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ABSTRACT

Fatigue failure is a common failure mode under the action of cyclic loads in engineering applications, which
often occurs with no obvious signal. The maximum structural stress is far below the allowable stress when the
structures are damaged. Aiming at the lightweight structure, fatigue topology optimization design is investigated
to avoid the occurrence of fatigue failure in the structural conceptual design beforehand. Firstly, the fatigue life
is expressed by topology variables and the fatigue life filter function. The continuum fatigue optimization model
is established with the independent continuous mapping (ICM) method. Secondly, fatigue life constraints are
transformed to distortion energy constraints explicitly by taking advantage of the distortion energy theory. Thirdly,
the optimization formulation is solved by the dual sequence quadratic programming (DSQP). And the design
scheme of lightweight structure considering the fatigue characteristics is obtained. Finally, numerical examples
illustrate the practicality and effectiveness of the fatigue optimization method. This method further expands the
theoretical application of the ICM method and provides a novel approach for the fatigue optimization problem.
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1 Introduction

Continuum structural topology optimization is the most difficult optimization problem in
structural topology optimization. Topology optimization has four important significances including
searching for the best transmission path of forces, forming the optimal distribution of struc-
tural material, optimizing performance of the structure, and achieving structural lightweight.
Many researchers devote themselves to topology optimization because of novel design [1–3], or
lightweight structure in the engineering application [4,5]. The typical continuum topology opti-
mization methods include variable density method [6], homogenization method [7], evolutionary
structural optimization method [8], level set method [9,10], variable thickness method [11], moving
morphable components (MMC) method [12,13], moving morphable void (MMV) method [14],
phase field method [15,16], and the independent continuous mapping (ICM) method [17] etc.

Structural fatigue may occur when engineering structures are subjected to periodic or random
loads. In this case, the structural stress is less than the material strength limit. Due to the absence
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of obvious signal and the uncertainty of the occurrence, the fatigue failure is a great safety
hazard. To improve the anti-fatigue performance of the structure, it is important to design the
engineering components with fatigue topology optimization. There have been some researches on
fatigue topology optimization but in a few quantity. In the early researches, the crack initiation
was used to indicate that the structural fatigue failure had occurred, and the fatigue life constraints
were normally transformed to the stress constraints since it was convenient to calculate. For high
cycle fatigue optimization, Mrzyglod et al. [18] built a lightweight topology optimization model
with fatigue life constraints. Fatigue life constraints were transferred to stress constraints with the
Dang Von criterion. The equivalent stress was used to express fatigue failure based on ANSYS. In
low cycle fatigue topology optimization, Desmorat et al. [19] optimized a low cycle fatigue model
with minimum volume as an objective. Relative energy density function and Lemaitre’s law were
used to transform fatigue life constraints to stress constraints. The fatigue failure was calculated
by stress constraints with the cyclic elasto-plasticity law.

With the progress of the manufacturing industry, the service life of industrial products is
increasing. More topology optimization problems are considered with high cycle fatigue life con-
straints [20,21]. For the expression of structural failure, most researchers choose the accumulated
damage criterion to describe the fatigue life constraints directly. Holmberg et al. [22] and Oest et
al. [23] built the lightweight fatigue topology optimization model. They chose the same criterion,
Palmgren-Miner’s rule, to calculate the structural accumulated damage while the stress calculation
methods were different. The former chose a fictitious load spectrum, the latter referred to a linear
log-log S-N curve. Lee et al. [24] transformed the load spectrum in frequency domain to the time
domain. And a lightweight fatigue topology optimization model was established. The structural
accumulated damage was expressed by equivalent stress with the S-N curve. The long-time span
fatigue loads were simplified into equivalent stress by calculating power density function with
Dirlik method, narrow solution, etc., Chen et al. [25] developed a density filter SIMP method
to optimize the component with the fatigue loading. The singularity issue is circumvented by
the penalized stress. And the lightweight design is obtained with the constraint of the maximum
fatigue damage.

The fatigue failure is a local phenomenon, which means the fatigue life of each unit should
satisfy the fatigue life constraints. Some efficient methods were introduced to reduce computation,
like the P-norm function [26], the q-p relaxed approach [27], and K-S function [28], etc.

