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ABSTRACT

Numerical solutions of the second-order one-dimensional hyperbolic telegraph equations are presented using the
radial basis functions. The purpose of this paper is to propose a simple novel direct meshless scheme for solving
hyperbolic telegraph equations. This is fulfilled by considering time variable as normal space variable. Under
this scheme, there is no need to remove time-dependent variable during the whole solution process. Since the
numerical solution accuracy depends on the condition of coefficient matrix derived from the radial basis function
method. We propose a simple shifted domain method, which can avoid the full-coefficient interpolation matrix
easily. Numerical experiments performedwith the proposed numerical scheme for several second-order hyperbolic
telegraph equations are presented with some discussions.

KEYWORDS

Radial basis functions; telegraph equation; shifted domain method; meshless method

1 Introduction

The telegraph equation, which has been used to describe phenomena in various fields, belongs
to the hyperbolic partial differential equation scope. For example, the telegraph equation in (1
+ 1) dimensions can model the vibrations of structures, the digital propagation and also has
applications in the other fields [1–3]. Several methods are used to get the analytical/exact solutions
of the telegraph equations [4–6]. However, it is almost impossible to get the analytical solutions for
relatively complex problems. Thus, numerical approximations to the telegraph equation is a better
choice. Some numerical methods have been developed and compared to deal with the hyperbolic
telegraph equations [7–9].

Especially, there are several numerical methods concentrate on the second-order 1D linear
hyperbolic telegraph equations. For example, Mohanty et al. [10] investigated an unconditionally
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stable schemes for solving the hyperbolic equations. Based on the finite difference approximation,
Dehghan et al. [11–13] presented several methods to simulate the linear hyperbolic telegraph
equations. Lakestani et al. [14] used interpolating scaling function technique to solve the 1D hyper-
bolic telegraph equation. The boundary integral equation accompanied with the dual reciprocity
method is used to solve the hyperbolic telegraph equations by Dehghan et al. [15]. Pekmen and
Tezer-Sezgin et al. [16] and Jiwari et al. [17] applied the differential quadrature method for the
approximate solution of hyperbolic telegraph equations in one-and two space-dimensions. Zerarka
et al. [18] considered the 2D generalized differential quadrature method for solving the hyperbolic
telegraph equation later. The homotopy analysis method [19] is used to obtain the approximate
analytical solution solutions of the second-order 1D linear hyperbolic telegraph equations. A
pseudospectral method is proposed by Elgindy [20] for the second-order 1D hyperbolic telegraph
equations. The B-spline collocation method is improved by Mittal et al. [21] to get the numerical
solutions of the second order 1D hyperbolic telegraph equations. These numerical techniques are
based on two-level difference or integral approximations.

Based on the above-mentioned investigations, we propose a direct meshless scheme with one-
level approximation for the second-order 1D linear hyperbolic telegraph equations. This is fulfilled
by considering time variable as normal space variable. There is no need to remove time-dependent
variable during the whole solution process. Under this scheme, we can solve the hyperbolic
telegraph equations in a direct way. The rest paper is organized as follows. The formulation of the
direct radial basis function is briefly introduced with the methodology for the hyperbolic telegraph
equations in Section 2. To cope with the full coefficient matrix derived from the radial basis
function method, we propose a simple shifted domain method in Section 3. Section 4 presented
some numerical examples to validate the applicability of the proposed direct meshless scheme.
Finally, some conclusions are given in Section 5.

2 The Direct Radial Basis Function

The general mathematical formulation of second-order linear hyperbolic telegraph equation in
(1 + 1) dimensions is

Lu= ∂2u
∂t2

+ 2α
∂u
∂t

+β2u− δ ∂
2u
∂x2

= f (x, t) , 0< x<L, t> 0 (1)

in terms with the initial condition

u (x, 0)= g1 (x) , ut (x, 0)= g2 (x) , (2)

and boundary conditions

u (x, t)= h (t) , t> 0. (3)

Here, the coefficient α,β and δ are non-negative constant, f (x, t) is the non-homogeneous/
source term, g1 (x) ,g2 (x), and h (t) are prescribed functions. We aim to seek for the solution of
unknown function u (x, t).

