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ABSTRACT

Various epidemics have occurred throughout history, which has led to the investigation and understanding of
their transmission dynamics. As a result, non-local operators are used for mathematical modeling in this study.
Therefore, this research focuses on developing a dysentery diarrhea model with the use of a fractional operator
using a one-parameter Mittag–Leffler kernel. Themodel consists of three classes of the human population, whereas
the fourth one belongs to the pathogen population. The model carefully deals with the dimensional homogeneity
among the parameters and the fractional operator. In addition, the model was validated by fitting the actual
number of dysentery diarrhea infected cases covering 52 weeks in 2017, which occurred in Ethiopia. The biological
parameters were fitted, and fractional order ν was optimized. The basic reproduction numbersR0 were 1.7031 and
1.9581, which correspond to the fractional and integer-order models, respectively. The fractional model showed
smaller discrepancies compared to the integer-order model when the models were fitted and validated with the
actual cases of infected humans. Qualitative theory for the existence and uniqueness of the solutions was extensively
explored, and the stability of equilibria was investigated. The most influential parameters were found via forward
sensitivity indices. This multidisciplinary research shows and explains the results of numerical simulations applied
to a biological issue.
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1 Introduction

The literature provides mathematical models for the transmission of infectious diseases. These
models play a significant role in quantifying and evaluating the effective control and preventive
measures of infectious diseases [1–3]. Furthermore, mathematical modeling has been used in
several ways as a versatile and effective way of studying the dynamics of infectious disease
transmission. This can include the classic susceptible, infected, and recovered (SIR) model or more
advanced models [4]. Mathematical analysis and numerical simulations can be collectively used for
the development and evaluation of persuasive control measures.

It is popularly known that mathematical models can predict the emergence of infectious
diseases and epidemics, which are beneficial for public health planning and initiatives. By
using compartmental models as a simple mathematical structure, the complex dynamics of
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epidemiological processes can be examined [5]. These compartmental models divide the population
into two distinct health categories. The first category is depicted by S, and involves those suscepti-
ble to pathogen infection, while the second, denoted by I, involves the pathogen-infected humans.
The manner in which these two populations interact is based on phenomenological assumptions
used to develop the models. Ordinary differential equations (ODEs) are typically used to develop
these models.

Additionally, other populations denoted by R, which is the image of the immune/removed/
recovered compartment, are considered to make these models more practical. A significant chal-
lenge here is to obtain sufficient parameters for a particular disease, which would determine
the factors affecting potential control measures, such as medication or vaccination. The crucial
question is about the execution of such measures from an optimal viewpoint. Several notable
attempts have recently been made to introduce this research program for various diseases with
integer compartmental models [6–11].

Over the past few decades, many scientists have shown that fractional models can effectively
represent natural phenomena compared to integer-order differential equations. Therefore, frac-
tional calculus has gained more importance and popularity for modeling realistic cases, especially
memory effects [12–14]. Due to this particular function, various fractional operators have been
developed to accurately model the memory effects of various types of diseases [15–22]. Neverthe-
less, further research is required to explain such complex dynamics. Classical fractional models
with singular operators cannot effectively model the non-locality of real-world applications. To
overcome this challenge, we investigated and examined a new fractional version of an epidemiolog-
ical model for the dysentery diarrhea involving the ABC operator, known to have a non-singular
kernel with memory effects.

2 Formulation of the Dysentery Diarrhea System

This section demonstrates the formulation of the dysentery diarrhea disease in terms of a
deterministic model based on a nonlinear system of ODEs over a finite time interval [0,T ], 0 <

t< T . The model comprises four population classes. Three classes are reserved for samples from
the human population, including those that can be infected with the disease called susceptible
S(t). In addition, those that transmit the disease are denoted by I(t), and those that successfully
recover from the disease are denoted by R(t). The other class is the dynamics for the pathogen
population (concentration of Shigella dysenteriae), denoted by B(t).

The model is designed based on the following assumptions:

• Transmission of the dysentery diarrhea disease occurs through multiple pathways.