The ICM method is effective to solve the structural topology optimization problems, especially
in static, frequency and buckling problems [17,29,30]. However, a few studies focus on fatigue
topology optimization problems. Therefore, inspired by ICM method, the lightweight continuum
topology optimization model with the fatigue life constraints is established in this paper. The
distortion energy theory and the S-N curve are utilized to transform fatigue life constraints
are into distortion energy constraints explicitly. And the DSQP method is utilized to reduce
computation and solve the topology optimization model.

This paper consists of seven sections. In Section 2, three features in ICM method are demon-
strated. In Section 3, the fatigue life filter function is introduced to establish fatigue topology
optimization model, and the fatigue life constraints are explicitly transformed to distortion energy
constraints. In Section 4, the process of solving strategies with the topology optimization model
is represented. In Section 5, the program flow of the optimization algorithm is presented. In
Section 6, three numerical examples are presented to demonstrate the validity of the fatigue
optimization method. Finally, the conclusions are obtained.
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2 ICM Method

ICM method, which is a continuous topology optimization design method proposed by Pro-
fessor Sui in 1996 [17], with three salient features consist of lightweight design, high computational
efficiency, and the filter function.

Lightweight design is the consistent optimization goal of ICM method because of the high
economic value in the aerospace industry, automobile industry, etc. This is of great significance
for saving production cost, reducing use cost, improving product mechanical performance, etc.

The high computational efficiency is realized by two transformations of optimization model.
First, the discrete optimization model is transformed into a continuous optimization model by
introducing the independent continuous variable. In ICM method, the discrete variables that
are 0/1 are converted to continuous variables that belong to [0,1] and inverse them back to
discrete variables after optimization. Second continuous optimization model is transformed into
the quadratic programming optimization model by introducing the DSQP method. The DSQP
method is the combination of duality theory and the SQP algorithm. This method could trans-
form the constraints into the objective and form a dual optimal model. Therefore, the amount of
constraints is reduced, which leads to a reduction in computation.

The filter functions establish the relationship between topology variables and physic properties
or geometric dimensions. The expressions of filter function will determine the establishment and
solution of topology optimization. Further, it will have an impact on the performance of the
optimized structure. It is the key point to establish the relationship between discrete variables and
continuous variables. In mathematics concept, the filter function is the result of the continuous
infinite approximation of x = 1, 0 ≤ y ≤ 1 and y = 0, 0 ≤ x ≤ 1, and it is a monotone increasing
function with differentiability in the interval (0,1].

The differences among the filter functions directly affect the computational efficiency and
the optimization results. We usually use power functions, f (ti) = tαi , α ≥ 1, as the form of filter
functions. The i presents the current unit number and i= 1, . . . ,N, N is the number of units. In
Fig. 1, the v presents a kind of unit performance, the v0 presents the limitation of v.
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Figure 1: Filter function

Mass filter function fW (ti), fatigue life filter function fL(ti), stress filter function fσ (ti), and the
dynamic stiffness matrix filter function fkL(ti) are introduced to identify the relationship between
unit parameters and design variables.

σ = fσ (ti)σ 0, L= L0

fL(ti)
, wi = fW (ti)w0

i (1)
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σ , the “extend allowable stress” function, is expressed by the stress filter function, which is
transformed from the 0/1 discrete state to the continuous state in the interval (0,1]. σ 0 is the
allowable stress. fσ (ti) = tiασ is the stress filter function, ασ = 3. L0 is the allowable fatigue
life. And L is the extended allowable fatigue life, which is expressed in the same way with σ .
fL(ti) = tiαL is the fatigue life filter function, αL = 1. wi is the unit mass, w0

i is the inherent unit
mass, fW (ti) = tiαw is the mass filter function, αw = 3.

3 Mathematical Model

3.1 Fatigue Life Filter Function
Fatigue failure exists widely in actual projects. When fatigue failure occurs, the structural

component usually fails before alternating stress reaches the allowable value of structural stress.
There is no obvious warning when an accident occurs. And it is difficult to prevent in advance,
resulting in great losses. To improve the structural fatigue performance. The fatigue failure is
considered in structural concept design.

The lightweight fatigue topology optimization model is presented.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find t ∈ EN

make W =
N∑
i=1

wi →min

s.t. Li ≥Li
(0< ti ≤ ti ≤ 1 ; i= 1, . . . ,N)

(2)

t is the vector of topology variables, and t = {t1, t2, . . . , tN}. W is the structural mass. Li is
the unit fatigue life. Li is the unit extended allowable fatigue life. Structure failure occurs when
Li ≤Li, the structure remains stable when Li ≥Li.

