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ABSTRACT

Research on the lateral vibrational stability of footbridges has attracted increasing attention in recent years. How-
ever, this stability contains a series of complex mechanisms, such as nonlinear vibration, random excitation, and
random stability. The Lyapunov method is regarded as an effective tool for analyzing random vibrational stability;
however, it is a qualitative method and can only provide a binary judgment for stability. This study proposes a
new method, IEVIE–SA, which combines the energy method based on the comparison between the input energy
and the variation of intrinsic energy (IEVIE) and the stochastic averaging (SA) method. The improved Nakamura
model was used to describe the lateral nonlinear stochastic vibration of a footbridge, whereby the IEVIE method
was used to establish the criteria for judging the lateral vibrational stability. Additionally, the SA method was used
to deduce the corresponding backward Kolmogorov equation. Subsequently, the backward Kolmogorov equation
was combined with the stability criterion established by the IEVIEmethod to analyze the first passage stability. The
proposed method is a semi-analytical, quantitative method that only requires a small calculation. By applying the
proposed method to the Millennium Bridge, method effectiveness was verified by comparing it with the Monte
Carlo and traditional Lyapunov methods.
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1 Introduction

Research on footbridge vibrations consists of two primary directions: vertical and lateral.
During vertical vibration, it is generally believed that pedestrian excitation is rarely affected by
bridge vibration, and few phenomena of vertical vibration instability have been observed. Thus,
the vertical vibration of a footbridge is often regarded as a linear vibration system [1]. Compared
to vertical vibration, the lateral vibration of a footbridge is much more complex. During lateral
vibration, it has been shown that pedestrian lateral load depends on the vibration of a bridge,
resulting in a nonlinear system [2]. Additionally, the occurrence of lateral vibration instability of
a footbridge has been frequently observed. For example, sudden large lateral vibrations have been
observed on the Millennium Bridge [3], the Paris Solferino Bridge [4], and the Singapore Changi
Airport Bridge [5,6]. In addition to the characteristics of nonlinear vibration, lateral vibration of
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a footbridge is a stochastic process, and pedestrian excitation is a narrow-band stochastic process
rather than a deterministic periodic process [7,8] because of intra-subject variability.

Thus, the object of this study was essentially a complex system with nonlinear, stochastic
vibrational stability. Until now, representative models used to explain the lateral vibration instabil-
ity of footbridges include the Dallard et al. [3], Nakamura et al. [9], Piccardo et al. [10], Ingólfsson
et al. [11], and inverted pendulum models [12]. The Dallard and Nakamura models belong to the
velocity-dependent, nonlinear model class. In this kind of model, the velocity-dependent part can
be regarded as virtual negative damping to the bridge. When the virtual negative damping exceeds
the structural damping, the vibration will lose stability. The Piccardo model involves parametric
resonance, in which the dynamic equation can be transformed to the classical Matthew parametric
equation with stability condition. The Ingólfsson model primarily focuses on the self-excited loads
consisting of an acceleration-proportional component and a velocity-proportional component. The
velocity-proportional component can be regarded as virtual damping. Like the velocity-dependent
model, when the total damping is negative, the stability will lose. Unlike the general models,
the Macdonald model (also known as the inverted pendulum model) requires that pedestrians
rely on adjusting step position rather than step frequency to maintain their own comfort and
balance. This includes an intricate implication: synchronization is not a prerequisite for large
lateral vibration. Regardless, whether the walking frequency is close to the bridge frequency
or not, pedestrians always yield self-excited loads. The stability condition can be obtained by
considering the component in phase with velocity as a virtual damping. The Ingólfsson and
Macdonald models have been used for random vibration analysis. However, the random analysis
method that they use is a numerical simulation, i.e., Monte Carlo (MC) method, which needs
massive calculations. Ingólfsson et al. [13] determined whether the acceleration exceeded a certain
limit as the basis for judging instability, and calculated the probability of instability by the MC
method. Using real statistics of the British population, Bocian et al. [14] obtained the statistical
distribution of the pedestrian parameters (e.g., gait length, step frequency, and body weight) used
in the inverted pendulum model. In Bocian’s model, a lateral stability analysis of a footbridge
in terms of probability was conducted, but the randomness of pedestrian excitation was not
reflected through the stochastic process. In recent years, the authors [15,16] used the Lyapunov
method based on the maximum Lyapunov exponent to judge whether the lateral vibration of the
footbridge was stable, which avoided the large number of computations required by the numerical
simulation method.