• There is a homogeneously mixed population

• Π is the rate of recruitment of those susceptible either by birth or immigration

• Standard incidence is assumed in the human to human interaction

• Logistic phenomenon is taken into consideration in the human to environment interaction,
which is represented below:

Πh=
βhI
N

ΠB = βeB
B+C

, (1)

where C stands for the Shigella concentration that causes a 25% likelihood of getting the disease
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• βh and βe stand for rates of ingesting Shigella from human to human interaction and
through a contaminated environment, respectively. βh = ap (a= contact rate and p= probability
of disease transmission per contact)

• After losing immunity, individuals return to S(t) at a rate of α

• Infected individuals cause concentration of Shigella at a rate of ε

• Shigella population dies at a rate of σ

• Rate of recovery of infected humans is γ

• Natural mortality rate of humans is μ where death due to dysentery diarrhea disease occurs
at a rate of d

• Non-negativity is assumed for all biological parameters introduced within the model

Hence, after incorporating all the above assumptions and considering the Atangana–Baleanu
differential operator taken in the Caputo sense [15], we have obtained the following coupled
nonlinear system of ordinary differential equations:

ABC(ν)

1− ν

∫ t

0
S′(ζ )Eν

[
− ν

1− ν
(t− ζ )ν

]
dζ =Πν +ανR(t)− (Πh+ΠB+μν)S(t),

ABC(ν)

1− ν

∫ t

0
I ′(ζ )Eν

[
− ν

1− ν
(t− ζ )ν

]
dζ = (Πh+ΠB)S(t)− (μν + γ ν + dν)I(t),

ABC(ν)

1− ν

∫ t

0
R′(ζ )Eν

[
− ν

1− ν
(t− ζ )ν

]
dζ = γ νI(t)− (μν +αν)R(t),

ABC(ν)

1− ν

∫ t

0
B′(ζ )Eν

[
− ν

1− ν
(t− ζ )ν

]
dζ = ενI(t)− σ νB(t),

(2)

subject to the following initial conditions:

S(0)= S0 ≥ 0, I(0)= I0 ≥ 0, R(0)=R0 ≥ 0, B(0)=B0 ≥ 0,

where Πh= βν
h I(t)
N(t) ,ΠB = βν

e B(t)
B(t)+C , and N(t)= S(t)+ I(t)+R(t).

3 Existence and Uniqueness

This section presents the existence and uniqueness of solutions of the proposed model using
the techniques of fixed point theory. Here, we denote E= C ([0,T ] ,R) , the Banach space of all
continuous real-valued function equipped with the norm defined by:

‖ (S, I ,R,B) ‖=‖ S(t) ‖ + ‖ I(t) ‖ + ‖R(t) ‖ + ‖B(t) ‖,
where

|S ‖= sup
t∈[0,T ]

|S (t) |, ‖ I ‖= sup
t∈[0,T ]

|I (t) |, ‖R ‖= sup
t∈[0,T ]

|R (t) |, ‖B ‖= sup
t∈[0,T ]

|B (t) |.

Thus, the proposed fractional model takes the forms shown below:

S(t)−S(0)=ABC Iν
0+{Πν +ανR(t)− (Πh+ΠB+μν)S(t))},

I(t)− I(0) =ABC Iν
0+{(Πh+ΠB)S(t)− (μν + γ ν + dν)I(t)},

R(t)−R(0)=ABC Iν
0+{γ νI(t)− (μν +αν)R(t)},

B(t)−B(0)=ABC Iν
0+{ενI(t)− σ νB(t)}.

(3)
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We then obtain:

S(t)=S(0)+ 1− ν

N(ν)
F1(t,S(t))+ ν

N(ν)

1
Γ(ν)

∫ t

0
(t−x)ν−1F1(x,S(x))dx,

I(t)= I(0)+ 1− ν

N(ν)
F2(t, I(t))+ ν

N(ν)

1
Γ(ν)

∫ t

0
(t−x)ν−1F2(x, I(x))dx,

R(t)=R(0)+ 1− ν

N(ν)
F3(t,R(t))+ ν

N(ν)

1
Γ(ν)

∫ t

0
(t−x)ν−1F3(x,R(x))dx,

B(t)=B(0)+ 1− ν

N(ν)
F4(t,B(t))+ ν

N(ν)

1
Γ(ν)

∫ t

0
(t−x)ν−1F4(x,B(x))dx,

(4)

where,

F1(t,S(t))=Πν +ανR(t)− (Πh+ΠB+μν)S(t),
F2(t, I(t)) = (Πh+ΠB)S(t)− (μν + γ ν + dν)I(t),
F3(t,R(t))= γ νI(t)− (μν +αν)R(t),
F4(t,B(t))= ενI(t)− σ νB(t).

(5)

The kernels in Eq. (5) satisfy the Lipschitz condition for 0≤Mi < 0, i= 1, 2, · · ·4. When S(t)
and S∗(t) are two functions, we get:

‖ F1(t,S(t))−F1(t,S∗(t)) ‖=‖Πν +ανR(t)− (Πh+ΠB+μν)S(t)
−(Πν +ανR(t)− (Πh+ΠB+μν)S∗(t)) ‖

=‖ (Πh+ΠB+μν)(S∗(t)−S(t)) ‖
≤ (Πh+ΠB+μν) ‖ S(t)−S∗(t) ‖
=M1 ‖ S(t)−S∗(t) ‖,

(6)

where M1 = (Πh+ΠB+μν) .