In fatigue topology optimization, the unit fatigue life of the structure should be greater than
the unit extended allowable fatigue life:

Li ≥Li (3)

And Eq. (1) has been substituted into Eq. (3), Eq. (3) can be written as follows:

Li ≥
L0
i

fL(ti)
(4)

Above all, the unit extends allowable fatigue life is identified by the filter function of the unit
allowable fatigue life in the fatigue topology optimization. Then we get the lightweight fatigue
topology optimization model as follows:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find t ∈ EN

make W =
N∑
i=1

fw(ti)w0
i →min

s.t. Li ≥ L0
i

fL(ti)
(0< ti ≤ ti ≤ 1 ; i= 1, . . . ,N)

(5)
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3.2 Transformation of Fatigue Life Constraints
To establish the sign of fatigue failure, the structural damage accumulation theory is intro-

duced to represent the structural damage. The fatigue damage can be linearly accumulated with
the Miner rule and defined as follows:

D=
∑

Dj =
k∑
j=1

lj
Lj

(6)

Lj represents the fatigue life of the j-th stress level, lj represents the actual cycle number for
the j-th stress level. Dj is the structural damage of the j-th stress level. When D is equal to 1, the
structure is damaged.

With the Miner rule, the sign of fatigue failure is obtained. The mathematical expression of
structural failure is established. But in the physical phenomenon, the fact of fatigue failure is the
release of structure energy. It is important to obtain the physical expression of structural failure.
The relationship between fatigue life and distortion energy is presented by the S-N curve and
distortion energy theory. First, the fatigue life is transformed to the structural peak stress with
S-N curve. Then the structural peak stress is transformed to distortion energy by distortion energy
theory.

3.2.1 Relationship between Fatigue Life and Structural Peak Stress
The fatigue life is transferred to structural peak stress with S-N curve and structural damage

accumulation theory. The form of the S-N curve is formulated by the power function and defined.

σL
β ·L=C (7)

β and C are material constants, σL is the structural peak stress subject to cyclic load. L is
the fatigue life.

The S-N curve is used to make the fatigue topology optimization constraint explicitly. And
the optimized model in Eq. (5) is transformed as:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find t ∈EN

make W =
N∑
i=1

fw(ti)w0
i →min

s.t. σiL
β(Li)≤ fL(ti)σiLβ(L0

i )

(0< ti ≤ ti ≤ 1; i= 1, . . . ,N)

(8)

σiL(Li) is the unit structural cyclic peak stress corresponding to fatigue life. σiL(L0
i ) is the unit

structural cyclic peak stress corresponding to allowable fatigue life.

3.2.2 Relationship between Structural Peak Stress and Distortion Energy
The distortion energy theory is presented as follows:

σi =
√
[(σi1− σi2)

2+ (σ i2− σi3)
2+ (σi3− σi1)

2]/2, ei =
(1+μ)σ 2

i Vi
3E

(9)
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σi is the unit maximum element stress, σi1, σi2, σi3 are the unit principal stress. Vi is the unit
structure volume. ei is the unit structural strain energy. In distortion energy theory, the distortion
energy is the main state variable of material yield, Eq. (9) can be written as follows:

efi ≤
(1+μ)σ 2

i Vi
3E

(10)

In this inequation, efi presents the unit distortion energy, μ presents Poisson’s ratio, E presents
modulus of elasticity, σ i presents unit extend allowable stress.

The unit distortion energy efi is a part of the unit structural strain energy ei, so Eq. (11) is
obtained.

efi ≤ ei (11)

In order to keep the results safe, the unit structural strain energy is the substitute for the unit
distortion energy.

ei ≤
(1+μ)σ 2

i Vi
3E

(12)

The cyclic load in fatigue topology optimization is dynamic. The unit structural strain energy
ei is replaced by the unit dynamic strain energy eLi. The coefficient ζ is introduced to express
the relationship between dynamic strain energy and structural strain energy. The dynamic strain
energy is expressed as:

eLi = ξei, eLi ≤ eLi (13)

eLi is the unit allowable dynamic strain energy corresponding to the structural peak stress.