Structural stability analysis has experienced a history of static to dynamic stability [17,18].
During the Euler time, static stability meant that the structure would not deviate from the
initial equilibrium position under micro-disturbances, even if the critical load was reached. The
Lyapunov theory is the representative for dynamic stability, which defined dynamic stability from
the view of whether the trajectory of the dynamic system in the state space is sensitive to the
initial disturbance [17,19–21]. Both the classical static stability method and the dynamic stability
method based on the Lyapunov method are qualitative analysis methods. For random vibrational
stability, the Lyapunov-based method still only provides a binary result: stability with probability
one (w.p.1) or instability with w.p.1, but not the quantitative probability of stability or instability.
On the other hand, the structural stability can be attributed to the input–output equilibrium
of energy. Therefore, in the field of stability analysis, there exist energy-based methods such
as the Wang Ren energy criterion method [22] and the energy growth exponent method [23].
However, these methods have specific limitations. The Wang Ren energy criterion method can
only be used in conservative systems, and the energy growth exponent method can only be used
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in parametric excitation systems. Recently, Li et al. [24,25] proposed an energy-based method
to identify vibrational stability based on the comparison of the input energy and the variation
of intrinsic energy (IEVIE). The method can easily be used to establish a criterion for judging
stability or instability in each random sample without setting a hypothesis that is as strict as the
Lyapunov method.

Inspired by the IEVIE method, this study presents an IEVIE-SA method, combining the
IEVIE method and the stochastic averaging (SA) method, by which the quantitative analysis of
random vibrational stability was realized. Since the test results from Dallard et al. [3] demon-
strated that the pedestrian’s lateral excitation depended on the velocity of the bridge, the improved
Nakamura model (a velocity-dependent model) was used to describe the lateral nonlinear stochas-
tic vibration of the footbridge. Additionally, the IEVIE method was used to determine the criteria
for judging the stability of the improved Nakamura model. The SA method was used to establish
a backward Kolmogorov equation corresponding to the improved Nakamura model. Then, the
stability criterion was combined with the Kolmogorov equation to obtain the boundary condition
of the first passage stability, whereby stability reliability was realized.

2 Lateral Vibration of Footbridge

2.1 Lateral Pedestrian Excitation
Generally, the lateral load per unit length exerted by pedestrians was defined as

fc (x, t)=mp (x)gd0G (ẏ) ρ0H
(
ωp,ωs

)
ξ (t) , (1)

where mp(x) = Nmps/L is the distributed mass with N pedestrians (mass mps of single person)
on the bridge (L of length), g is the acceleration of gravity, d0 is the dynamic loading factor
(a suggested value of 0.04 [11,26,27]), ρ0 is the synchronization coefficient (a suggested value
of 0.2 [9,28]), and G(ẏ) is the velocity-dependent function describing the interaction between a
pedestrian and footbridge vibration responses. In the original Nakamura model, a fractional form,
including an absolute value, was used to describe the velocity-dependent function: G= ẏ/(k3+|ẏ|),
which made it inconvenient to conduct an analytical deduction. The authors [15] proposed an
improved Nakamura model (IN model) by replacing the fractional form with a polynomial form
that could be conveniently used for the following analytical deduction:

G (ẏ)= c1ẏ− c1
3ẏ3/5. (2)

The function H is related to frequency detuning between pedestrian lateral walking fre-
quency ωp and bridge frequency ωs. Synchronization of pedestrians is only possible when the
frequency detuning is less than a certain small value. This kind of dependency can be simulated
by a Gaussian curve.