Almost all numerical techniques for Eqs. (1)–(3) are based on the two-level approximations,
most of which are based on the finite difference approximations. Here, we propose a direct
collocation scheme by using radial basis function (RBF) under Euclidean space.
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2.1 Direct Radial Basis Function
As is known to all, the traditional RBF methods are mostly used to solve 2D or higher

dimensional problems. However, there is only one space variable x for Eqs. (1)–(3), we propose a
simple direct radial basis function (DRBF) by combining the space variable x and time variable
t as a point (x, t) for (1 + 1) dimensional problems. More specifically, the interval [0,L] is
evenly divided into segments firstly 0= x0 < x1 < . . . < xn = L with corresponding finess h= L/n.
The time variable is evenly chosen from the given initial time t0 = 0 to a prescribed final time
tn = T by insert some time points t1, t2, . . . , tn−1 with time-step �t = T/n. The corresponding
configuration of the space-time coordinate is shown in Fig. 1, where ′◦′ stands for the value of
space coordinate/variable x, ′·′ represents the value of time coordinate/variable t and ′×′ stands
for the point (x, t). Then the DRBF is

ψ
(
rj
)=√1+ ε2 (x−xj

)2+ ε2 (t− tj
)2. (4)

The rj =
√(

x−xj
)2+ (t− tj

)2 can be considered as a time-space distance between points (x, t)

and
(
xj, tj

)
. Also, this DRBF is another form of multiquadric radial basis function. One can get

the other types of radial basis functions in the DRBF form with little modification.

Figure 1: Configuration of the space-time coordinate

Actually, there is another definition of not radial nonmetric space-time radial basis functions
with non-geometrical relationship between the space and the time. More details can be found
in [22–24].
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2.2 Methodology for Hyperbolic Telegraph Equations
According to the definition of DRBF, the above-mentioned Eqs. (1)–(3) can be solved directly

in a one level approximation. More specifically, the numerical solution of a function u (x, t) can
be obtained from the following approximation

u (·)≈
n∑
j=1

λjψj (·) . (5)

We should seek for the unknown coefficients λj (j= 1, 2, . . . ,n).

The interpolation scheme upon which the Eqs. (1)–(3) collocation is based is as below:

L u (xi, ti)= f (xi, ti) , (xi, ti) ∈ (0, 1)× (0,T) , (6)

u (xi, 0)= g1 (xi) , xi ∈ [0, 1] , (7)

∂u (xi, 0)
∂t

= g2 (xi) , xi ∈ [0, 1] , (8)

u (xi, ti)= h (ti) , (xi, ti) ∈ {0, 1}× [0,T) . (9)

with

Lu=
N∑
j=1

λjLψj =
N∑
j=1

λj

(
∂2ψj

∂t2
+ 2α

∂ψj

∂t
+β2ψj − δ

∂2ψj

∂x2

)
. (10)

Here, we use NI to denote domain point number, N1 is the point number on boundary t= 0
and N2 is the point number on boundary x = 0 and x = 1 with 2N1 + N2 = NB denotes the
boundary point number. Eqs. (6)–(9) have the matrix form as

Aλ= b, (11)

where A is a N ×N known square matrix and b is a N × 1 vectors. This can be directly solved
by the backslash computation in MATLAB codes.

3 The Shifted Domain Method

It should be noted that for a relatively large physical domain (with large L or T), more
collocation numbers are needed to ensure accuracy. For the problems considered in this paper,
collocation methods will lead to a full coefficient matrix of linear algebraic equations. This has
effect on the numerical solution accuracy. We propose a simple shifted domain method (SDM),
which can deal with this problem easily.