Based on the relation between the unit structural strain energy ei and the unit dynamic strain
energy eLi, the expression of distortion energy constraints is obtained.

eLi ≤
ξ(1+μ)σ 2

i Vi
3E

(14)

Then the dynamic stiffness matrix filter function is introduced as follows:

kLi = fkL(ti)k0Li (15)

kLi is the unit dynamic stiffness matrix, k0Li is the unit inherent dynamic stiffness matrix.

fkL(ti) = tiαk
ξ

is the fatigue life filter function, αk = 3. With ui = ki
−1F i, where ui and F i represent

the unit displacement vector and the unit nodal force vector respectively, we can get:

eLi = ξei = ξ · 1
2
uTi kiui = ξ · F

T
i (ki)

−1F i
2

= FT
i F i
2

(
ki
ξ
)−1 (16)

ki is the unit stiffness matrix. We define kLi = ki
ξ
, and the Eq. (16) can be written as follows:

eLi = FT
i (kLi)

−1F i
2

(17)
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tv are the topology variables for the v-th iteration to be, therefore, Eq. (18) is obtained from
Eq. (15).

kvLi = fkL(t(v)i )k0Li (18)

Eq. (15) is substituted into Eq. (18), we have

kLi = fkL(ti)

fkL(t(v)i )
kvLi (19)

And then, we can get:

eLi =
fkL(t(v)i )FT

i (kLi)
−1F i

2fkL(ti)
(20)

The hypothesis of static determination is introduced. The internal forces F i remain unchanged,

which means F i = F(v)
i . Then we get the implicit expression of dynamic strain energy.

eLi =
fkL(t(v)i )

fkL(ti)
e(v)Li (21)

To obtain the explicit expression of the unit dynamic strain energy, the stress constraints in
Eq. (8) are deformed.

When fatigue failure occurs, the unit structural peak stress is smaller than the unit allowable
structure stress, that is:

σiL(L0
i ) < σ i (22)

Based on the distortion energy theory, we transform Eq. (22), and get:

(1+μ)σ 2
iL(L0

i )Vi
3E

<
(1+μ)σ 2

i Vi
3E

(23)

The constraint in Eq. (8) can be written as:

(1+μ)σ 2
iL(Li)Vi

3E
< fL

2β−1
(ti) ·

(1+μ)σ 2
iL(L0

i )Vi
3E

(24)

The unit structure distortion energy corresponding to σiL(L0
i ) is smaller than the unit allow-

able dynamic strain energy. In this condition, the unit allowable dynamic strain energy is used to
replace the unit distortion energy.

(1+μ)σ 2
iL(L0

i )Vi
3E

< fL2β
−1

(ti) · eLi (25)

Both sides of Eq. (25) are summed with the number of units i, respectively.

n∑
i=1

eLi ≤
n∑
i=1

eLi · fL2β−1
(ti) (26)
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Eq. (21) is substituted into Eq. (26), and we can get:

n∑
i=1

fkL(t(v)i ) · te(v)Li
fkL(ti) · fL2β−1

(ti)
≤ eLi (27)

The filter functions fw(ti)= tαwi , fk(ti)= tαki , and fkL(ti)= t
αk
i
ξ
, fL(ti)= tαLi are introduced, and

Eq. (27) can be written as:

n∑
i=1

ξ fkL(t(v)i ) · e(v)Li
ti2αLβ−1+αk

≤ eLi (28)

For the convenience of proof, we set:

xi = 1

ti2αLβ−1+αk
(29)

The constraints can be explicitly expressed as Eq. (30):

n∑
i=1

Bi ·xi ≤ eLi (30)

where Bi = ξ fk(t
(v)
i ) · e(v)Li . At this time, all the fatigue life constraints have been transformed into

dynamic strain energy constraints.

4 Solution

4.1 Standardization of the Objective
The second-order Taylor expansion is introduced to standardize the objective. According to

the topology optimization formulation, the objective is shown as Eq. (31):

W =
N∑
i=1

fw(ti)w0
i →min (31)

Eq. (29) is substituted into Eq. (32), we can obtain:

fw(ti)= tiαk = xi
− αk

2αLβ−1+αk (32)

Then we set A=− αk
2αLβ−1+αk

, the objective function can be expressed as:

W =
N∑
i=1

fw(ti)w0
i = xiA ·w0

i (33)

The objective is expanded by quadratic Taylor:

∂W
∂xi

=AxiA−1 (34)
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∂2W
∂xi2

=A(A− 1)xiA−2 (35)