Thus,

‖ F1(t,S(t))−F1(t,S
∗(t)) ‖≤M1 ‖ S(t)−S∗(t) ‖, (7)

Repeating the same procedure above, yields:

‖ F2(t,E(t))−F2(t,E∗(t)) ‖≤M2 ‖E(t)−E∗(t) ‖,
‖ F3(t,Q(t))−F3(t,Q∗(t)) ‖≤M3 ‖Q(t)−Q∗(t) ‖,
‖ F4(t, IA(t))−F4(t, I∗A(t)) ‖≤M4 ‖ IA(t)− I∗A(t) ‖ .

(8)

Subsequently, Eq. (4) gives:

Sn(t)=S(0)+ 1− ν

N(ν)
F1(t,Sn−1(t))+ ν

N(ν)

1
Γ(ν)

∫ t

0
(t−x)ν−1F1(x,Sn−1(x))dx,

In(t)=E(0)+ 1− ν

N(ν)
F2(t, In−1(t))+ ν

N(ν)

1
Γ(ν)

∫ t

0
(t−x)ν−1F2(x, In−1(x))dx,

Rn(t)=Q(0)+ 1− ν

N(ν)
F3(t,Rn−1(t))+ ν

N(ν)

1
Γ(ν)

∫ t

0
(t−x)ν−1F3(x,Rn−1(x))dx,

Bn(t)=B(0)+ 1−ν
N(ν)

F4(t,Bn−1(t))+ ν

N(ν)

1
Γ(ν)

∫ t

0
(t−x)ν−1F4(x,Bn−1(x))dx,

(9)
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where S(t) ≥ 0, I(t)≥ 0, R(t)≥ 0, B(t)≥ 0. The difference between successive components can be
denoted by Φi

n, i= 1, 2, · · ·6, respectively. Thus in view of Eqs. (7)–(9), we obtain:

‖Φ1
n(t) ‖=

1− ν

N(ν)
M1 ‖ S(t)−S∗(t) ‖ + ν

N(ν)

M1

Γ(ν)

∫ t

0
(t−x)ν−1 ‖ S(t)−S∗(t) ‖ dx,

‖Φ2
n(t) ‖=

1− ν

N(ν)
M2 ‖ I(t)− I∗(t) ‖ + ν

N(ν)

M2

Γ(ν)

∫ t

0
(t−x)ν−1 ‖ I(t)− I∗(t) ‖ dx,

‖Φ3
n(t) ‖=

1− ν

N(ν)
M3 ‖R(t)−R∗(t) ‖ + ν

N(ν)

M3

Γ(ν)

∫ t

0
(t−x)ν−1 ‖R(t)−R∗(t) ‖ dx,

‖Φ4
n(t) ‖=

1− ν

N(ν)
M4 ‖ B(t)−B∗(t) ‖ + ν

N(ν)

M4

Γ(ν)

∫ t

0
(t−x)ν−1 ‖ B(t)−B∗(t) ‖ dx,

(10)

Theorem 3.1 The fractional proposed model possesses a unique solution for t ∈ [0,T ] if the condition is
satisfied(
1− ν

N(ν)
Mi+ 1

N(ν)

Mi

γ (ν)
Tν

)
< 1, i= 1, 2, . . . , 6. (11)

Proof. Based on the assumptions that S(t),E(t),Q(t), IA(t), IS(t),R(t) are bounded functions,
it is therefore clear that the kernels F1,F2,F3,F4,F5,F6 from Eqs. (7)–(8) satisfy the Lipschitz
condition. Hence, Eq. (10) can be viewed as:

‖Φ1
n(t) ‖≤

(
1− ν

N(ν)
M1+ 1

N(ν)

M1

Γ(ν)
Tν

)n

,

‖Φ2
n(t) ‖≤

(
1− ν

N(ν)
M2+ 1

N(ν)

M2

Γ(ν)
Tν

)n

,

‖Φ3
n(t) ‖≤

(
1− ν

N(ν)
M3+ 1

N(ν)

M3

Γ(ν)
Tν

)n

,

‖Φ4
n(t) ‖≤

(
1− ν

N(ν)
M4+ 1

N(ν)

M4

Γ(ν)
Tν

)n

.

