−1+wcict−1 + bi) (14)
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ft = σf (Wxf xt+Whf ht−1+wcf ct−1+ bf ) (15)

ct = ftct−1 + ittanh(Wxcxt+Whcht−1+ bc) (16)

σt= σo(Wxoxt+Whoht−1+wcoct−1+ bo) (17)

ht= σttanh(ct) (18)

where, it, ft,ot respectively represents the input gate, output gate and forget gate function at
time t. ct is the activation vector, xt and ht are the input vector at time t and the hidden
layer output vector at time t. σi,σf ,σh are sigmoidal nonlinearities and σc and σh are tanh
nonlinearities. Wxi,Whi,Wxf ,Whf ,Wxc,Whc,Wxo,Who are the matrix parameters of the neural
network. wci,wcf ,wco,bo,bi,bf ,bc are the vector parameters of the neural network. Among them,
Wxi,Whi,Wxf ,Whf ,Wxo,Who are the weight parameters for different gates, with bias bo,bi,bf is
element-wise (Hadamard) product. Since the LSTM decides to drop up some information at each
time stamp, it is able to store the information from longer time stamp, when comparing with
base-RNN.

4.2 Phased-LSTM
The increasing long term-dependency drives the researches focusing on improving the archi-

tecture of the LSTM cell. Based on the classic LSTM, in this paper, a time gate (phase gate)
is designed for each hidden layer neuron. namely phased-LSTM. Of course, the structure of the
neuron can be further improved, for example, add the filter gate, to improve the performance of
the model. So, other than using regular LSTM, we also use phased LSTM [18] on modelling the
outcome of patients’ treatment. The major difference between regular LSTM and phased LSTM
is that phased LSTM can process irregularly sampled data that is caused by events in continuous
time. Considering the data in EHR may trigger by irregular events, phased LSTM may have better
performance on modeling our problem. Fig. 6 shows the architecture of Phased-LSTM cell.

Figure 6: The architecture of Phased-LSTM cell

It adds a new time gate kt. The updates to neuron ct and ht can only be done when the gate
is opened. In this way, the input can be periodically sampled to solve the problem of too long
input sequence. The open and close of the gate is controlled by independent rhythm represented
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by three parameters. τ is controlling the time period of one open and close cycle. ron control the
open phase duration ratio to the entire period. s controls the cycle shifts to each cell. All of these
parameters are learned in the training processes. The follows are the formulas:

ϕ = (t− s)modτ

τ
(19)

kt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2ϕt
ron

, if ϕt <
1
2
ron

2− 2ϕt
ron

, if
1
2
ron < ϕt < ron

αϕt, otherwise

(20)

ϕt indicates the different phases. The opening of the gate has two phases: the opening ratio
is increasing from 0 to 1 on the 1st half of opening and decreases from 1 to 0 on the second
half of the opening. When the gate is closed, there is a leaking rate α that can let important
information go through even when the gate is closed, otherwise, there would be no information
retained in the hidden layer.

This time gate allows the Phased-LSTM to solve the irregular sampling problem and also
accelerate the training phrase. For example, the opening ratio can be large (close to 1) when the
number of medication events inside the current interval is high; otherwise, and the opening ratio
will adjust to a small value (close to 0). The number of medication events inside a time interval
determines the value of the opening ratio and how much information will be updated to the
output layer and hidden layer of Phased-LSTM cell.

The calculation of cj and hj are performed based on Eqs. (21)–(24), and the previous ct and
ht will be denoted as c*t and h*t.

c∗t = ftct−1+ ittanh(Wxcxt+Whcht−1+ bc) (21)

ct = ktc∗t + (1− kt) ∗ ct−1 (22)

h∗t = ottanh(c∗t ) (23)

ht = kth∗t + (1− kt) ∗ ht−1 (24)

Then, we defined the softmax layer that maps the outputs generated by the LSTM and
Phased-LSTM cell into the probability representation using Eq. (25), where f(Cti) denotes as the
probability of class i.

f (Cti)= expCti∑|Ct|
j expCtj

(25)

5 Experiment and Result

5.1 Date Sets
The experiments in this paper were carried out on death risk prediction data sets and clinical

infusion drug event risk prediction data sets, which were generated from MIMIC III. We randomly
split the whole data set into 2/3 training set and 1/3 test set. The MIMIC III database has a total
of 46,520 (large number amount of patients’ hospitalization records) patients with fluid-related
input records and vital sign records [15].
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For fluid-related input records, we extracted the following information: (1) “itemid” is the
identifier for a fluid related drug or substance. (2) “rate” lists the rate at which the drug or
substance was administrated to the patient. (3) “total amount” lists the total amount of the fluid
in the bag containing the solution. (4) “start time” and “end time” record the start and end time
of an input/output event. This information will be used to build per-patient time-series event data.