W(x)=W(x0)+
N∑
i=1

∂W
∂xi

∣∣∣∣x0i · (xi −x0i )+ 1
2

N∑
i=1

∂2W
∂xi2

∣∣∣∣x0i · (xi −x0i )
2

=
N∑
i=1

(x0)
A ·w0

i +
N∑
i=1

A(x0i )
A−1 ·xi ·w0

i −
N∑
i=1

A(x0i )
A ·w0

i

+ 1
2

N∑
i=1

A(A− 1)(x0i )
A ·w0

i + 1
2

N∑
i=1

A(A− 1)(x0i )
A−2 ·xi2 ·w0

i − 1
2

N∑
i=1

A(A− 1)(x0i )
A−1 ·xi ·w0

i

(36)

The constant terms can be ignored, so the W can be written as follows:

W =
N∑
i=1

A(x0i )
A−1 ·xi+ 1

2

N∑
i=1

A(A− 1)(x0i )
A−2 ·xi2− 1

2

N∑
i=1

A(A− 1)(x0i )
A−1 ·xi

=
N∑
i=1

A(A+ 1)(x0i )
A−1 ·w0

i ·xi+ 1
2

N∑
i=1

A(A− 1)(x0i )
A−2 ·w0

i ·xi2
(37)

Therefore, a standard sequential quadratic programming model can be obtained:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find x=(x1, · · · ,xN)T

make W = bixi2+ aixi →min

s.t.
n∑
i=1

Bi ·xi ≤ eLi

(1≤ xi ≤ x̄i; i= 1, . . . ,N)

(38)

where ai =
N∑
i=1

A(A+ 1)(x0i )
A−1 ·w0

i , bi = 1
2

N∑
i=1

A(A− 1)(x0i )
A−2 ·w0

i , A=− αk
2αLβ−1+αk

, Bi = ξ fk(t
(v)
i ) ·

e(v)Li .

4.2 Solution of the Optimization Model
The number of design variables is larger than constraints in fatigue topology optimiza-

tion. According to dual theory, the above topology optimization formulation programming is
transformed into dual programming, as shown in Eq. (39):
⎧⎪⎪⎨
⎪⎪⎩

Find λ ∈E
make Φ( λ)→max
s.t. λi ≥ 0

(i= 1, ..,N)

(39)

where L(x,λ)=
N∑
i=1

(bix2i + aixi)+λ(
N∑
i=1

Bixi− e), Φ(λ)= min
1≤xi≤xi

(L(x,λ)), λ is Lagrange multiplier.

In Eq. (39), the objective is approximated by the second-order Taylor expansion, and the dual
theory is utilized to solve the sensitivity of the objective.
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Then Φ(λ) is written as:

−Φ(λ)= 1
2
λTDλ+HTλ (40)

where HT =−[∇Φ(λ0)
T − λ0

T∇2Φ(λ0)], D=−∇2Φ(λ0). λ, which is explicitly expressed in H, is
eliminated:

∂2Φ(λ)

∂λ∂λk
λk =−

N∑
i=1

Bi
Bik
2bi

λk =−
N∑
i=1

Bi
2bi

Bikλk =
∑
i∈Ia

Bi
2bi

(2bix∗i + ai) (41)

∂Φ(λ)

∂λ
− ∂2Φ(λ)

∂λ∂λk
λk =

N∑
i=1

Bix∗i − e−
∑
i∈Ia

Bi
2bi

(2bix∗i + ai) (42)

So, we can get Eq. (43):

H =−
N∑
i=1

Bix∗i + e+
∑
i∈Ia

Bi
2bi

(2bix∗i + ai), Dk =
∑
i∈Ia

Bi
Bik
2bi

(43)

The quadratic programming model is obtained after Φ(λ) quadratic approximation and the
constant term can be ignored.
⎧⎪⎪⎨
⎪⎪⎩

Find λ∈ E
make −Φ(λ)= 1

2λ
TDλ+HTλ→min

s.t. λi ≥ 0
(i= 1, . . . ,N)

(44)

After the quadratic programming has been solved, then the Eq. (44) is updated, and the next
iteration is carried out until:

||x(v+1)−x(v)||
||x(v)|| ≤ ε (45)

Then the iteration can be terminated. The x* is the optimized solution of Eq. (39). Then t*
can be calculated from Eq. (29). We can get the optimized structure until:

ΔW = |
(W (v+1)−W (v))

W (v+1)
|≤ ε (46)

W (v), W (v+1) are the previous iteration structure mass and the current iteration structure mass,
respectively. ε is convergence precision, ε = 0.001.
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5 Program Flow of Optimization Algorithm

The fatigue optimization method is applied to MSC.Patran software platform with
MSC.Natran and MSC.Fatigue solver. PCL language is used to realize the continuum fatigue
topology optimization. The details of the fatigue topology optimization procedure are given, and
the algorithm flowchart is shown in Fig. 2.