H(ωp,ωs)= exp
[
ρh(ωp−ωs)

2
]
. (3)

Owing to intra-subject variability, ξ(t) is a narrow-band process. Ricciardelli et al. [29] used
an improved treadmill to test the lateral pedestrian load. On the basis of the test data, they
transformed the Fourier spectrum to the power spectrum and fitted the power spectrums using
a Gaussian-curve. Although the Gaussian-curve can be used in numerical simulations through
discretization, it is inconvenient for an analytical solution. An equivalent conversion method has
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been previously proposed by the authors [15], in which the original PSD was transformed to a
rational form:

ξ(t)= σFhξ(t)= σFhcos(ωpt+ δB(t)+φ),

h=
√
2π

√
2πas/

√
2− bs

2, δ =
√
2ωpbs/

√
2− bs

2,
(4)

where σF is the square root of the area of the PSD around each harmonic, h is the external
excitation intensity factor, ξ(t) is the stochastic process with unit excitation intensity, ωp is the
undisturbed gait frequency, as= 0.9 and bs= 0.043 are fitting quantities [13], δ is the intensity of
disturbance, B(t) is the Weiner process, and Φ denotes the uniformly distributed phase ∈ (0, 2π).
On the basis of the above, the pedestrian excitation can be written as follows:

fc (x, t)=mp (x) gd0

(
c1ẏ− c13ẏ3

5

)
exp

[
ρh(ωp−ωs)

2
]
σFhξ (t) . (5)

2.2 Equations of the Lateral Vibration of Footbridge
By using the simplest model, the modal vibration equation of the footbridge can be written

as follows:

q̈ (t)+ 2ωsζ q̇ (t)+ω2
s q (t)= F (t) . (6)

Here ωs is the bridge frequency, ζ is the modal damping, and F(t) is

F (t)= 1
Ms

∫ L

0
fc (x, t) ϕ (x)dx, (7)

where Ms is the modal mass of the bridge, and ϕ(x) is the mode shape. On the basis of Eqs. (5)
and (7), F(t) can be unfolded as

F (t) =
d0ρ0gc1exp

[
ρh
(
ωp−ωs

)2]h
Ms

[∫ L

0
mp (x) ϕ (x)2 dx

]
q̇ξ (t)

− d0ρ0gc31exp
[
ρh(ωp−ωs)

2]h
5Ms

[∫ L

0
mp(x)ϕ(x)4dx

]
q̇3ξ (t) . (8)

Set

g1 =
d0ρ0gc1 exp

[
ρh(ωp−ωs)

2]h
Ms

[∫ L

0
mp(x)ϕ(x)2dx

]
, (9a)

g2 =
d0ρ0gc31 exp

[
ρh(ωp−ωs)

2]h
5Ms

[∫ L

0
mp(x)ϕ(x)4dx

]
. (9b)

Then, Eq. (6) can be rewritten as

q̈ (t)+ 2ωsζ q̇ (t)− g1ξ(t)q̇ (t)+ g2ξ(t)q̇ (t)3+ω2
s q(t)= 0. (10)
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3 The Criterion for Judging Vibrational Stability Based on IEVIE

A general structural vibration system can be described as⎧⎪⎨
⎪⎩
mz̈ (t)+ f1 (ż, t)+ f2 (z, t)= p (t)
z (t0)= z0
ż (t0)= v0

, (11)

For the system expressed by Eq. (11), the total input energy EI (t) imported into the structure
can be written as

EI (t)=
∫ t

0
p (t) ż (t)dt+E0, (12)

where E0 is the input energy contributed by the initial condition. The instantaneous work, Wext,
done by the external force and the accumulated work Wint done by the internal reaction can be
expressed as follows:

Wext = Fextz (t) , (13a)

Wint =
∫ u

0
Fint(z)dz. (13b)

If the damping and inertial forces are regarded as external forces, then the equivalent external
force is expressed as Fext = p (t)−mz̈ (t)−f1 (ż, t), and the internal reaction is expressed as Fint (z)=
f2 (z, t). Importantly, Fext = Fint. Using these, Eqs. (13a) and (13b) can be rewritten as

Wext = [p (t)−mz̈ (t)− f1 (ż)] z (t)= f2 (z, t)z (t) , (14a)

Wint =
∫ z

0
f2 (z, t)dz. (14b)

The total work done by Fext and Fint is

WΔ (t)=Wext−Wint. (15)

If the thermal energy is ignored, WΔ (t) is essentially the variation of intrinsic energy. In
general, it can be assumed that WΔ (t0)= 0, and the absolute value of WΔ (t) is the absolute of
the variation of intrinsic energy EΔ (t), which is also called the energy index given by

EΔ (t)= |Wext−Wint| =
∣∣∣∣f2 (z, t) z (t)−

∫ z

0
f2 (z, t)dz

∣∣∣∣ . (16)

From previous research [24], based on IEVIE, vibrational stability at time t occurred when the
input energy EI (t) was balanced with the variation of intrinsic energy. By contrast, if the input
energy was less than the variation of intrinsic energy, there must be other processes for absorbing
energy in the system. These processes for absorbing energy could change the system from the
original state to a new state (i.e., the state of instability). Therefore, the criterion function for
judging vibrational stability is established as

S (t)=EI (t)−EΔ (t) . (17)
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When S (t) < 0, the vibration is instable; when S (t) > 0, the vibration is stable; and S (t) = 0
is the limit of stability/instability. Back to Eq. (10) and set the initial condition to q (t0) =
qu0 and q̇ (t0)= qv0, the input energy E0 in the system of Eq. (10) has the following expression:

EI (t)= 0.5ω2
s q

2
u0+ 0.5q2v0. (18)

The expression of EΔ (t) in the system of Eq. (10) can be written as

EΔ (t)=
∣∣∣∣ω2

s q(t)
2 −

∫ q

0
ω2
s q(t)dq

∣∣∣∣ . (19)

4 Stability Analysis Based on the IEVIE-SA Method

Li et al. [24] implemented the probabilistic analysis of structural vibrational stability by com-
bining the IEVIE method with the probability density evolution method. However, this method
required a large number of calculations. The main calculation can be approximately estimated as,
np × TFD. np was the number of discrete representative sample points in the probabilistic space
of the probability density evolution method, which can be estimated as 200 in the normal case.
TFD was the time of each finite difference calculation. In the finite difference method, the space
grids should be divided carefully to satisfy the convergence condition. In the normal case of
structural vibration, if the explicit finite difference method with two-order accuracy was used,
the conservative estimation of each calculation time was approximately 5 s. Therefore, it was
roughly estimated that the completion time for a whole calculation was approximately 1000 s.
Obviously, this number of calculations is too large, especially if performing a parameter variety
analysis. Thus, a new method, the IEVIE-SA method, that combines the IEVIE and SA methods
was proposed in this study. The SA method is a method of combining the stochastic averaging
principle [20] with the Fokker–Planck–Kolmogorov Fokker–Planck–Kolmogorov (FPK) equation.
After the stochastic averaging operation, the stochastic equations were considerably simplified. In
the proposed method, the SA method was used to establish the backward Kolmogorov equation,
and the stability criterion built by the energy method was treated as the boundary condition of
the first passage reliability whereby dynamic reliability of vibrational stability was realized. The
proposed method is a semi-analytical method that can greatly improve computational efficiency
because it requires only one finite difference computation.

