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ABSTRACT

The variable importance measure (VIM) can be implemented to rank or select important variables, which can
effectively reduce the variable dimension and shorten the computational time. Random forest (RF) is an ensemble
learning method by constructing multiple decision trees. In order to improve the prediction accuracy of random
forest, advanced random forest is presented by using Kriging models as the models of leaf nodes in all the decision
trees. Referring to theMeanDecrease Accuracy (MDA) index based onOut-of-Bag (OOB) data, the single variable,
group variables and correlated variables importance measures are proposed to establish a complete VIM system
on the basis of advanced random forest. The link of MDA and variance-based sensitivity total index is explored,
and then the corresponding relationship of proposed VIM indices and variance-based global sensitivity indices
are constructed, which gives a novel way to solve variance-based global sensitivity. Finally, several numerical
and engineering examples are given to verify the effectiveness of proposed VIM system and the validity of the
established relationship.
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Nomenclature

VIM Variable Importance Measure
RF Random Forest
DT Decision Tree
MDI Mean Decrease Impurity
MDA Mean Decrease Accuracy
OOB Out-of-Bag
SA Sensitivity Analysis
MC Monte Carlo
SDP State-Dependent Parameter
HDMR High Dimensional Model Representation
SGI Sparse Grid Integration
ANOVA Analysis of Variance
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MSE Mean Square Error
X, Y the input variable vector and output response
g( ) the response function
n the dimension of input variables
g0 the expectation of response function
fX (x) the probability density function of variable X
E( ), Var( ) the expectation and variance operator
X∼i the variable vector without Xi
μ∼i the mean vector without μi
V , σ , ρ the variance, standard variance and Pearson correlation coefficient of variable
μX , CX the mean and covariance matrix of normal input variables
μ∼i|i, C∼i|i the conditional mean vector and conditional covariance matrix of dependent normal variables
μi|∼i, Ci|∼i the conditional mean and conditional covariance of dependent normal variable

Tm Bootstrap samples to train the mth decision tree
hm the mth decision tree of RF
ηTi , ηi, ηij the defined variable importance measure of RF
N the size of random samples
M the number of decision trees of RF
Si, Sij the variance-based global sensitivity indices
STi , S[i, j]
εm, εim the MSE of predicted values of RF

ε∼im , ε
∼i, j
m

A, B, C i the sample matrices of input variable samples
XOOB, X i

OOB

X∼i
OOB, X

∼i, j
OOB

yA, yB, yC i
, y, the response vectors of corresponding sample matrices

ym, y
i
m, y

∼i
m , y∼i, jm

1 Introduction

Sensitivity analysis can reflect the influence of input variables on the output response. The
sensitivity analysis includes local sensitivity and global sensitivity analysis [1]. The local sensitivity
can respond to the influence of input variables on the characteristics of output at the nominal
value. The global sensitivity analysis, known as the importance measure analysis, can estimate the
influence of input variables in the whole distribution region on the characteristics of output [2–4].
There are three kinds of importance measures: non-parametric measure, variance-based global
sensitivity and moment-independent importance measure [1]. The variance-based global sensitivity
is the most widely applied measure because it is generality and holistic, and it can give the
contribution of group variables and the cross influence of different variables. There are plenty
of methods to calculate variance-based global sensitivity indices, such as Monte Carlo (MC)
simulation [5], high dimensional model representation (HDMR) [6], state-dependent parameter
(SDP) procedure [7] and so on. MC simulation can estimate the approximate exact solution of
total and main sensitivity indices simultaneously, but the amount of calculation is generally large,
especially for high dimensional engineering problems. HDMR and SDP can calculate the main
sensitivity indices by solving all order components of input-output surrogate models.

Random forest (RF) is composed by multiple decision trees (DTs), it is an ensemble learning
method proposed by Breiman [8]. RF has many advantages, such as strong robustness, good
tolerance to outliers and noise. RF has a wide range of application prospects, such as geographical
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energy [9], chemical industry [10], health insurance [11] and data science competitions. RF can
not only deal with classification and regression problems but also analyze the critical measure.
RF provides two kinds of importance measures: Mean Decrease Impurity (MDI) based on the
Gini index and Mean Decrease Accuracy (MDA) based on Out-of-Bag (OOB) data [12]. MDI
index is the average reduction of Gini impurity due to a splitting variable in the decision tree
across RF [13]. MDI index is sensitive to variables with different scales of measurement and
shows artificial inflation for variables with various categories. For correlated variables, the MDI
index is related to the selection sequence of variables. Once a variable is selected, the impurity
will be reduced by the first selected variable. It is difficult for the other correlated variables to
reduce the same magnitude of impurity, so the importance of the other correlated variables will
be decline. MDA index is the average reduction of prediction accuracy after randomly permuting
OOB data [14,15]. Since MDA index can measure the impact of each variable on the prediction
accuracy of RF model and have no biases, it has been widely used in many scientific areas.
Although there are importance measures based on RF to distinguish the important features,
there is no complete importance measure system to deal with nonlinearity and correlation among
variables [16,17]. In addition, the similarity analysis process of MDA based on OOB data and
Monte Carlo simulation of variance-based global sensitivity can be used as a breakthrough point
to find their link [18]. With the help of variance-based sensitivity index system, the construction
of variable importance measure system based on RF can be realized.