Step 1: Establish the continuum fatigue topology optimization model based on MSC.Patran.

Step 2: Set an optimized objective, fatigue constraints. Initialize the element topological values.

Step 3: Carry out the fatigue analysis with MSC.Patran.

Step 4: Form the topology optimization with dynamic strain energy constraints.

Step 5: Solve the topology optimization with the dual sequence quadratic programming
(DSQP) method. Get the continuous topology optimization structure.

Step 6: Judge convergence of the optimized structural mass. If the results satisfy Eq. (46).
Then the topology optimization continues. Otherwise, obtain the new topology values and update
the FEM model, back to Step 3.

Yes

Start

Input structural size data, material data.
Establish the FEM model

Set optimal objective, constraints.
Initialize element topological values

Solve the fatigue optimization model. 
Obtain the Continuous topological structure.

Reverse the topological variables.
Obtain the topological structure. End

Modify the inverse threshold

No

Fatigue analysis with MSC.Fatigue

Update the FEM model
Form the fatigue optimization model.

Carry out the optimal calculation.

Fatigue analysis with MSC.Fatigue

Obtain the new topology values 

Obtain the discrete topological variables.
Form the discrete topological structure.

Mass Convergence?

Life Constrain?

Yes

No

Figure 2: Program flow of fatigue topology optimization algorithm
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Step 7: Obtain the discrete topological variables with the inverse threshold. Form the discrete
topological structure.

Step 8: Carry out the fatigue analysis with MSC.Patran.

Step 9: Judge fatigue life of the optimized results. If it satisfies the fatigue life constraints,
obtain the optimized structure, and end the calculation. Otherwise, modify the inverse threshold
and go to Step 7.

6 Numerical Examples

Three examples are presented to test the fatigue optimization method. The form of cyclic
load in numerical examples is the sine function, which is shown in Fig. 3. Young’s modulus E =
210GPa, Poisson’s ratio μ= 0.25.

Figure 3: Form of concentrated dynamic load

6.1 Example 1
The design domain is a cantilever with the size of 10 mm× 4 mm× 0.4 mm, which is shown

in Fig. 4A. A cyclic load is applied to the middle of the right side. The force is applied to three
nodes to avoid the stress concentration. The peak value of cyclic load is F =420 N, ρ = 1 kg/cm3.
The original structure mass is 16 g. Fatigue life constraint is 500 cycles.

10 mm

4 
m

m

F

A
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M
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Figure 4: (A) Basic structure. (B) Iteration history curve of optimized structure
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The iterative history of the mass is shown in Fig. 4B. The structure mass decreases gradually
until the convergence precision is satisfied. The structure mass decreases from 16 g to 4.47 g.

Tab. 1 gives the configurations and stress nephograms of topology optimization structure
Comparing the basic structure and optimized structure. Although there is a certain increase in the
maximum structural Von mises stress, we think the optimized structure is reasonable due to the
fatigue life of optimized structure is 582 that satisfies the constraint.

Table 1: The result of topology optimization

Basic structure Optimized structure

Structure

Stress 

nephogram

Mass 16 g 7.26 g

Comparing the mass iteration history in Fig. 4B and Tab. 1, the mass of continuous opti-
mized structure is less than the discrete optimized structure. This is because there are many
intermediate topology variables, and the discretization of the intermediate variables is not very
good. With the fatigue topology optimization, we obtain the conservative optimized structure.

In Tab. 2, the optimized structures obtained by different fatigue topology optimization meth-
ods for the same basic structure are compared. The optimized structures have similar configu-
ration, which demonstrates the validity of ICM method. The efficiency of the ICM method is
reflected in the number of iterations, that is 22 in ICM method, and more than 300 in SIMP
method [27].