4.1 Stochastic Averaging Method
First, a conversion on the Eq. (10) was implemented as follows:⎧⎪⎨

⎪⎩
q=A(t)cosφ
q̇=−ωA(t)sinφ

φ =� + θ

, (20)

where d�/dt=ω ≈ωs. Combining Eqs. (10) and (20) resulted in

Ȧ=H1
(
Aq,φ,ωpt+


)=−sinφ

ωs

[
2ζAω2

s sinφ − (g1Aωs sinφ + g2A
3ω3

s sin
3 φ) cos(ωpt+
)

]
, (21)

θ̇ =H2
(
Aq,φ,ωpt+


) =−cosφ
Aωs

[
2ζAω2

s sinφ − (g1Aωs sinφ + g2A3ω3
s sin

3 φ) cos(ωpt+
)
]
, (22)
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where 
= δB(t)+Φ. Using a detuning parameter ε, one has

ωp

ωs
= n
m

+ ε. (23)

Here n and m are chose to be positive integers. By setting �= ε�− (n/m)θ +
, Eq. (23) was
rewritten as

ωpt+
= n
m

φ +�. (24)

By utilizing Itô’s differentiation rule, the Itô equations regarding A and � were obtained based
on Eqs. (23) and (24)⎧⎪⎨
⎪⎩
dA=H1(A,φ,�)dt

d�=
[(

ωp

ωs
− n
m

)
ωs− n

m
H2(A,φ,�)

]
dt+ δdB(t)

. (25)

Given that φ is a fast variable when compared to A and �, an averaging operation of φ from
0 to 2π on Eq. (25) was implemented⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
dA=m1(A,�)dt=

[∫ 2π

0
H1A,φ,�)dφ

]
dt

d�=m2 (A,�)dt+ δdB (t)=
[∫ 2π

0

[(
ωp

ωs
− n
m

)
ω− n

m
H2(A,φ,�)

]
dφ

]
dt+ δdB (t)

. (26)

By considering the case of subharmonic resonance, n/m= 2, Eq. (26) was rewritten as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
dA=m1(A,�)dt=

(
−Aωsζ − g1A

4
cos�− g2A3ω2

s

4
cos�

)
dt

d�=m2 (A,�)dt+ δdB (t)=
(

ωp− 2ωs+ g1
2
sin�+ g2A2ω2

s

4
sin�

)
dt+ δdB (t)

. (27)

4.2 First Passage Reliability of Vibrational Stability
From Eqs. (18) and (19), it was found that S (t) was a slow variable because it belonged to

the energy concept, indicating that an averaging method could also be applied to S (t). There-
fore, a quasi-periodic averaging operation (i.e., an averaging operation of φ from 0 to 2π ) was
implemented on Eq. (17)

〈[·]〉 = 1
2π

∫ 2π

0
[·]dφ. (28)

After the averaging operation on Eq. (17), the simplified expression of S (t) > 0 was

A (t) <

√
2
(
ω2
s q

2
u0+ q2v0

)
, 0≤ t≤T . (29)
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It should be noted that Eq. (28) is actually a deterministic averaging over T (equivalent to
averaging over ϕ), for the purpose to determining a critical value of vibration instability. This
randomness has not been eliminated, which can be reflected in A (t) (see Eq. (25)). Eq. (29)

denotes a first passage event of A (t) with the boundary Ac =
√
2
(
ω2
s q

2
u0+ q2v0

)
. On other hand, it

can be known that the two-dimensional diffusion process [A(t),�(t)] was governed by Eq. (27).
Since this study mainly focused on the resonance, the safety domain Ωs of vibrational stability
was independent of the phase difference angle �, that is to say, Ωs was determined by Ac (i.e.,
Ωs= {A (t) <Ac}). Under the initial conditions of [A0,�0], when A(t) first left the area of Ωs, i.e.,
A(t) approached Ac for the first time, the first passage event occurred. The transition probability
density with regard to [A(t),�(t)] was noted as p(A(t),�(t) |A0,�0), which satisfies the following
backward Kolmogorov equation:

∂p
∂t0

+m1 (A0,�0)
∂p
∂A0

+m2 (A0,�0)
∂p

∂�0
+ δ2

2
∂2p

∂�2
0

= 0. (30)

The corresponding conditional reliability can be defined as the probability of [A (τ ) ,�(τ)] ∈
Ωs under the given initial condition of [A0,�0]

R (t |A0,�0)=Pr {[A (τ ) ,�(τ)] ∈Ωs, τ ∈ (0, t] | [A0,�0] ∈Ωs} . (31)

Subsequently, on the basis of Eq. (30), we have

∂R
∂t0

+m1 (A0,�0)
∂R
∂A0

+m2 (A0,�0)
∂R
∂�0

+ δ2

2
∂2R

∂�2
0

= 0. (32)

Let τ = t− t0; then, Eq. (32) can be rewritten as

−∂R
∂τ

+m1 (A0,�0)
∂R
∂A0

+m2 (A0,�0)
∂R
∂�0

+ δ2

2
∂2R

∂�2
0

= 0. (33)

The initial condition of Eq. (33) is

R (t |A0,�0)= 1, [A0,�0] ∈Ωs. (34)

The boundary condition of Eq. (33) with regard to A0 was

R (t |Ac,�0)= 0, (35a)

R (t |Amin,�0)= finite. (35b)

The boundary condition of Eq. (33) with regard to �0 satisfied the following periodic
conditions:

R (t |A0,�0)=R (t |A0,�0+ 2nπ) , (36a)

∂R (t |A0,�0)

∂�0
= ∂R (t |A0,�0+ 2nπ)

∂�0
. (36b)

The partial differential equation of Eq. (33) generally had only numerical solutions, which
could be solved by the finite difference method. In this study, the Peaceman–Rachford alternate
direction implicit format of finite difference method is adopted (see Appendix A).
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5 Application of the IEVIE-SA Method to the London Millennium Bridge

The Millennium Bridge in London is a shallow suspension bridge with an 81 m north span,
a 144 m central span, and a 108 m southern span. The first lateral mode of the central span was
taken as the numerical example. According to the previous work [30], the structural parameters
were given as follows: ωs = 0.48× 2π , ms = 2000 kg/m, mps = 70 kg, and ζ = 0.007.

Fig. 1 shows the time-varied stability reliability R(t) within T ∈ [0, 60 s] when the number
of pedestrians was Np = 180 and the frequency ratio fr (the ratio between walking frequency
and doubled bridge frequency, i.e., fr = fp/2fs) was 1. Stability reliability decreased rapidly with
increasing time in the early stage but tended to converge in the later stage. The result of the MC
method (106 simulations) is also given in Fig. 1, and it matched well with that of the proposed
method, thereby verifying the effectiveness of the proposed method.

Figure 1: Comparison between the IEVIE-SA and MC methods for the case of Np =
180 and fr = 1

Fig. 2a shows the results when the number of pedestrians was Np = 150 and the frequency
ratio was fr = 0.95, 1, or 1.05. When the frequency ratio was fr = 1 (i.e., the bridge frequency was

half of the pedestrian walking frequency), stability reliability was very small (Rfr=1
t=60 = 0.1013), that

is to say, the probability of vibration instability was very large (Pf = 0.8987). When the frequency
ratio was away from fr = 1, such as when fr = 0.95 or fr = 1.05, stability reliability increased rapidly

(Rfr=0.95
t=60 = 0.8780 and Rfr=1.05

t=60 = 0.8637). These results showed that a 1/2 subharmonic (fp/2fsr =
1) resonance played a key role in the vibration and may cause a dangerous situation. In addition,
this may explain the large vibration in the central span of the Millennium Bridge because the
fundamental frequency of the central span of the Millennium Bridge is approximately half of the
pedestrian walking frequency. Fig. 2b presents the results when the number of pedestrians was
Np = 180 and the frequency ratio was fr = 0.95, 1, and 1.05. The influence of the frequency on
stability reliability was similar to that in Fig. 2a. By comparing Figs. 2a and 2b, it was shown that
the number of pedestrians also had an important influence on stability reliability. The increase in
the number of pedestrians led to a decrease in stability reliability, which will be discussed in detail
in the following Figs. 3a and 3b.