The procedure of the SDM is shown by the above-mentioned physical domain Ω1 = [0, 1]×
[0,T), which is also considered as the standard scope. For a larger domain [0, 1]× [0, 2T) with a
larger time 2T , we can first consider the half domain Ω1, the other half domain Ω2 = [0, 1]×
[T , 2T) is considered as the shifted domain of Ω1. We can get the numerical solutions on Ω1
and Ω2, respectively. Fig. 2 presents the configuration of the shifted domain in the horizontal
direction, where t= T is considered as an artificial boundary. The corresponding solution in the
shifted domain Ω2 can be get from the following equations:

Lu (xi, ti)= f (xi, ti) , (xi, ti) ∈ (0, 1)× (T , 2T) , (12)
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u (xi, 0)= g1 (xi) , xi ∈ [0, 1] , (13)

∂u (xi, 0)
∂t

= g2 (xi) , xi ∈ [0, 1] , (14)

u (xi, ti)= h (ti) , (xi, ti) ∈ {0, 1}× [T , 2T) . (15)

Figure 2: Configuration of the shifted domain in the horizontal direction

This procedure is same as presented in the above-mentioned physical domain Ω1 = [0, 1]×
[0,T). Eqs. (12)–(15), which can be directly solved by the backslash computation in MATLAB
codes, have the matrix form as

Ȧλ̇= ḃ. (16)

where Ȧ is a N ×N known square matrix and ḃ is a N× 1 vectors.

For the other cases, the configuration of the shifted domain in the horizontal direction [0, 2]×
[0,T) and both directions [0, 2]× [0, 2T) (with four sub-domains Ω1, Ω2, Ω3, Ω4) are shown in
Figs. 3 and 4, respectively.

4 Numerical Experiments

In this section, three examples are considered to validate the DRBF. For fair comparison with
the other numerical methods, we use the maximum absolute error (MAE), absolute error and root
mean square error (RMSE). The RMSE is defined as [25,26]

RMSE=

√√√√√ 1
Nt− 1

Nt∑
j=1

|u (xj, tj)− u
(
xj, tj

) |2 (17)

where u
(
xj, tj

)
is the analytical solution at test points

(
xj, tj

)
, j = 1, 2, . . . ,Nt and u

(
xj, tj

)
is the

numerical solutions at the test points
(
xj, tj

)
, j = 1, 2, . . . ,Nt. Nt is the number of test points on
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the physical domain. Since the parameter ε in the DRBF method is non-sensitive, we fix parameter
ε for all the following cases. The optimal choice of DRBF parameter is similar with the other
radial basis functions. For more details about this topic, one can be found in [27,28] and references
therein.

Figure 3: Configuration of the shifted domain in the vertical direction

Figure 4: Configuration of the shifted domain in both directions

4.1 Example 1
In order to investigate the DRBF method with the shifted domain method, we consider the

hyperbolic telegraph Eq. (1) with the initial conditions

u (x, 0)= sinx, 0≤ x≤ π , (18)
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ut (x, 0)=− sinx, 0≤ x≤ π , (19)

and boundary condition

u (0, t)= u (π , t)= 0, 0≤ t< 1. (20)

The corresponding coefficients are α= 4, β = 2 with analytical/exact solution

u (x, t)= e−t sinx. (21)

The source term is

f (x, t)=
(
2− 2α+β2

)
e−t sinx. (22)

In this example, the physical domain Ω= [0,π ]× [0, 1] is divided into three sub-domains, i.e.,

Ω1 =
[
0, π3

]× [0, 1] with shifted domains Ω2 =
[
π
3 ,

2π
3

]
× [0, 1] and Ω3 =

[
2π
3 ,π

]
× [0, 1]. It should

be noted that the physical domain division is non-unique. For fixed fineness h = 1
15 and time

step �t = 1
15 , we compare the DRBF results with the other numerical methods, detailed results

with root mean square errors are listed in Tab. 1. We note that our time step �t = 1
15 , which

leads to less computations, is larger than the one �t= 0.0001 in [21,29,30] and �t= 0.01 in [15].
Meanwhile, the fineness h = 1

15 is also larger than the reference cases. However, the root mean
square errors of DRBF is smaller than the other methods, i.e., the DRBF is more accurate. We
note that the DRBF method without the shifted domain method for this case performs not well.