Table 2: The comparation of different topology optimization
Optimized structure Iteration number

The ICM method 22

The SIMP method 300+
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6.2 Example 2
In Example 2, the basic structure is a simply supported beam with the size of 80 mm ×

20 mm × 2 mm. The peak value of cyclic load is F =3600 N. ρ = 1 kg/cm3. The total mass
of the basic structure is 3200 g. The convergence precision ε = 0.01 in this example. The fatigue
life of two units with the displacement constraints is infinite to reduce the effects of stress
concentration.

From Fig. 5B, the mass iterative process gradually converges until the convergence precision
is satisfied. To reveal the influence of different fatigue life constraints on the topological structure,
850, 900 and 950 are selected as the fatigue life constraints. Tab. 3 gives the fatigue life constraint,
the structural configuration, mass and the optimized structure fatigue life in three cases.
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Figure 5: (A) Basic structure. (B) Iterative curves of mass

Table 3: Topology optimization results with different fatigue

L Optimized structure L Mass

950 2042 1889 g

900 1322 1718 g

850 893 1486 g

From Tab. 3, the topology configurations are similar in all conditions, and the optimized
structure fatigue life satisfies the constraint in all cases. When the fatigue life constraint is 950, the
optimized structure fatigue life is 2042, the optimized structure mass is 1889 g, and the mass loss
is 40.97%. When the fatigue life constraint is 900, the optimized structure fatigue life is 1322, the
optimized structure mass is 1718 g, the mass loss is 46.31%. When the fatigue life constraint is 850,
the optimized structure fatigue life is 893, the optimized structure mass is 1486 g and the mass
loss is 53.56%. With the decrease of the fatigue life constraints, the fatigue life and the mass of
optimized structure reduce gradually. From the detailed data, the fatigue life constraint decreases
from 950 to 850. The reduce proportion of fatigue life constraint is 10.53%. At the same time,
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the structural mass decreases from 2042 g to 893 g. The reduce proportion of structural mass is
56.27%.

6.3 Example 3
The design domain is a beam structure of 80 mm × 20 mm× 2 mm as shown in Fig. 6A.

ρ = 1 kg/cm3. The original structure mass is 3200 g. A cyclic load is applied on the middle part
of the upper side, the left and right sides are fixed. The force is applied to three nodes to avoid
the stress concentration. The fatigue life constraint is 150.
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Figure 6: (A) Basic structure. (B) Mass iteration curves of different topology optimizations

Table 4: Iteration history of different topology optimization

Steps Distortion energy theory Zero-order stress approximation Stress topology optimization

1

8

12

98

Mass 1389.4 g 728.5 g 683.5 g

Fatigue life 730 450 —

Elapsed time 32 m 12 s 4 m 6 s 48 m 12 s
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To compare the differences between fatigue topology optimization and traditional stress opti-
mization [17]. The zero-order stress approximation [17] and distortion energy theory are introduced
in fatigue topology optimization under the cyclic load with the peak value F =5850 N, and the
traditional stress optimization is carried out under the fixed static load F =5850 N. Tab. 4 shows
the comparison between fatigue topology optimization and stress topology optimization. Fig. 6B
shows the mass iteration history curves of the two optimizations. The convergence precision and
fatigue life constraints are satisfied in all three topology optimizations.

From Tab. 4, in the iteration Step 8, the optimized structure configuration with the distortion
energy theory is the most complicated, followed by the optimized structure with the zero-order
stress approximation, and the simple configuration is the optimized structure with the stress
optimization. The same result can be obtained from the final optimized structures. We can observe
that the simple configuration under stress optimization can be found in all conditions, which is the
part of optimized structure in fatigue topology optimizations. Based on the configuration of stress
topology optimization, the fatigue topology optimization configurations retain more materials and
add some new force transmission paths. In other words, the optimized structures with fatigue life
constraints are more conservative.

7 Conclusion

In this paper, the fatigue topology optimization is presented based on ICM method and
fatigue analysis method. The lightweight topology optimization model is established, which uses
fatigue life as constraint. The fatigue life constraints are transformed into distortion energy
constraints with the S-N curve and the distortion energy theory. The effectiveness and validity of
fatigue optimization method are verified by the comparation between the ICM method and the
SIMP method. The numerical examples demonstrate the lightweight topology optimization design
with the fatigue constraint can be achieved by the presented method.

In addition, the Miner rule and the S-N curve is carried out in this paper. In the future, we
can discuss effect on the structural topological configuration according to other different fatigue
failure criteria.
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