By comparing the procedure of estimating the total sensitivity indices and the MDA index
based on OOB data, a complete VIM system is established based on advanced RF by using Krig-
ing models, including single variable, group variables and correlated variables importance measure
indices. The proposed VIM system combines the advantages of random forest and Kriging model.
The VIM system can indicate the contribution of input variables to output response and rank
important variables, and also give a novel way to solve variance-based global sensitivity with small
samples.

This paper is organized as follows: Section 2 reviews the basic concept of variance-based
global sensitivity. Section 3 reviews random forest firstly, presents MDA index and then proposes
single variable, group variables and correlated variables importance measures respectively. Section 4
finds the link between MDA index and total variance-based global sensitivity index, and the
relationship between VIM indices and variance-based global sensitivity indices is derived. In
Section 5, several numerical and engineering examples are provided before the conclusions in
Section 6.

2 Variance-Based Global Sensitivity

The variance-based global sensitivity, proposed by Sobol [19], reflects the influence of input
variables in the whole distribution region on the variance of model output. The variance-based
global sensitivity indices not only have strong model generality, but also can discuss the impor-
tance of group variables and quantify the interaction between input variables. ANOVA (Analysis
of Variance) decomposition is the basic of variance-based global sensitivity analysis.

2.1 ANOVA Decomposition
Response function Y = g (X) exists a unique ANOVA decomposition as follows:

g (X)= g0+
n∑
i=1

gi (Xi)+
∑

1≤i<j≤n
gij

(
Xi,Xj

)+ . . .+ g1...n (X1, X2, . . . , Xn) (1)
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where n is the dimension of input variables, g0 is the expectation of g (X), g0 =∫
Rn g (x)

∏n
i=1

[
fXi (xi)dxi

]
, and fXi (xi) is the probability density function of variable Xi. The

components in Eq. (1) are:

gi (Xi)=
∫
Rn−1

g (x)
n∏
j �=i

[
fXj

(
xj

)
dxj

]− g0

gij
(
Xi, Xj

)= ∫
Rn−2

g (x)
n∏

k �=i,j

[
fXk (xk)dxk

]− gi (Xi)− gj
(
Xj

)− g0

2.2 Variance-Based Global Sensitivity Indices
The variance of response function can be expressed as:

V =Var (Y )=
∫
Rn
g2 (x)

n∏
i=1

[
fXi (xi)dxi

]− g20 (2)

Since the decomposition terms are orthogonal, the variance of the response function is the
sum of variances of all individual decomposition terms:

V =
n∑
i=1

Vi+
∑

1≤i<j≤n
Vij+ . . .+V1, 2, ...,n

where

Vi =Var (gi (Xi))=
∫
R
g2i (xi) fXi (xi)dxi

Vij =Var
(
gij

(
Xi, Xj

))= ∫∫
R2
g2ij

(
xi, xj

)
fXi (xi) fXj

(
xj

)
dxidxj

Then the ratio of each variance component to variance of response function can reflect the
variance contribution of each component, i.e., Si =Vi/V , Sij =Vij/V · · ·

Si =Vi/V is the first order sensitivity index of variable Xi (also name Si as main sensitivity
index), it can reflect the influence of variable Xi on the response Y . Sij =Vij/V is the second order
sensitivity index, it can reflect the interaction influence of variables Xi and Xj on the response Y .

The total sensitivity index STi can be obtained by summing all the influence related to variable Xi:

STi = Si+
∑

1≤i<j≤n
Sij+

∑
1≤i<j<k≤n

Sijk+ . . .+S12...n

According to probability theory, the variance-based global sensitivity indices can be expressed
as [20]:

Si = Var [E (Y |Xi)]
Var (Y )

Sij =
Var

[
E

(
Y |XiXj

)]
Var (Y )

STi = Var (Y )−Var [E (Y |X∼i)]
Var (Y )

= 1− Var [E (Y |X∼i)]
Var (Y )
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where X∼i indicates variable vector without Xi.

2.3 Simulation of Variance-Based Global Sensitivity Indices
Due to the enormous computational load, the traditional double-loop Monte Carlo simulation

is not suitable for complex engineering problems [21]. The computational procedures of single-loop
Monte Carlo simulation are listed as follows:

Step 1: Randomly generate two sample matrices A and B based on the probability distribution
of variables X.

A=

⎡
⎢⎢⎢⎣
x11 · · · xi1 · · · xn1

...
...

...
...

...

x1N · · · xiN · · · xnN

⎤
⎥⎥⎥⎦
N×n

, B=

⎡
⎢⎢⎢⎣
x1(N+1) · · · xi(N+1) · · · xn(N+1)

...
...

...
...

...

x1(N+N) · · · xi(N+N) · · · xn(N+N)

⎤
⎥⎥⎥⎦
N×n

Step 2: Construct sample matrix C i, where the ith column of C i comes from the ith column
of A, and the other columns come from the corresponding columns of B.

C i =

⎡
⎢⎢⎢⎣
x1(N+1) · · · xi1 · · · xn(N+1)

...
...

...
...