(12)

Hence, the sequences above exist as n → ∞,‖ Φi
n(t) ‖→ 0, i = 1, 2, · · ·6. Also, using the

triangular inequality for any k value, Eq. (12) yields:

‖ Sn+k(t)−Sn(t) ‖≤
n+k∑
i=n+1

Pi1 =
Pn+1
1 −Pn+k+1

1

1−P1
,

‖ In+k(t)− In(t) ‖≤
n+k∑
i=n+1

Pi2 =
Pn+1
2 −Pn+k+1

2

1−P2
,

‖Rn+k(t)−Rn(t) ‖≤
n+k∑
i=n+1

Pi3 =
Pn+1
3 −Pn+k+1

3

1−P3
,

‖Bn+k(t)−Bn(t) ‖≤
n+k∑
i=n+1

Pi4 =
Pn+1
4 −Pn+k+1

4

1−P4
,

(13)
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4 Stability and Basic Reproductive Number

In this section, the stability of the ailment-free equilibrium and its analytic conditions will
be discussed. From the derivation of the existence of equilibria in [23], the basic reproduction
number in the fractional model is given by:

R0 =
βν
h

μν + γ ν + dν
+ (Πβeε)

ν

μνσ ν(μν + γ ν + dν)C
. (14)

Theorem 4.1 The ailment-free equilibrium E0 is locally asymptotically stable if R0 ≤ 1 and unstable if
R0 > 1.

Proof. Through the concept of the Jacobian matrix, local stability at E0 can be achieved by:

J[E0]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μν −βν
h ϕν −βBΠ

Kμ

0 βν
h − (μν + dν + γ ν) 0

βBΠ

Kμ
0 γ ν −(ϕν +μ) 0
0 ε 0 −σ ν .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

The associated eigenvalues are Π1 =−μν ,Π2 =−(μν + ϕν) and the solutions of Π2 + ((μν +
dν +γ ν +σ ν)−βh)Π+(μν +dν +γ ν)σ ν(1−R0)= 0. Now, if R0 < 1, ((μν +dν +γ ν +σ ν)−βh) < 0
and ((μν + dν + γ ν + σ ν) − βh)(μ

ν + dν + γ ν)σ ν(1 − R0) > 0, in accordance with the Hurwitz
principle, the expression Π2+ ((μν +dν +γ ν +σ ν)−βh)Π+ (μν +dν +γ ν)σ ν(1−R0)= 0, possesses
negative real eigenvalues. Thus, E0 is locally asymptotically stable. On the other hand, when
R0 = 1, one eigenvalue of the expression will be 0. By the concept of Hartman Grobman [24],
the ailment-free equilibrium is nonhyperbolic. The absence of non hyperbolicity indicates that the
linearized system cannot describe the local features of the system.

4.1 Global Stability of the Ailment-Free Equilibrium
By employing the approach used in [25], the asymptotic stability for the ailment-free equilib-

rium will be derived in a global sense. This takes the following into account:

ABCDνA′ (T)= f (A, y) , ABCDνy′ (T)= g (A, y) , g (A, 0)= 0, (16)

where A ∈Rm indicates the non-infectious ones and y ∈Rn indicates the infectious ones. Assume
U0 = (A∗, 0) represents the ailment-free equilibrium and suppose that:

• ABCDνA′(T)= f (A, 0), A∗ is globally asymptotically stable,

• g(A,y)=Xy− g(A,y),g(A,y)≥ 0 for (A,y)∈X , and X =D1G(A∗, 0) denotes an M-matrix.

Theorem 4.2 If D1 and D2 are satisfied, and U0 = (A∗, 0) is a fixed point, then the model is globally
asymptotically stable only if Ro≤ 1.

Proof. The proof can be shown in a similar way as the process carried out in [24].

5 Parameters Estimation

For the validation of an epidemiological model, it is extremely important to compare the
results of simulations with the actual data of infected individuals. This increases the reliability of
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the proposed disease model. Similar values from the simulations and actual data give better infor-
mation on the disease being investigated. In addition, unknown values of the working parameters
that contribute to the model can be determined.

There are different techniques including maximum likelihood estimation, Bayesian technique,
nonlinear least-squares approach, and probability plotting, which can be used to obtain the best
parameters. In this research, we utilized the nonlinear least-squares approach for computing the
best-fitted parameters, including Π,βh,βe,d, ν, ε, and σ , along with the most important parameter
of our proposed model, called the fractional order ν (one of the major components of the study).
We also obtained the best-fitted parameters for the classical dysentery system and ABC fractional
dysentery system, which are shown in Tab. 1. The actual data for the dysentery diarrhea infected
individuals was from Ethiopia, which covered a period of 52 weeks in 2017 [26].