For vital sign records, we extracted the most representative measurements as following: (1)
body temperature: abnormal body temperature may be due to fever or hypothermia, or any
adverse drug effect. (2) pulse rate: the pulse rate can be included as heart rhythm and the
strength of the pulse. (3) respiration rate: fever, illness, or other medical conditions may cause
the abnormal respiration rate. (4) blood pressure: the blood pressure can be categorized into 4
stages: normal, elevated, Stage 1 and Stage 2, which reflect the condition of the heart. All of the
above measurements, the “rate”, and “total amount” are continuous numerical values and suffer
the missing values and irregular sampling.

5.2 Experimental Results and Analysis
5.2.1 Model Architecture

We built the same architecture of LSTM and Phased-LSTM model (Figs. 7 and 8): 106
feature inputs, 309 hidden units with 2 layers. The number of layers and features we selected
are based on the experience and the dataset. At the output of the network, we add a softmax
layer that is used for the classification task. Phased-LSTM deep neural network requires another
dimension of input feature: time. We arranged the medical events in the order of their occurring
time and trained LSTM based model and phased-LSTM model. We implemented the LSTM
model and Phased-LSTM using Theano.

Figure 7: The architecture design of LSTM based model
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Figure 8: The architecture design of Phased-LSTM based model

The choice of optimization and loss function are determined by the task of our models and
the dataset itself. We compared several loss functions and optimizers. The Cross-Entropy loss and
Adaptive Momentum Optimization (Adam) optimizer gave the model the best output.

The output of the model is two probabilities: [Prob(survival), 1-Prob(survival)/prob(dead)],
denoted as [p(v1), p(v2)]. If p(v1) > p (v2), then we classify the patient as survival (1), otherwise,
we classify the patient as dead (0). We turned this mortality prediction as a binary problem. We
used the binary cross entropy (BEC) as the loss measurement of the model.

Eq. (26) is the mathematical expression of the binary cross entropy measurement of our
model at each data sample, where N is the number of samples. The model uses the loss during
the learning phase to gradually adjust the model until there is no improvement or very small
improvement.

Loss=− 1
N

N∑
i=1

yi ∗ logŷi+ (1− yi) ∗ log(1− ŷi) (26)

Figs. 9 and 10 shows the loss of the LSTM and Phased-LSTM at each epoch. The epoch
defines the training phase of LTSM and Phased-LSTM. The loss of the model is calculated by the
MSE mathematical function and it indicates the model’s earning outcomes. Both of the models
aim to minimize the loss value during the training. At the initial, the loss of LSTM is lower than
Phased-LSTM; then after around 10 epochs, the loss of Phased-LSTM can dramatically reduce
its loss value (converge at a faster rate). The reason is because of the nature of the Phased-LSTM
itself. The close and open of the time gate of the Phased-LSTM prevents the information from
entering into the cell’s memory, which causes that the loss of Phased-LSTM is higher than LSTM.
However, the Phased-LSTM can converge at a stunning rate, which decides is rapidly reducing its
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loss during the initial phase of the training. This indicates another advantage of Phased-LSTM
for fast converging.

Figure 9: The training loss of LSTM: epoch = 100, learning rate = 0.01

Figure 10: The training loss of Phased-LSTM: epoch = 100, learning rate = 0.01

5.2.2 Model Performance
We first investigate the impact of using Gaussian Process for data imputation on mod-

els’ performance to ensure the effectiveness of Guasisan Process and Phased-LSTM indeed can
improve dataset and the model performance. During the evaluation of the model performance, we
compare the different data imputation approaches that are suitable for time-series missing values
imputation. We assume the EHR data are missing random (MAR), which is usually defined as
the pattern for a variable is not a function of its observed values because the patient’s medical
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readings are stochastically changing. The first step is to deal with heterogenous data types by
combining the paitent’s numerical information such as vital sign information, drug amount and
textual information fluid related medical events such as drug names. Then, we compared several
different data imputation approaches: mean imputation (baseline), Autoregressive with exogenous
inputs (ARX), Auotoregressive moving average model (ARMA), Autoregressive integrated moving
average (ARIMA), and Gaussian Process (GP) for improving the dataset. Next, we compare the
results obtained by LSTM model and Phased-LSTM. Finally, we compare the proposed models
with other machine learning algorithms. In order to show the Phased-LSTM tackles down the
long sequence data, we filter out patients with a small number of medical events and construct
the training and testing dataset with the appropriate number of patient instances.