...

x1(N+N) · · · xiN · · · xn(N+N)

⎤
⎥⎥⎥⎦
N×n

Step 3: The main and total sensitivity indices can be expressed as follows:

Si =
1
N

∑N
j=1 y

j
Ay

j
C i

− g20
Var (Y )

(3)

STi = 1−
1
N

∑N
j=1 y

j
By

j
C i

− g20
Var (Y )

(4)

where yA = [
y1A, . . . , yNA

]
, yB = [

y1B, . . . , yNB
]
, yC i

=
[
y1C i

, . . . , yNC i

]
are the model outputs with the

input matrices A, B and C i respectively. The computational cost of single-loop Monte Carlo
simulation is (n+ 2)×N.

3 Variable Importance Measure System Based on Random Forest

RF is an ensemble statistical learning method to deal with classification and regression prob-
lems [22]. Bootstrap sampling technique is firstly carried out to extract training samples from the
original data, and these training samples are used to build a decision tree; the rest Out-of-Bag
data are used to verify the accuracy of established decision tree.

There are M established decision trees by employing Bootstrap sampling technique M times.
All decision trees are used to compose a random forest (shown in Fig. 1). And the final prediction
results of RF are obtained by voting in the classification model or taking the mean in the
regression model [23]. And the prediction precision of RF can be expressed by mean square error
square error (MSE) between predicted values and true values of OOB data.
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Figure 1: Random forest

Bootstrap technique can extract training points to build a decision tree hm (m= 1, 2, . . . ,M)

and the corresponding OOB data of input XOOB and output y. The decision tree hm is used to

predict the forecast response ym of XOOB. The MSE of decision tree hm is εm =mean
(
ym− y

)2.
Obtain the MSEs of all decision trees εm (m= 1, 2, . . . ,M), the average will be the total predicted
error of RF model [24]:

MSE = 1
M

M∑
m=1

εm (5)

In order to improve the prediction precision of RF, a high-precision Kriging model is used
as the model of leaf nodes in the decision tree, replacing the original average or linear regression.
Next, a nonlinear discontinuous function is used to verify the prediction accuracy of Kriging
model and linear regression model of decision tree.

Y =
{−X2+ 10 cos (2πX)− 30 X < 0

X2− 10 cos (2πX)+ 30 X ≥ 0

where the input variable X is uniformly distributed on [−π , π ].

A comparison of Kriging based decision tree (abbreviated as Kriging-DT) and linear regres-
sion based decision tree (abbreviated as Linear-DT) for prediction data are shown in Fig. 2. With
the increase of training samples, the predicted errors of Kriging-DT and linear-DT are shown in
Fig. 3. And it can be found that Kriging-DT can better approximate the original function. For
the same training samples, Kriging-DT has higher prediction accuracy and faster decline rate of
predicted error than Linear-DT. Kriging-DT inherits the advantages of Kriging model and has
good applicability for nonlinear piecewise function.

There are two kinds of importance measures based on RF: Mean Decrease Impurity (MDI)
based on Gini index and Mean Decrease Accuracy (MDA) based on OOB data. MDA index is
widely used to rank important variables on the prediction accuracy of RF model [12].



CMES, 2021, vol.128, no.1 71

Figure 2: Comparsion of Kriging-DT, Linear-DT and predict data with 64 training samples

Figure 3: Predicted errors of Kriging-DT and Linear-DT vs. size of training samples

3.1 Mean Decrease Accuracy Index of Random Forest
MDA index is the average reduction of prediction accuracy after randomly permuting OOB

data. Permuting the order of variable in OOB data, the corresponding relationship between the
OOB sample and output will be destroyed. The prediction accuracy will be calculated after each
permutation. The MSE between the paired predictions is taken as the importance measure.

For the decision tree hm (m= 1, 2, . . . ,M), the corresponding OOB input data is matrix
XOOB = (

X1
OOB, . . . , X i

OOB, . . . , Xn
OOB

)
, X i

OOB is the ith column of matrix XOOB. Permute the

order of X i
OOB, decision tree hm can obtain the new forecast response yim. The MSE of pre-

dicted values is εim = mean
(
yim− ym

)2. Obtain the influence of variable Xi in all decision trees
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(
εi1, εi2, . . . , εiM

)
, the average of εim (m= 1, 2, . . . ,M) is the total impact of variable Xi based on

the RF model:

ηTi = 1
M

M∑
m=1

εim (6)

The subscript m of εim and yim is the number of decision tree hm (m= 1, 2, . . . , M), and the
superscript i of εim and yim indicates that the ith column of XOOB is in disorder, corresponding
to the variable Xi.

Based on the procedure of MDA index, the single variable, group variables and correlated
variables importance measures are expanded to establish the variable importance measure system.

3.2 Single Variable Importance Measure of Random Forest
For the decision tree hm (m= 1, 2, . . . ,M), the order of OOB input data XOOB =(

X1
OOB, . . . ,X i

OOB, . . . , Xn
OOB

)
is randomly permuted expected X i

OOB, that is to say, the value of
variable Xi is fixed, and the values of the other variables are randomly permuted. Then the
decision tree can predict the modified OOB samples to get the predicted values y∼im , the MSE of

predicted values is ε∼im =mean
(
y∼im − ym

)2. Obtain the influence of variable Xi in all decision trees,

the average of ε∼im is the main impact of variable Xi based on the RF model:

ηi = 1
M

M∑
m=1

ε∼im (7)

The superscript ∼ i of ε∼im and y∼im indicates that the OOB data are permuted, expect for the
ith columns.