Table 1: The root mean square errors (RMSE) of numerical methods for Example 1

Methods Time RMSE CPU time(s)

DRBF 0.5 4.86E−07 0.76
DRBF 1.0 6.60E−07 0.80
Reference [21] 0.5 2.33E−06 3.04
Reference [21] 1.0 4.37E−06 4.89
Reference [29] 0.5 8.75E−06 2.52
Reference [29] 1.0 5.07E−06 3.63
Reference [30] 0.5 7.95E−05 5.00
Reference [30] 1.0 1.46E−04 12.00

For different mesh sizes H = 1/h, Fig. 5 illustrates the root mean square error curve for
Example 1 at time T = 1. It is seen that the DRBF solutions consistently converge very quickly.
The convergence rate is high before reaching the minimum relative error value. It should be noted
that the CPU time is 0.27 for mesh size H = 1/4 and 1.92 for mesh size H = 1/30.
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Figure 5: Root mean square error curve for example 1 at time T = 1

4.2 Example 2
In order to see the performance of the DRBF with different coefficients, we consider the

hyperbolic telegraph Eq. (1) with the corresponding initial conditions

u (x, 0)= sinx, 0≤ x≤ π , (23)

ut (x, 0)= 0, 0≤ x≤ π , (24)

and boundary condition

u (0, t)= 0, 0≤ t≤ 1, (25)

u (2, t)= sin1cost, 0≤ t≤ 1. (26)

The corresponding analytical/exact solution

u (x, t)= sinx cos t. (27)

with source term

f (x, t)=−2α sinx sin t+β2 sinx cos t. (28)

For fair comparison with the other methods in [31–33], we consider the maximum absolute
errors (MAE) in this example. For space fineness h= 1

15 and time step �t= 1
15 , numerical results

of the DRBF are listed in Tab. 2 with different coefficients α and β. From which we can find
that the DRBF results are stable and accurate for different coefficients. For α = 10 and β = 5,
the solution accuracy of the DRBF is similar with the other methods. For the larger α= 20 and
β = 10, the solution accuracy of the DRBF performs the best.
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Table 2: The maximum absolute errors (MAE) of numerical methods for Example 2

Methods α, β MAE

DRBF 10,5 2.09E−07
DRBF 20,10 5.97E−09
Reference [31] 10,5 2.10E−08
Reference [31] 20,10 3.70E−08
Reference [32] 10,5 3.40E−07
Reference [32] 20,10 4.20E−07
Reference [33] 10,5 2.00E−06
Reference [33] 20,10 2.40E−06

In order to see the difference between the exact and DRBF approximate solutions, Fig. 6
shows the configuration for the larger coefficients α= 20 and β = 10 at time T = 0.5. From which
we can see that the numerical solution coincides with the exact solution very well.

Figure 6: Exact and DRBF approximate solutions for Example 2 at time T = 0.5

5 Conclusions

A new direct meshless scheme is presented for the second-order hyperbolic telegraph equations
in (1 + 1) dimensions. The present numerical procedure, in which the time variable is considered
as normal space variable, is based on the time-dependent radial basis function. There is no need
to remove time-dependent variable during the whole solution process. Besides, a simple shifted
domain method is proposed to cope with the solution accuracy related to the ill-conditioned
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coefficient matrix. From the numerical results in Section 4, we find that the proposed meshless
method is superior to the other numerical methods. Besides, the direct meshless method can
be extended to solve nonlinear problems with Newton iterative method considered. The DRBF
with the shifted domain method is promising in dealing with the other types of time-dependent
problems, fractional problems [34–36] as well as developing a parallel algorithm for large-scale
problems.