Table 1: Best fitted and constant parameters for classical (ν = 1) and ABC (ν 
= 1) versions of the
model

Parameters Interpretation ν = 1 ν 
= 1

Π Recruitment rate 6692.3677 6692
βh Transmission rate of disease for human to

human interaction
0.113003 1.324811e−01

βe Transmission rate of disease for environment
to human interaction

0.001013 1.007441e−03

C Shigella’s concentration 200 200
μ Humans’ natural mortality rate 0.000457 0.000457
d Death rate due to disease 0.05279 0.05279
γ Rate of recovery 0.094724 1.149954e−01
α Relapse rate for recovered to susceptible 2.096175 0.08537
ε Shedding rate of the pathogen 0.00028 2.420341e−04
σ Shigella’s net death rate 0.117504 1.117099e−01
ν ABC fractional order 1 9.9410e−01

When the least-squares technique is utilized, we need to minimize the objective function. This
is achieved by tuning the system’s parameters to fit the available data points accurately. Real data
cases for the dysentery diarrhea disease in this study are denoted by m points (xn,yn),n= 1, . . . ,m,
where xn stands for independent quantity and yn shows dependent quantity. The system function
has the structure h(x, r), where s tuned parameters are shown in a vector of parameters, r. Hence,
the objective is to identify the parameters which ensure that the system’s simulations for the
infected cases fit well with the actual data points.

In the present study, we obtained the best fit by measuring the difference between the real
data and the simulations. This is shown below:

En = yn− h(xn, r) (17)

Finally, the optimal set of parameters is obtained, as shown in Tab. 1, with the least-squares
approach while minimizing the absolute relative error, on average, as shown below:

ARE= 1
N

m∑
n=1

|yn− h(xn, r)|
yn

, (18)
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where N stands for the total data value, which is 52 in this study. Moreover, real prevalent cases
of the dysentery diarrhea disease, along with the classical and the ABC system’s simulations for
the infected individuals, are listed in Tab. 2. In addition, Fig. 1 shows the best fit of the classical
and ABC system with the real cases. The ABC system showed an average absolute relative error
of 3.4284e − 02, and the classical system was 3.4432e − 02. Therefore, it shows that the ABC
system had some advantages compared to the classical dysentery diarrhea system. In addition,
the basic reproductive numbers R0 were 1.7031 and 1.9581 for the ABC and classical systems,
respectively. This clearly shows that the disease can be well prevented if the ABC operator is taken
into consideration while modeling the epidemic.

Table 2: Dysentery diarrhea cases for 52 weeks in 2017 from Ethiopia [23]: First, second and third
rows stand for real cases, classical simulations and ABC simulations, respectively

4542
4.5420e+03
4.5420e+03

4750
4.7574e+03
4.7623e+03

4792
4.9658e+03
4.9708e+03

5417
5.1670e+03
5.1699e+03

5250
5.3607e+03
5.3596e+03

5125
5.5463e+03
5.5398e+03

7000
6.4694e+03
6.4134e+03

7042
6.5874e+03
6.5223e+03

6458
6.6941e+03
6.6202e+03

7083
6.7892e+03
6.7069e+03

7625
6.8723e+03
6.7824e+03

6875
6.9433e+03
6.8464e+03

7375
7.1118e+03
6.9932e+03

7167
7.0986e+03
6.9798e+03

7292
7.0744e+03
6.9565e+03

7000
7.0399e+03
6.9238e+03

6583
6.9957e+03
6.8820e+03

6750
6.9424e+03
6.8318e+03

6917
6.4708e+03
6.3872e+03

6208
6.3734e+03
6.2948e+03

5958
6.2724e+03
6.1989e+03

6500
6.1684e+03
6.0999e+03

5958
6.0619e+03
5.9983e+03

5583
5.9536e+03
5.8947e+03

5458
5.2874e+03
5.2530e+03

5458
5.1770e+03
5.1459e+03

5250
5.0674e+03
5.0396e+03

4750
4.9589e+03
4.9341e+03

4750
4.8516e+03
4.8297e+03

4750
4.7457e+03
4.7266e+03

5833
5.7236e+03
5.7105e+03

6000
5.8920e+03
5.8715e+03

5542
6.0513e+03
6.0224e+03

5917
6.2009e+03
6.1632e+03

6583
6.3404e+03
6.2936e+03

6375
7.0020e+03
6.8989e+03

66
7.0483e+03
6.9401e+03

6875
7.0823e+03
6.9699e+03

7000
7.1040e+03
6.9885e+03

7042
7.1138e+03
6.9962e+03

6833
6.8807e+03
6.7738e+03

6792
6.8113e+03
6.7085e+03

6708
6.7349e+03
6.6366e+03

6833
6.6522e+03
6.5586e+03

7042
6.5639e+03
6.4753e+03

5667
5.8438e+03
5.7894e+03

5667
5.7330e+03
5.6830e+03

5542
5.6216e+03
5.5758e+03

5583
5.5100e+03
5.4682e+03

5458
5.3985e+03
5.3605e+03

4583
4.6414e+03
4.6249e+03

4500
4.5387e+03
4.5246e+03
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Figure 1: Plots and comparison of the real incidence cases, classical (ν = 1) and ABC (ν =
9.9410e− 01) systems for the dysentery diarrhea

6 Sensitivity

In this section, the concept of sensitivity analysis is used to discover the robust significance
of the generic parameters present in the base reproduction number R0. Furthermore, both the
analytical and numerical values of the R0 parameters are derived from precise assumptions using
parameter values.