3.3 Group Variable Importance Measure of Random Forest
The MDA index of group variables can be presented as follows. In the process of permuting

OOB data, the values of variables Xi and Xj are fixed, and the values of the other variables are
permuted. The decision tree can predict the modified OOB samples to get the predicted values

y∼i, jm , the MSE of predicted values is ε
∼i, j
m = mean

(
y∼i, jm − ym

)2
. Obtain the influence of group

variables [Xi, Xj] in all decision trees, the average of ε
∼i, j
m is the main impact of group variables

[Xi, Xj] based on the RF model:

ηij = 1
M

M∑
m=1

ε
∼i, j
m (8)

The superscript ∼i, j of ε
∼i, j
m and y∼i, jm indicates that the OOB data are permuted, expect for

the ith and jth columns.
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3.4 Correlated Variable Importance Measure of Random Forest
With the past years, several techniques based on RF are proposed to measure the impor-

tance of the correlated variables [25,26]. However, these researches directly use the independent
importance measure techniques to estimate the importance of the correlated variables, which is
not reasonable. Reference [27,28] divided the variance-based sensitivity indices into correlated
contribution and independent contribution. Moreover, sparse grid integration (SGI) is carried
out to perform importance analysis for correlated variables [29]. In the paper, the correlation of
correlated variables is considered in the process of the RF importance measure. The necessary
procedure of a single decision tree of the RF model for estimating the VIM consists of the
following steps:

Step 1: Estimate the covariance matrix CX and mean vector μX from the original data X =
(X1, . . . , X i, . . . , Xn);

Step 2: Randomly extract the OOB data XOOB = (
X1
OOB, . . . , X i

OOB, . . . , Xn
OOB

)
from the

original data and use the other data to build the decision tree hm (m= 1, 2, . . . ,M). Use the
decision tree hm to predict the corresponding OOB data, and the prediction is ym;

Step 3: Split the matrix XOOB into two parts: vector X i
OOB and matrix X∼i

OOB;

Step 4: Generate a new matrix X∼i|i and vector X i|∼i based on X i
OOB and X∼i

OOB, respectively.
The mean vectors and covariance matrixes are different from the original μX and CX , the new
ones should be used in the transformation process. For the multivariate normal distribution, μ∼i|i,
μi|∼i, C∼i|i and Ci|∼i can be acquired as follows:

The mean vector μX and covariance matrix CX of X can be separated as μX = [μ∼i, μi] and

CX =
[
C∼i C∼i, i

C i,∼i Ci

]
. The conditional mean vector and covariance matrix can be obtained by the

following formulas [30]:

μ∼i|i =μ∼i+C∼i, iC−1
i (Xi−μi) μi|∼i =μi+C i,∼iC−1

∼i
(
X∼i−μ∼i

)
C∼i|i =C∼i−C∼i, iC−1

i C i,∼i Ci|∼i =Ci−C i,∼iC−1
∼i C∼i, i

After obtaining the corresponding μ∼i|i, μi|∼i, C∼i|i and Ci|∼i, Nataf transform can be
employed to extract normal correlation samples X∼i|i and X i|∼i directly.

Step 5: Combine matrix X∼i|i with vector X i
OOB as the new matrix X i

OOBnew =(
X1

∼i|i, . . . , X i−1
∼i|i, X

i
OOB, X

i+1
∼i|i, . . . , Xn

∼i|i
)
, while combine vector with the matrix X∼i

OOB as

X∼i
OOBnew =

(
X1
OOB, . . . , X i−1

OOB,X i|∼i, X i+1
OOB, . . . , Xn

OOB

)
;

Step 6: X i
OOBnew and X∼i

OOBnew are passed down the decision tree and the predicted values yim
and y∼im are computed, respectively. εim and ε∼im of the correlated variables can be calculated by
the following formula:

ε∼im =mean
(
y∼im − ym

)2
εim =mean

(
yim− ym

)2
Obtain the influence of variable Xi in all decision trees, the averages of ε∼im and εim

(m= 1, 2, . . . ,M) are the main and total impact of variable Xi on the RF model.
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The importance measure indices in correlated space and independent space are all given based
on RF, which will establish the complete VIM system.

4 Link between VIM of RF and Variance-Based Global Sensitivity

The similarity analysis process of MDA index εim based on OOB data and single-loop Monte
Carlo simulation of variance-based global sensitivity can be used as a breakthrough point to
find their link. The relationship between MDA index and variance-based global sensitivity can be
explored firstly.

1) MDA index εim can be decomposed as follows:

εim =mean
(
yim− ym

)2 = 1
N

N∑
j=1

(
yim,j− ym,j

)2

= 1
N

N∑
j=1

[(
yim, j

)2+ (
ym, j

)2− 2ym, jyim, j

]
= 1
N

N∑
j=1

(
yim, j

)2+ 1
N

N∑
j=1

(
ym, j

)2− 2
N

N∑
j=1

ym, jyim, j (9)

When the sample size is large,
1
N

N∑
j=1

(
yim, j

)2
asymptotically equals

1
N

N∑
j=1

(
ym, j

)2, they are

both second-order moment estimators of output response Y .