Availability of Data andMaterials: The data and material used to support the findings of this study
are available from the corresponding author upon request.

Funding Statement: The first author is supported by the Natural Science Foundation of Anhui
Province (Project No. 1908085QA09) and the University Natural Science Research Project of
Anhui Province (Project Nos. KJ2019A0591 & KJ2020B06).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Doha, E. H., Hafez, R. M., Youssri, Y. H. (2019). Shifted Jacobi spectral-Galerkin method for solving

hyperbolic partial differential equations.Computers &Mathematics with Applications, 78(3), 889–904.DOI
10.1016/j.camwa.2019.03.011.

2. Youssri, Y. H., Hafez, R. M. (2019). Exponential Jacobi spectral method for hyperbolic partial differential
equations.Mathematical Sciences, 13(4), 347–354. DOI 10.1007/s40096-019-00304-w.

3. Yuzba, S., Karacaylr, M. (2018). A Galerkin-type method to solve one-dimensional telegraph equation
using collocation points in initial andboundary conditions. International Journal of ComputationalMethods,
15(5), 1850031. DOI 10.1142/S0219876218500317.

4. Biazar, J., Eslami, M. (2010). Analytic solution for telegraph equation by differential transform method.
Physics Letters A, 374(29), 2904–2906. DOI 10.1016/j.physleta.2010.05.012.

5. Soltanalizadeh, B. (2011). Differential transformationmethod for solving one-space-dimensional telegraph
equation.Computational&AppliedMathematics, 30(3),639–653.DOI 10.1590/S1807-03022011000300009.

6. Raftari, B., Yildirim, A. (2012). Analytical solution of second-order hyperbolic telegraph equation by
variational iteration and homotopy perturbation methods. Results in Mathematics, 61(1–2), 13–28. DOI
10.1007/s00025-010-0072-y.

7. Yao, H. M. (2011). Reproducing kernel method for the solution of nonlinear hyperbolic telegraph equation
with an integral condition. Numerical Methods for Partial Differential Equations, 27(4), 867–886. DOI
10.1002/num.20558.

8. Yao, H. M., Lin, Y. Z. (2011). New algorithm for solving a nonlinear hyperbolic telegraph equation with an
integral condition. International Journal for Numerical Methods in Biomedical Engineering, 27(10), 1558–
1568. DOI 10.1002/cnm.1376.

9. Lin, J., He, Y., Reutskiy, S. Y., Lu, J. (2018). An effective semi-analytical method for solving
telegraph equation with variable coefficients. European Physical Journal Plus, 133(7), 290. DOI
10.1140/epjp/i2018-12104-1.

10. Mohanty, R. K., Jain, M. K. (2001). An unconditionally stable alternating direction implicit scheme for
the two space dimensional linear hyperbolic equation.Numerical Methods for Partial Differential Equations,
17(6), 684–688. DOI 10.1002/num.1034.

11. Mohebbi, A., Dehghan, M. (2008). Higher order compact solution of one space-dimensional linear
hyperbolic equation. Numerical Methods for Partial Differential Equations, 24(5), 1222–1235. DOI
10.1002/num.20313.

http://dx.doi.org/10.1016/j.camwa.2019.03.011
http://dx.doi.org/10.1007/s40096-019-00304-w
http://dx.doi.org/10.1142/S0219876218500317
http://dx.doi.org/10.1016/j.physleta.2010.05.012
http://dx.doi.org/10.1590/S1807-03022011000300009
http://dx.doi.org/10.1007/s00025-010-0072-y
http://dx.doi.org/10.1002/num.20558
http://dx.doi.org/10.1002/cnm.1376
http://dx.doi.org/10.1140/epjp/i2018-12104-1
http://dx.doi.org/10.1002/num.1034
http://dx.doi.org/10.1002/num.20313


CMES, 2021, vol.128, no.2 697

12. Dehghan, M., Lakestani, M. (2009). The use of Chebyshev cardinal functions for solution of the second-
order one dimensional telegraph equation. Numerical Methods for Partial Differential Equations, 25(4),
931–938. DOI 10.1002/num.20382.