If the dynamics follow the model (1), the analytical expressions can be used to explain the
process of tracking the model’s onset at various locations. The threshold value, R0 can reduce and
stop the ailment spread by reducing the number to less than unity. The sensitivity index technique
is used to measure the most sensitive parameters in the model. The parameters with a positive
sign are considered highly and proportionally sensitive to R0, while those with a negative sign
are less sensitive to R0 decreasing. The other category is neutrally sensitive (with zero relative
sensitivity). The cause of the transmission of the infringement is directly linked to the specific
reproduction number R0. The R0 elasticity indices [27] are shown below:

Υ
R0
Pi

= ∂R0

∂Pi
× Pi

R0
, (19)

where R0 denotes the basic reproduction ratio and Pi is stated above. Following the described
formula, we get:

Υβh =βh
νν

(
βh

ν

μν + γ ν + dν
+ (πβeε)

ν

μνσ ν (μν + γ ν + dν)C

)−1 (
μν + γ ν + dν

)−1 ,

Υμ =μ

(
− βh

νμνν

(μν + γ ν + dν)2 μ
− (πβeε)

ν ν

μνσ ν (μν + γ ν + dν)Cμ
− (πβeε)

ν ν

σ ν (μν + γ ν + dν)2Cμ

)
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×
(

βh
ν

μν + γ ν + dν
+ (πβeε)

ν

μνσ ν (μν + γ ν + dν)C

)−1

,

Υγ =γ

(
− βh

νγ νν

(μν + γ ν + dν)2 γ
− (πβeε)

ν γ νν

μνσ ν (μν + γ ν + dν)2Cγ

)

×
(

βh
ν

μν + γ ν + dν
+ (πβeε)

ν

μνσ ν (μν + γ ν + dν)C

)−1

,

Υd =d
(
− βh

νdνν

(μν + γ ν + dν)2 d
− (πβeε)

ν dνν

μνσ ν (μν + γ ν + dν)2Cd

)

×
(

βh
ν

μν + γ ν + dν
+ (πβeε)

ν

μνσ ν (μν + γ ν + dν)C

)−1

,

Υσ =− (πβeε)
ν ν

(
βh

ν

μν + γ ν + dν
+ (πβeε)

ν

μνσ ν (μν + γ ν + dν)C

)−1 (
μν

)−1 (
σν

)−1 (
μν + γ ν + dν

)−1C−1,

ΥC =− (πβeε)
ν

(
βh

ν

μν + γ ν + dν
+ (πβeε)

ν

μνσ ν (μν + γ ν + dν)C

)−1 (
μν

)−1 (
σν

)−1

× (
μν + γ ν + dν

)−1C−1,

Υπ = (πβeε)
ν ν

(
βh

ν

μν + γ ν + dν
+ (πβeε)

ν

μνσ ν (μν + γ ν + dν)C

)−1 (
μν

)−1 (
σν

)−1

× (
μν + γ ν + dν

)−1C−1,

Υε = (πβeε)
ν ν

(
βh

ν

μν + γ ν + dν
+ (πβeε)

ν

μνσ ν (μν + γ ν + dν)C

)−1 (
μν

)−1 (
σν

)−1

× (
μν + γ ν + dν

)−1C−1,

Υβe = (πβeε)
ν ν

(
βh

ν

μν + γ ν + dν
+ (πβeε)

ν

μνσ ν (μν + γ ν + dν)C

)−1 (
μν

)−1

× (
σ ν

)−1 (
μν + γ ν + dν

)−1C−1. (20)

The numerical values indicating the relative significance of R0 are given in Tab. 3. Some
parameters are positive while some are negative. Parameters with positive values mean that an
increase in the parameter’s values will have a major effect on the frequency of the ailment spread.
On the other hand, parameters with negative values mean an increase in such parameters would
decrease the effect of the disease. A representation of the values given in Tab. 3, is shown in
Fig. 2.
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Table 3: The baseline values and elasticity indices for different model parameters (2) [R0 =
1.703052076]