The total sensitivity index of single-loop Monte Carlo numerical simulation is:

STi = 1−
1
N

∑N
j=1 y

j
By

j
Ci

− g20
Var (Y )

=
1
N

∑N
j=1

(
yjB

)2− 1
N

∑N
j=1 y

j
By

j
Ci

Var (Y )
(10)

By comparison, it can be concluded that:

STi = εim

2×Var (Y )
(11)

Thus, the relationship between MDA index of RF importance measure and variance-based
global sensitivity indices is explored. εim can indicate the total impact of variable Xi on output
performance. The larger εim is, the larger STi is, which means that the total contribution of variable
on output performance is larger.

2) The main variance-based sensitivity index Si of single-loop Monte Carlo numerical
simulation is equivalent to:

Si =
1
N

∑N
j=1 y

j
Ay

j
Ci

− g20
Var (Y )

− 1+ 1= 1−
1
N

∑N
j=1

(
yjA

)2− 1
N

∑N
j=1 y

j
Ay

j
Ci

Var (Y )
(12)

By comparison, it can be concluded that:

Si = 1− ε∼im
2×Var (Y )

(13)
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Eq. (13) shows the relationship between ε∼im and the main variance-based sensitivity index Si.
Index ε∼im can indicate the main impact of variable Xi on output performance. The larger ε∼im is,
the smaller Si is, which means that the main contribution of variable on output performance is
smaller.

3) The relationship of variance-based sensitivity index of group variables S[i,j] and ε
∼i,j
m can

be expressed as:

S[i, j] = 1− ε
∼i, j
m

2×Var (Y )
(14)

The influence of group variables
[
Xi, Xj

]
on the variance of output S[i, j] is composed of the

main sensitivity indices Si, Sj and second order sensitivity index Sij.

S[i, j] = Si+Sj +Sij (15)

Combining Eqs. (13)–(15), the second-order variance sensitivity index can be derived:

Sij = ε∼im + ε
∼j
m − ε

∼i, j
m

2×Var (Y )
− 1 (16)

So far, the MDA index, single variable index and group variables index are all proposed in
the independent variable space.

4) In the correlated variable space, Var (Y ) �= Var
(
y∼im

) �= Var
(
yim

)
, Eqs. (11) and (13) should

be changed into the following formulas:

Si = 1− ε∼im −E
(
y∼im

)2+E
(
ym

)2
2×Var (Y )

(17)

STi = εim−E
(
yim

)2+E
(
ym

)2
2×Var (Y )

(18)

Si contains the independent contribution of variable Xi and the correlated contribution of
Pearson correlation coefficient, while STi consists of the independent contribution by variable itself
and interaction contribution with other variables.

5 Examples and Discussion

5.1 Numerical Example 1: Ishigami Function
Ishigami function is considered:

Y = sin (X1)+ 7 sin2 (X2)+ 0.1X4
3 sin (X1)

where Xi are uniformly distributed on the interval [−π , π ], and the variables are independent.
Ishigami function is a highly nonlinear function. For variable X2, the convergence trends of
importance measures with the number of sample points by Monte Carlo simulation and RF are
shown in Fig. 4. There are 500 decision trees in the RF model. Tabs. 1 and 2 show the VIM

results of single variable and group variables respectively. The analytical results (S(Ana)
i , ST(Ana)

i

and S(Ana)
ij ) are also presented in Tabs. 1 and 2 for comparison.
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(a) (b)

Figure 4: The convergence trends of the important measures with sample size (a) The convergence
trend of MC simulation (b) The convergence trend of RF model

Table 1: The single variable VIMs of Ishigami function

ηi ηi ⇒ Si S(Ana)
i Error ηTi ηTi ⇒ STi ST(Ana)

i Error (%)

X1 18.997 0.314 0.314 – 15.359 0.555 0.558 0.54
X2 15.316 0.447 0.442 1.13% 12.331 0.445 0.442 0.68
X3 27.784 0.003 0.000 – 6.690 0.242 0.244 0.82

Table 2: The group variables VIMs of Ishigami function

ηij ηij ⇒ Sij S(Ana)
ij Error

X1X2 6.698 0.003 0.000 –
X1X3 12.413 0.241 0.244 1.23%
X2X3 15.364 0.002 0.000 –

In all VIMs results tables, ηTi ⇒ STi , ηi ⇒ Si and ηij ⇒ Sij mean that importance measures in
this column are derived from Eqs. (11), (13) and (16), respectively.

There are 5 × 1020 random samples in single-loop Monte Carlo simulation to achieve the
required accuracy, RF model only needs 103 samples (seen from Fig. 4). The comparison shows
that RF method has faster convergence. The MDA indices of RF can get the variance-based
sensitivity indices consistent with the analytical solutions (seen from Tabs. 1 and 2), which suggests
the RF model provides high accuracy. For the Ishigami function, the third-order sensitivity index
S123 = 0, so the relationship of the variance-based sensitivity indices is STi = Si +

∑
j �=i Sij, which

has a good agreement with the VIM estimators.

5.2 Numerical Example 2: Linear Function with Correlated Variables
A linear model is considered [28]:

Y =X1+X2+X3
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where Xi are normally distributed with μX = [0, 0, 0] and covariance matrix CX =

⎡
⎢⎣
1 0 0

0 1 ρσ

0 ρσ σ 2

⎤
⎥⎦.