13. Saadatmandi, A., Dehghan, M. (2010). Numerical solution of hyperbolic telegraph equation using the
Chebyshev Tau method. Numerical Methods for Partial Differential Equations, 26(1), 239–252. DOI
10.1002/num.20442.

14. Lakestani, M., Saray, B. N. (2010). Numerical solution of telegraph equation using interpo-
lating scaling functions. Computers & Mathematics with Applications, 60(7), 1964–1972. DOI
10.1016/j.camwa.2010.07.030.

15. Dehghan, M., Ghesmati, A. (2010). Solution of the second-order one-dimensional hyperbolic telegraph
equation by using the dual reciprocity boundary integral equation (DRBIE) method. Engineering Analysis
with Boundary Elements, 34(1), 51–59. DOI 10.1016/j.enganabound.2009.07.002.

16. Pekmen, B., Tezer-Sezgin, M. (2012). Differential quadrature solution of hyperbolic telegraph equation.
Journal of Applied Mathematics, 2012, 18. DOI 10.1155/2012/924765.

17. Jiwari, R., Pandit, S., Mittal, R. C. (2012). A differential quadrature algorithm for the numerical solution of
the second order one dimensional hyperbolic telegraph equation. International Journal of Nonlinear Science,
13, 259–266.

18. Zerarka, A., Guergueb, S. (2013). Integration of the hyperbolic telegraph equation in (1 + 1)
dimensions via the generalized differential quadrature method. Results in Physics, 3(3), 20–23. DOI
10.1016/j.rinp.2013.01.004.

19. Raftari, B., Khosravi, H., Yildirim, A. (2013). Homotopy analysis method for the one-dimensional hyper-
bolic telegraph equationwith initial conditions. International Journal of NumericalMethods forHeat &Fluid
Flow, 23(2), 355–372. DOI 10.1108/09615531311293515.

20. Elgindy, K. T. (2016).High-order numerical solution of second-order one-dimensional hyperbolic telegraph
equation using a shifted Gegenbauer pseudospectral method. Numerical Methods for Partial Differential
Equations, 32(1), 307–349. DOI 10.1002/num.21996.

21. Mittal, R. C., Bhatia, R. (2013). Numerical solution of second order one dimensional hyperbolic telegraph
equation by cubic B-spline collocation method. Applied Mathematics and Computation, 220(6), 496–506.
DOI 10.1016/j.amc.2013.05.081.

22. Myers, D. E., Iaco, S. D., Posa, D., Cesare, L. D. (2002). Space-time radial basis functions. Computational
& Applied Mathematics, 43, 539–549. DOI 10.1016/S0898-1221(01)00304-2.

23. Myers, D. E. (2008). Anisotropic radial basis functions. International Journal of Pure & Applied Mathemat-
ics, 42, 197–203.

24. Parand,K., Rad, J. A. (2013).Kansamethod for the solution of a parabolic equationwith anunknown space
wise-dependent coefficient subject to an extra measurement. Computer Physics Communications, 184(3),
582–595. DOI 10.1016/j.cpc.2012.10.012.

25. Wang, F. Z., Ling, L., Chen, W. (2009). Effective condition number for boundary knot method. Computers,
Materials & Continua, 12, 57–70. DOI 10.3970/cmc.2009.012.057.

26. Wang, F. Z., Chen, W., Ling, L. (2012). Combinations of the method of fundamental solutions for general
inverse source identification problems. Applied Mathematics and Computation, 219(3), 1173–1182. DOI
10.1016/j.amc.2012.07.027.

27. Fasshauer, G. E., Zhang, J. G. (2007). On choosing optimal shape parameters for RBF approximation.
Numerical Algorithms, 45(1–4), 345–368. DOI 10.1007/s11075-007-9072-8.