Parameter Baseline value Elasticity index

βh 1.324811e− 01 0.4585555129
Π 6692 0.5355444870
ε 2.420341e− 04 0.5355444870
βe 1.007441e− 03 0.5355444870
C 200 −0.5387229527
σ 1.117099e− 01 −0.5355444870
d 0.05279 −0.3128781515
γ 1.149954e− 01 −0.6784363099
μ 0.000457 −0.5383300266

Figure 2: Elasticity indices for various parameters of R0

7 Simulations for the ABCModel

In this section, an algorithm is first developed to obtain the approximate solution of the ABC
dysentery diarrhea model, wherein the operator uses non-local and non-singular types of the
kernel. The algorithm being developed is discussed in [28], which entails the combination of the
fundamental theorem of fractional calculus and two-step Lagrange type polynomial. Therefore,
the fundamental theorem of fractional calculus on the Cauchy type initial value problem is given
below:
ABC

D
ν
0w(t)=G(t,w(t)), w(0)=w0, 0< t<∞, (21)
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This leads to:

w(t)−w(0)= (1− ν)

ABC(ν)
G(t,w(t))+ ν

ABC(ν)× Γ(ν)

∫ t

0
G(τ ,w(τ ))(t− τ )ν−1dτ . (22)

At t= tn+1,n= 0, 1, 2, . . . , we have:

w(tn+1)−w(0)= (1− ν)

ABC(ν)
G(tn,w(tn))+ ν

ABC(ν)× Γ(ν)

∫ tn+1

0
G(τ ,w(τ ))(tn+1− τ )ν−1dτ . (23)

w(tn+1)−w(0)= (1− ν)

ABC(ν)
G(tn,w(tn))+ ν

ABC(ν)× Γ(ν)

n∑
v=0

∫ tv+1

tv
G(τ ,w(τ ))(tn+1− τ )ν−1dτ . (24)

With the help of interpolation polynomial, we approximate function G(τ ,w(τ ))over[tv, tv+1]:

G(τ ,w(τ ))≈Pk(τ )= G(tv,w(tv))
h

(τ − tv−1)− G(tv−1,w(tv−1))

h
(τ − tv). (25)

Eq. (24) becomes:

w(tn+1)=w(0)+ (1− ν)

ABC(ν)
G(tn,w(tn))+

ν

ABC(ν)× Γ(ν)

n∑
v=0

(
G(tv,w(tv))

h

∫ tv+1

tv
(τ − tv−1)(tn+1 − τ )ν−1dτ−

G(tv−1,w(tv−1))

h

∫ tv+1

tv
(τ − tv)(tn+1 − τ )ν−1dτ

)
.

(26)

By solving the above integrals, we obtain the approximate solution shown below:

wn+1 =w(t0)+ (1− ν)

ABC(ν)
G(tn,w(tn))+ ν

ABC(ν)

n∑
v=0

(27)

[
hνG(tv,w(tv))

Γ(ν + 2)
((n+ 1− v)ν(n− v+ 2+ ν)− (n− v)ν (n− v+ 2+ 2ν)) (28)

hνG(tv−1,w(tv−1))

Γ(ν + 2)
((n+ 1− v)ν+1− (n− v)ν(n− v+ 1+ ν))

]
. (29)

Hence, the proposed dysentery diarrhea model becomes:

Sn+1 = S(t0)+ (1− ν)

ABC(ν)
G1(tn,w(tn))+ ν

ABC(ν)

n∑
v=0

(30)

[
hνG1(tv,w(tv))

Γ(ν + 2)
((n+ 1− v)ν(n− v+ 2+ ν)− (n− v)ν (n− v+ 2+ 2ν)) (31)

hνG1(tv−1,w(tv−1))

Γ(ν + 2)
((n+ 1− v)ν+1 − (n− v)ν(n− v+ 1+ ν))

]
, (32)
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In+1 = I(t0)+ (1− ν)

ABC(ν)
G2(tn,w(tn))+ ν

ABC(ν)

n∑
v=0

(33)

[
hνG2(tv,w(tv))

Γ(ν + 2)
((n+ 1− v)ν(n− v+ 2+ ν)− (n− v)ν (n− v+ 2+ 2ν)) (34)

hνG2(tv−1,w(tv−1))

Γ(ν + 2)
((n+ 1− v)ν+1 − (n− v)ν(n− v+ 1+ ν))

]
, (35)

Rn+1 =R(t0)+ (1− ν)

ABC(ν)
G3(tn,w(tn))+ ν

ABC(ν)

n∑
v=0

(36)

[
hνG3(tv,w(tv))

Γ(ν + 2)
((n+ 1− v)ν(n− v+ 2+ ν)− (n− v)ν (n− v+ 2+ 2ν)) (37)

hνG3(tv−1,w(tv−1))

Γ(ν + 2)
((n+ 1− v)ν+1 − (n− v)ν(n− v+ 1+ ν))