Analytical solutions for the main and total sensitivity indices can be calculated as:

S1 = 1
2+ σ 2+ 2ρσ

, S2 = (1+ρσ)2

2+ σ 2+ 2ρσ
, S3 = (ρ + σ)2

2+ σ 2+ 2ρσ

ST1 = 1
2+ σ 2+ 2ρσ

, ST2 = 1−ρ2

2+ σ 2+ 2ρσ
, ST3 = σ 2 (

1−ρ2)
2+ σ 2+ 2ρσ

There are 500 decision trees and 600 samples used to analyze the importance measures. Fig. 5
shows the importance measures of the correlated input variables with different ρs. Tab. 3 shows
the importance measures of independent and correlated variables cases at σ = 2. Additionally, the
analytical solutions are also presented for comparison.

(a) (b)

Figure 5: The importance measures of correlated input variables at different correlation coefficients
(a) Importance measures vs. correlation coefficients (b) Si−STi vs. correlation coefficients

All the importance measures for correlated variables and independent ones are simulated.
From the analytical results of main and total sensitivity indices, it can be found that STi ≤ Si if

ρ ≥ 0 or ρ ≤ − 2σ
σ 2+ 1

. The interaction sensitivity indices are all equal to zero, so Si − STi only

contain the correlated contribution by the Pearson correlation coefficients. For variable X1, the
main sensitivity index S1 is equal to total indices ST1 and S1−ST1 = 0, because of the independence

of the variable X1 with other variables. For the variables X2 and X3, S2 − ST2 = S3 − ST3 , which
suggests that the correlated contribution is generated from Pearson correlation coefficients.
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Table 3: The single variable VIMs of Example 5.2

ρ ηi ηi ⇒ Si S(Ana)
i Error ηTi ηTi ⇒ STi ST(Ana)

i Error

0 X1 9.909 0.163 0.167 2.39% 1.957 0.166 0.167 0.60%
X2 9.921 0.162 0.167 2.99% 1.975 0.168 0.167 0.60%
X3 3.930 0.667 0.667 – 7.918 0.669 0.667 0.30%

0.5 X1 14.031 0.124 0.125 0.80% 1.685 0.123 0.125 1.60%
X2 8.964 0.498 0.500 0.40% 1.742 0.094 0.094 —
X3 3.423 0.781 0.781 – 7.277 0.370 0.375 1.33%

−0.5 X1 6.440 0.244 0.250 2.40% 1.707 0.252 0.250 0.80%
X2 8.927 0.001 0.000 – 1.745 0.190 0.188 1.06%
X3 3.444 0.555 0.563 1.42% 7.248 0.754 0.750 0.53%

0.8 X1 16.527 0.102 0.109 6.42% 1.292 0.106 0.109 2.75%
X2 7.330 0.739 0.735 0.54% 1.344 0.039 0.039 —
X3 2.624 0.856 0.852 0.47% 6.008 0.150 0.157 4.46%

−0.8 X1 4.765 0.356 0.357 0.28% 1.298 0.360 0.357 0.84%
X2 7.389 0.129 0.129 – 1.355 0.126 0.129 2.33%
X3 2.659 0.511 0.514 0.58% 6.012 0.504 0.514 1.95%

5.3 Numerical Example 3: Nonlinear Function with Correlated Variables
Consider a nonlinear model Y = X1X3 + X2X4 [28], where X∼N (μX , CX) with μX =

[0, 0, μ3, μ4] and covariance matrix CX =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ 2
1 ρ12σ1σ2 0 0

ρ12σ1σ2 σ 2
2 0 0

0 0 σ 2
3 ρ34σ3σ4

0 0 ρ34σ3σ4 σ 2
4

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Analytical values of main and total sensitivity indices are:

S1 =
σ 2
1

(
μ3+μ4ρ12

σ2
σ1

)2

V
, S2 =

σ 2
2

(
μ4+μ3ρ12

σ1
σ2

)2

V
, S3 = S4 = 0

ST1 = σ 2
1

(
1−ρ2

12

) (
σ 2
3 +μ2

3

)
V

, ST2 = σ 2
2

(
1−ρ2

12

) (
σ 2
4 +μ2

4

)
V

, ST3 = σ 2
1 σ 2

3

(
1−ρ2

34

)
V

,

ST4 = σ 2
2 σ 2

4

(
1−ρ2

34

)
V

where V = σ 2
1

(
σ 2
3 +μ2

3

)+ σ 2
2

(
σ 2
4 +μ2

4

)+ 2ρ12σ1σ2 (ρ34σ3σ4+μ3μ4).