We use ROC curve, precision and recall score to evaluate the model’s performance. The
experiment results show the comparison among the LSTM model and Phased-LSTM model with
and without the Gaussian Process. Some experiment results are shown in Figs. 11 and 12 and
Tab. 1.

Figure 11: The ROC curve for LSTM model

Figure 12: The ROC curve for Phased-LSTM model
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Table 1: Experiment results comparison among SOFA, OASIS base LSTM and Phased-LSTM

Precision SOFA
0.6845

OASIS
0.6391

LSTM
0.8003

Phased-LSTM
0.8287

Precision SOFA
–

OASIS
–

LSTM with
GP 0.8563

Phased-LSTM
with GP
0.8732

Recall SOFA
0.6271

OASIS
0.6407

LSTM 0.7101 Phased-LSTM
0.7837

Recall SOFA
–

OASIS
–

LSTM with
GP 0.8321

Phased-LSTM
with GP
0.8567

From Figs. 11 and 12 and Tab. 1, first, the models greatly outperform the original method. We
concentrate on comparing the performance of deep learning models with the traditional physical
approaches: SOFA and OASIS. We treated SOFA and OASIS as the benchmark results and LSTM
as the baseline. We are mainly interested in the comparison between LSTM and Phased-LSTM
model and the effect of the Gaussian process. The experimental results indicate that our hypothesis
of phased-LSTM is better being applied to solving challenges in ICU data. The Phased-LSTM
achieved the highest performance among all other methods. Second, we can see that models with
Gaussian Process have higher precision and recall scores and ROC curve. This is due to the
serious problem of missing values inside the health care dataset. The model’s performance will
be impaired if we do not decide to impute them. However, models with Gaussian Process also
introduce another problem that is the training time. For each patient instance, we need to train its
own GP regressor then construct the input for the model. Furthermore, the Phased-LSTM model
is also able to give better results as we expected because each patient instance usually has the long
temporal dependency.

The Tab. 2 shows the different imputation methods for time series data and Phased-LSTM
network. The results indicate the GP achieved comparatively better performance compared with
others, but we care more about precision value because of the application of mortality prediction.
Since the Mean and ARX methods are more suitable for data with linear relationships, especially
for ARX models, they are designed for a dynamic system in discrete time. The ARMA and
ARIMA share several similarities. The main difference is that ARMA is a stationary model.
The “integrated” property of ARIMA allows the model to measure the non-seasonal differences
needed to achieve the stationarity. If there are no such differences, then ARMA and ARIMA are
the same. However, the GP is great for modeling the uncertainty, which is common inside the
EHR dataset.

Table 2: The comparison of different data imputation meethods for improving data qualities

Mean ARX ARMA ARIMA GP

Precision 0.5044 0.7749 0.8231 0.8322 0.8732
Recall 0.5126 0.7863 0.8039 0.8419 0.8567
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6 Conclusion

Missing values, irregular sampling, heterogeneous data types, high dimensionality and long
temporal dependency contribute to the difficulty of analysis of health care data, especially in ICU
environment. We proposed a data-preprocessing pipeline using statistical approach and natural
language processing technique. In addition, we used a new LSTM type called Phased-LSTM to
deal with irregular sampling and long temporal dependency inside the data. The experiments show
that using the Phased-LSTM framework with the proposed preprocessing pipeline indeed can give
us the promising results in the mortality prediction task. Our future work plans to apply our
pipeline and model on more complex data by not only including the fluid related medical events.
We will also add more vita sign data, other medication events and important device management
data. It is hoped that the model can predict risks more accurately, evaluate clinical medication
events, and automate the management of important equipment. We also empirically compared
with different data imputation methods for improving the HER time series dataset.

Our future work will focus on improving the prediction accuracy of our approach in a real
ICU environment by trying different prediction networks and data imputation approaches. In
addition, we will also try the neural network based approach for time series imputation such as
Bidirectional Recurrent network and End-to-End Generative Adversarial Network (E2GAN).
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