28. Chen, W., Hong, Y. X., Lin, J. (2018). The sample solution approach for determination of the optimal shape
parameter in theMultiquadric function of the Kansa method. Computers &Mathematics with Applications,
75(8), 2942–2954. DOI 10.1016/j.camwa.2018.01.023.

29. Sharifi, S., Rashidinia, J. (2016). Numerical solution of hyperbolic telegraph equation by cubic B-spline col-
location method. Applied Mathematics and Computation, 281(1), 28–38. DOI 10.1016/j.amc.2016.01.049.

30. Dehghan, M., Shokri, A. (2008). A numerical method for solving the hyperbolic telegraph equation.
Numerical Methods for Partial Differential Equations, 24(4), 1080–1093. DOI 10.1002/num.20306.

http://dx.doi.org/10.1002/num.20382
http://dx.doi.org/10.1002/num.20442
http://dx.doi.org/10.1016/j.camwa.2010.07.030
http://dx.doi.org/10.1016/j.enganabound.2009.07.002
http://dx.doi.org/10.1155/2012/924765
http://dx.doi.org/10.1016/j.rinp.2013.01.004
http://dx.doi.org/10.1108/09615531311293515
http://dx.doi.org/10.1002/num.21996
http://dx.doi.org/10.1016/j.amc.2013.05.081
http://dx.doi.org/10.1016/S0898-1221(01)00304-2
http://dx.doi.org/10.1016/j.cpc.2012.10.012
http://dx.doi.org/10.3970/cmc.2009.012.057
http://dx.doi.org/10.1016/j.amc.2012.07.027
http://dx.doi.org/10.1007/s11075-007-9072-8
http://dx.doi.org/10.1016/j.camwa.2018.01.023
http://dx.doi.org/10.1016/j.amc.2016.01.049
http://dx.doi.org/10.1002/num.20306


698 CMES, 2021, vol.128, no.2

31. Doha, E. H., Abd-Elhameed, W. M., Youssri, Y. H. (2019). Fully Legendre spectral Galerkin algorithm for
solving linear one-dimensional telegraph type equation. International Journal of Computational Methods,
16(8), 1850118. DOI 10.1142/S0219876218501189.

32. Abd-Elhameed, W. M., Doha, E. H., Youssri, Y. H., Bassuony, M. A. (2016). New Tchebyshev–Galerkin
operational matrix method for solving linear and nonlinear hyperbolic telegraph type equations.Numerical
Methods for Partial Differential Equations, 32(6), 1553–1571. DOI 10.1002/num.22074.

33. Rashidinia, J., Jokar, M. (2016). Application of polynomial scaling functions for numerical solution of
telegraph equation. Applicable Analysis, 95(1), 105–123. DOI 10.1080/00036811.2014.998654.

34. Youssri, Y. H., Abd-Elhameed, W. M. (2018). Numerical spectral Legendre–Galerkin algorithm for solving
time fractional telegraph equation. Romanian Journal of Physics, 63, 107.

35. Hafez, R.M., Youssri, Y. H. (2020). Shifted Jacobi collocation scheme formulti-dimensional time-fractional
order telegraph equation. Iranian Journal of Numerical Analysis and Optimization, 20(1), 195–223. DOI
10.22067/ijnao.v10i1.82774.

36. Atangana, A. (2020). Modelling the spread of COVID-19 with new fractal-fractional operators: Can
the lockdown save mankind before vaccination. Chaos, Solitons & Fractals, 136(C), 109860. DOI
10.1016/j.chaos.2020.109860.

http://dx.doi.org/10.1142/S0219876218501189
http://dx.doi.org/10.1002/num.22074
http://dx.doi.org/10.1080/00036811.2014.998654
http://dx.doi.org/10.22067/ijnao.v10i1.82774
http://dx.doi.org/10.1016/j.chaos.2020.109860