Fig. 3 shows stability reliability when the frequency ratio was fixed and the number of
pedestrians was varied. Fig. 3a corresponds to the case of fr = 0.95 and Np = [150, 180, 210], and
Fig. 3b corresponds to the case of fr = 1 and Np = [150, 180, 210]. As shown in Fig. 3a, stability
reliability decreased with the number of pedestrians. When the number of pedestrians was rela-

tively small (Np = 150), its corresponding stability reliability was R
Np=150
t=60 = 0.8781, and when the
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number of pedestrians increased to Np= 180, stability reliability decreased to R
Np=180
t=60 = 0.8092. In

Fig. 3b (fr = 1), the weakening effect of increasing numbers of pedestrians on stability reliability
was also observed.

(a) (b)

Np = 150 fr = 1.05

Np = 150 fr = 1

Np = 150 fr = 0.95

Np = 180 fr = 1.05

Np = 180 fr = 1

Np = 180 fr = 0.95

Figure 2: Stability reliability with a fixed number of pedestrians and the variant frequency ratio:
(a) Np = 150 & fr = [0.95, 1, 1.05]; (b) Np = 180 & fr = [0.95, 1, 1.05]

(a) (b)

Np = 210 fr = 0.95

Np = 180 fr = 0.95

Np = 150 fr = 0.95

Np = 210 fr = 1

Np = 180 fr = 1

Np = 150 fr = 1

Figure 3: Stability reliability under a fixed frequency ratio and varying numbers of pedestrians:
(a) fr = 0.95 & Np = [150, 180, 210]; (b) fr = 1 & Np = [150, 180, 210]

To more clearly illustrate the influence of parameters on vibrational stability, Fig. 4 shows
a three-dimensional diagram of stability reliability under different combinations of pedestrian
number and frequency ratios. The shape of the surface of R −Np − fr appeared as a “valley.”
When the frequency ratio is away from fr = 1, stability reliability was large and even (i.e., two flat
areas on the top of the valley); when the frequency ratio was close to fr = 1, stability reliability
decreased sharply (i.e., cliffs on both sides of the valley); and when the frequency ratio was
almost fr = 1, stability reliability reached a minimum (i.e., the middle bottom of the valley). It
clearly showed that the frequency had a dominant effect on vibrational stability, and the number
of pedestrians had a relatively smooth effect on vibrational stability. Additionally, the effect of
frequency on vibrational stability depended on the number of pedestrians. The frequency range at
the bottom of the valley (frequency corresponding to low reliability) became wider as the number
of pedestrians increased. In other words, as the number of pedestrians increased, the probability
points inducing a high probability of instability also increased. The effect of the number of
pedestrians on vibrational stability was also related to the frequency. When the frequency ratio
was far from fr = 1, the effect of the number of pedestrians on vibrational stability was small, but
when the frequency ratio was near fr = 1, an increase in the number of pedestrians significantly
reduced stability reliability.
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Of note, compared with the traditional Lyapunov method that can only obtain two qualitative
results (stability or instability), the quantitative results obtained by the proposed method contained
more information and were more practical, especially for designers.