Set μX = [0, 0, 250, 400] and standard variance vector σ = [4, 2, 200, 300]. There are 500
decision trees and 3000 samples to construct the RF model. Tab. 4 shows the VIMs results of
group variables for the independent variable. The Pearson correlation coefficients are ρ12 = 0.3 and
ρ34 =−0.3. Tab. 5 shows the importance measures of single variable in the case of correlated and
independent variable space.
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Table 4: The group variables VIMs of Example 5.3

X1X2 X1X3 X1X4 X2X3 X2X4 X3X4

ηij 1.931× 106 1.975× 106 3.206× 106 3.905× 106 3.207× 106 5.171× 106

ηij ⇒ Sij 0.000 0.242 0.002 0.004 0.137 0.008

Table 5: The single variable VIMs of Example 5.3

ηi ηi ⇒ Si S(Ana)
i Error ηTi ηTi ⇒ STi ST(Ana)

i Error

Independent case X1 3.205× 106 0.380 0.379 0.26% 3.223× 106 0.623 0.621 0.32%
X2 3.903× 106 0.246 0.242 1.65% 1.977× 106 0.382 0.379 0.79%
X3 5.199× 106 0.004 0.000 – 1.225× 106 0.237 0.242 2.07%
X4 5.188× 106 0.002 0.000 – 7.063× 105 0.137 0.136 0.74%

Correlated case X1 5.356× 106 0.492 0.507 2.96% 1.835× 106 0.490 0.492 0.41%
X2 2.473× 106 0.403 0.399 1.00% 4.319× 106 0.333 0.300 11.0%
X3 6.036× 106 0.001 0.000 – 1.089× 106 0.189 0.192 1.56%
X4 5.924× 106 0.000 0.000 – 6.938× 105 0.108 0.108 –

Tabs. 4 and 5 show that analytical values and numerical simulation of VIMs have good
consistency. In independent variable space, the third and fourth order sensitivity indices are all
equal to zero, so the relationship of important measures of single variable and group variables
are also STi = Si+

∑
j �=i Sij.

5.4 Engineering Example 4: Series and Parallel Electronic Models
Since the reliability of an electronic instrument in design stages has attracted much attention.

Two simple electronic circuit models from reference [31] are used to get the VIMs. The series and
parallel structures (shown in Fig. 6) are all considered in the importance measures. Each of the
electronic circuit models contains four elements. The lifetime Ti independently obeys exponential
distribution. The failure rate parameters are λ = [1, 1/4.5, 1/9, 1/99], and the lifetime T of the
models can be respectively expressed as:

Series model: T =min (T1, T2, T3, T4)

Parallel model: T =max (T1, T2, T3, T4)

(a) (b)

Figure 6: The series and parallel electronic circuit structures (a) Series model (b) Parallel model
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Tabs. 6 and 7 show the computational results of the importance measures by RF model,
there are 500 decision trees and 15000 samples in the RF model. Due to the electronic circuit
structures are discontinuous, more samples are needed to acquire the precise surrogate model and
the importance measures. Additionally, the MC simulation results with 6× 225 random samples

are presented as approximate exact solutions S(MC)
i , ST(MC)

i and S(MC)
ij for comparison. From the

comparison, the RF importance measures are also appropriate for the discontinuous model. The
main sensitivity indices are almost equal to the total indices in the parallel model, while they have
a significant difference in the series model (seen from Tab. 6). The second-order indices of series
model are not equal to zero (seen from Tab. 7), which causes the VIMs difference between parallel
model and series model.

Table 6: The single variable VIMs of electronic models

ηi ηi ⇒ Si S(MC)
i ηTi ηTi ⇒ STi ST(MC)

i

Series model T1 0.429 0.607 0.593 0.942 0.864 0.853
T2 0.993 0.090 0.090 0.308 0.282 0.284
T3 1.048 0.039 0.043 0.158 0.145 0.153
T4 1.090 0.001 0.004 0.005 0.004 0.0149

Parallel model T1 1.929× 104 0.000 0.000 0.000 0.000 0.000
T2 1.929× 104 0.000 0.000 0.000 0.000 0.001
T3 1.929× 104 0.000 0.000 1.929× 104 0.001 0.001
T4 12.232 0.999 0.999 12.217 1.000 1.000

Table 7: The group variables VIMs of series model

T1T2 T1T3 T1T4 T2T3 T2T4 T3T4

ηij 0.835 0.705 0.602 0.142 0.095 0.047
ηij ⇒ Sij 0.152 0.069 0.006 0.008 0.001 0.000
S(MC)
ij 0.156 0.069 0.003 0.006 0.003 0.000

5.5 Engineering Example 5: A Cantilever Tube Model
A cantilever tube model (shown in Fig. 7) is used to analyze the variable importance mea-

sures. The model is a nonlinear model with six random variables. The input variables are outer
diameter d, thickness t, external forces F1, F2, P and torsion T , respectively.

The tensile stress σx and the torsion stress τzx can be analyzed:

σx = P+F1 sin θ1 +F2 sin θ2

A
+M

I
, τzx = Td

4I

where the sectional area A, the bending moment M and the inertia moment I can be calculated
by the following formula:

A= π

4

[
d2− (d− 2t)2

]
, M = F1L1 cos θ1+F2L2 cos θ2, I = π

64

[
d4− (d− 2t)4

]
.
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Figure 7: The cantilever tube model

And the maximum stress of the cantilever can be calculated as σmax =
√

σ 2
x + 3τ 2

zx. All input

variables t, d, F1, F2, P and T are normally distributed with parameters shown in Tab. 8. The
Pearson correlation coefficients are ρtd = 0.3 and ρF1F2 = 0.5. There are 500 decision trees and
7000 samples in the RF model. Tab. 9 gives the variable importance measures by RF method and
the single-loop Monte Carlo simulation method. The cost of the MC method is 8×223 points for
each case.