]
, (38)

Bn+1 =B(t0)+ (1− ν)

ABC(ν)
G4(tn,w(tn))+ ν

ABC(ν)

n∑
v=0

(39)

[
hνG4(tv,w(tv))

Γ(ν + 2)
((n+ 1− v)ν(n− v+ 2+ ν)− (n− v)ν (n− v+ 2+ 2ν)) (40)

hνG4(tv−1,w(tv−1))

Γ(ν + 2)
((n+ 1− v)ν+1 − (n− v)ν(n− v+ 1+ ν))

]
, (41)

where,

G1 =Πν +ανR− (Πh+ΠB+μν)S,

G2 = (Πh+ΠB)S− (μν + γ ν + dν)I ,

G3 = γ νI − (μν +αν)R,

G4 = ενI − σ νB.

(42)

Using numerical simulations, the ABC dysentery diarrhea model (2) uses the developed algo-
rithm shown above. Different values of the key parameters are chosen to investigate their effects
on the dynamics of the disease. These parameter values are taken from Tab. 1. With simulations,
we can identify important parameters that significantly affect the model’s dynamics. In order
to investigate the transmission rate of dysentery due to human to human interaction (βh) and
environment to human interaction (βe), we vary both parameters, as shown in Fig. 3.
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Figure 3: Behavior of diarrhea infected people with increasing values of (a) effective transmission
rate of dysentery due to human to human interaction (βh) and (b) effective transmission rate
of dysentery due to the environment to human interaction (βe), while taking the remaining
parameters from Tab. 1

This shows that diarrhea disease is principally due to the environment to human interaction.
It means that humans must take care of their hygiene and surroundings in order to avoid the
spread of dysentery. In order to investigate the effect of the concentration of Shigella pathogen
(C) and the net death rate of Shigella pathogen (σ ), we have varied both parameters, as shown in
Fig. 4. This demonstrates that decreasing the values of the net death of Shigella pathogen leads
to a reduction in the infection, while its concentration (C) follows the same pattern as the normal
curve.

Figure 4: Behavior of diarrhea infected people with increasing values of (a) concentration of
Shigella pathogen (C), and (b) net death rate of Shigella pathogen (σ ), while taking the remaining
parameters from Tab. 1
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In order to investigate the effect of the pathogen shedding rate of infected humans (ε) and
the recovery rate of dysentery (γ ), we have varied both parameters, as shown in Fig. 5. This
demonstrates that increasing the values of ε causes the infection rate to rise. This is because
its shedding rate on humans also increases, whereas a slight improvement in the recovery rate
decreases the infection rate substantially.

Figure 5: Behavior of diarrhea infected people with increasing values of (a) pathogen shedding
rate of infected humans (ε) and (b) recovery rate of dysentery (γ ), while taking the remaining
parameters from Tab. 1

Finally, in order to investigate the effects of different parameters on the basic reproductive
number, R0, we have presented various contour plots, as shown in Fig. 6. This shows that
dysentery diarrhea can be prevented effectively if some strategies, including environment to human
interaction, the concentration of Shigella pathogen, and pathogen shedding rate, are carefully
considered.
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Figure 6: Behavior of basic reproductive number, R0 under the influence of different parameters
of the proposed ABC system (2)

8 Conclusion

In the present research, one of the robust non-local and non-singular fractional operator,
called Atangana-Baleanu, was used to model dysentery diarrhea. The employed fractional operator
was suitable for the investigation of transmission dynamics of a disease from the literature. The
fractionalized order is ν, and the dimensional consistency between the rest of the parameters
has been considered. Consequently, several important features of the proposed fractional variant
of the model, such as the formation of the model, existence and uniqueness of the solution by
means of fixed point theorem, stability analysis, sensitivity analysis and most importantly, the
estimation of the parameters have been reported. It was observed that the fractional variant of
the model represents the behavior of the ailment more accurately than the integer-order variant.
The dimensional homogeneity among parameters and the ABC operator have been authenticated
by fitting the dysentery diarrhea infected cases from Ethiopia covering a period of 52 weeks in
2017. In addition, the ABC operator’s fractional order, ν was optimized. This returns a basic
reproduction number, R0 of 1.7031 and R0 of 1.9581, for the integer model. It is shown that
the ABC model has smaller values than the integer-order, whereas the proposed models match the
actual cases of infected humans.
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Furthermore, in order to shed more light on the features of the model, various numerical
simulations were carried out using an effective numerical scheme. In future studies, we plan to
apply the techniques used in [29–34] to understand dysentery diarrhea dynamics in greater detail.
In addition, optimal control theory will be utilized to devise effective control strategies to eliminate
the epidemic.
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