Table 8: Distribution parameters of input variables

Variable/unit Mean Standard variance

t/mm 5 0.1
d/mm 42 0.5
F1/N 3000 300
F2/N 3000 300
P/N 12000 1200
T /N·mm 90000 9000

For the independent variables, the main and total sensitivity indices of input variables are
very close (seen from Tab. 9), which suggests that the influence of these variables to the output
response mainly come from unique variables and the interaction contribution is very small. The
external force P is the most important variable in the independent space; the importance of the
other input variables has a slight difference.

Furthermore, the importance measures are different in the correlated variable space. For
the correlated input variables t, d, F1 and F2 the sensitivity indices Si > STi , the influence on
the output response mainly originates from the correlated contribution by Pearson correlation
coefficients. For the input variables P and T , they are independent with other variables, so the
first order indices are almost equal to total sensitivity indices. Therefore, the proposed variable
RF importance measure system not only reflects the important variables but also provides useful
information to identify the structure of the engineering model, which will provide useful guidance
for the engineering design and optimization.
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Table 9: The VIMs of cantilever tube model

t d F1 F2 P T

Independent space ηi 9.690 9.216 9.407 9.937 4.060 9.416
ηi ⇒ Si 0.061 0.107 0.089 0.037 0.607 0.088
S(MC)
i 0.060 0.112 0.086 0.038 0.615 0.088

ηTi 0.706 1.172 0.906 0.407 6.328 0.934

ηTi ⇒ STi 0.068 0.114 0.088 0.039 0.613 0.091

ST(MC)
i 0.060 0.112 0.086 0.038 0.615 0.089

Correlated space ηi 10.842 9.863 9.730 9.970 4.641 10.335
ηi ⇒ Si 0.054 0.140 0.165 0.107 0.590 0.090
S(MC)
i 0.057 0.133 0.151 0.110 0.593 0.085

ηTi 0.174 1.180 0.593 0.473 6.747 0.973

ηTi ⇒ STi 0.008 0.094 0.064 0.021 0.592 0.086

ST(MC)
i 0.013 0.089 0.065 0.024 0.593 0.086

5.6 Engineering Example 6: Solar Wing Mast of Space Station
The solar wing mast of space station is a truss structure in 3D space based on triangular

structure, shown in Fig. 8.

Figure 8: Solar wing mast structure [32]

The solar wing mast is made of titanium alloy. The material properties (including density ρ,
Elastic modulus E, Poisson’s ration ν), external load (including dynamic load F1 and static load
F2) and sectional area of truss A are random variables, the corresponding distribution parameters
are listed in Tab. 10.

Software CATIA is used to establish the geometry and finite element model, and then taking
the maximum stress as the output response, ABAQUS was repeatedly called to analyze the finite
element model. And finally 210 samples were obtained. Random forest is used to analyze the
variable importance measures, the results of VIMs are listed in Tab. 11.
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Table 10: Distribution parameters of input variables

Variable/unit Mean Standard variance

ρ/kg·m−3 4300 215
E/GPa 106 5.3
ν 0.3 0.015
A/m2 0.0001 5× 10−6

F1/N 100 5
F2/N 100 10

Table 11: The VIMs of solar wing mast

Variable ηi ηi ⇒ Si ηTi ηTi ⇒ STi
ρ 3.144× 1012 0.0106 2.434× 1012 0.7586
E 3.133× 1012 0.0138 2.454× 1012 0.7647
ν 3.179× 1012 0.0000 2.692× 1011 0.0860
A 2.754× 1012 0.1379 1.096× 1012 0.3576
F1 3.161× 1012 0.0060 3.225× 1011 0.0994
F2 3.089× 1012 0.0309 3.857× 1011 0.1301

According to the results of variable importance measures, the main sensitivity index of
Poisson’s ration ν is almost zero, and the total sensitivity index is also the minimum one. In order
to simplify the model, the Poisson’s ration ν can be considered as a constant. The sectional area
of truss A is the key design variable, since A has the largest main sensitivity to output. There is
a large interaction between density ρ and Elastic modulus E, and the interaction sensitivity index
can be indirectly solved SρE ≈ 0.4623. For external load, F1 and F2 can be regarded as secondary
variables. The variable importance measures can give designer reasonable suggestions to allocate
optimization spaces of design variables more effectively and reduce the optimization dimension.

6 Conclusions

The Kriging regression model is used as the leaf node model of decision tree to improve the
prediction accuracy of RF. The single variable, group variables and correlated variables importance
measures based on RF are presented, which constitute the complete RF variable importance mea-
sure system. Additionally, a novel approach for solving variance-based global sensitivity indices
is presented, and the novel meaning of these VIM indices is also introduced. The results of the
numerical and engineering examples testify that the VIM indices of RF can further derive the
variance sensitivity indices with higher computational efficiency compared with single-loop MC
simulation.

For some incomplete probability information, such as linear correlated non-normal vari-
ables, non-linear correlated variables and discrete input-output samples and so on, the proposed
importance measure analysis method has some limitations in applicability. In future work, the
importance measures under incomplete probability information will be studied based on equivalent
transformation or Copula function.
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