Figure 4: Three-dimensional graph of R−Np− fr

The influence of randomness on the system stability is also investigated through the parameter
analysis of bs in Eq. (4), since the intensity of random disturbance δ has a monotonic relationship
with bs (increasing bs is equal to strengthening the random disturbance). Figs. 5a and 5b corre-
spond to the case of bs = [0.023, 0.043, 0.063] & fr = 1 and bs = [0.023, 0.043, 0.063] & fr = 0.95,
respectively. It can be found that the influence of bs on the stability reliability R depends on the
distribution of fr: Rt=60 increases along with bs when fr = 1, while decreases with the increase of
bs when fr far from 1 (fr = 0.95).

(a) (b)

bs = 0.063 fr = 1

bs = 0.043 fr = 1

bs = 0.023 fr = 1

bs = 0.063 fr = 0.95

bs = 0.043 fr = 0.95

bs = 0.023 fr = 0.95

Figure 5: Stability reliability with different combinations of bs and fr: bs = [0.023, 0.043, 0.063]
(a) fr = 1; (b) fr = 0.95

To further verify the effectiveness of the proposed method, the Lyapunov method based on
the maximal Lyapunov exponent was implemented for comparison. Performing a linear operation
about the derived coefficients in Eq. (27) at A= 0 gave⎧⎪⎪⎨
⎪⎪⎩
dA≈ m̃1dt=

(
−ωsζ − g1cos�

4

)
Adt

d�≈ m̃2dt+ δdB(t)=
(

ωp− 2ωs+ g1sin�

2

)
dt+ δdB(t)

. (37)
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With γ= lnA, Eq. (37) was rewritten as⎧⎪⎪⎨
⎪⎪⎩
dγ =

(
−ωsζ − g1cos�

4

)
dt

d�=
(

ωp− 2ωs+ g1sin�

2

)
dt+ δdB(t)

. (38)

Since �(t) was the Ergodic Markov process within [0, 2π ], its invariant measure was the
stationary probability density function p(�) that had the following stationary FPK equation:

d2p
d�2 −

2
δ2

d
d�

[(
ωp− 2ωs+ g1sin�

2

)
p
]
= 0. (39)

In addition, p(�) satisfied the periodic boundary condition p(�) = p(� + 2π) and the

probability normalization condition
∫ 2π
0 p(�)d�= 1. The solution of Eq. (39) was given as

p(�)=C exp(σ�− gcos�)

∫ �+2π

�

exp(−στ + gcos�)dτ , (40)

where σ = 2(ωp − 2ωs)/δ2, g = g1/δ2, and C is the normalization constant given as C =
1/
[
4π2 exp (−σπ) Iiσ (−g)I−iσ (−g)], with In(x) being the modified Bessel function of the first

kind. On the basis of Oseledec’s multiplicative ergodic theory, the Lyapunov exponent λ from the
solution of Eq. (37) under non-zero initial value was defined as

λ (A0,�0)= lim
t→∞

1
t
ln |A (t;A0,�0)| ,w.p.1, (41)

where A0 and �0 are the initial values. On the basis of Eqs. (40) and (41), the maximal Lyapunov
exponent λmax was

λmax= lim
t→∞

1
t

∣∣∣∣A (t)
A (0)

∣∣∣∣= lim
t→∞

1
t
[γ (t)−γ (0)]=−ωsζ − lim

t→∞
1
t

∫ t

0

g1
4
cos�(τ)dτ =−ωsζ − g1

4
E [cos�]

=−ωsζ − g1
4

∫ 2π

0
p (�) cos�d�. (42)

The stability of the trivial solution of Eq. (38) was determined by the sign of λmax. The trivial
solution of Eq. (38) was stable w.p.1 when λmax < 0 and unstable w.p.1 when λmax > 0. Thus, the
critical boundary between stability and instability could be approximated by λmax = 0. This kind
of stability definition given by the sign change of the maximum Lyapunov exponent is also called
stochastic D-bifurcation.

Unlike the traditional Lyapunov definition of random vibrational stability, we can simply give
the definition of random vibrational stability according to the probability obtained from IEVIE-
SA. If the following equation was satisfied,

R (t)≥Rlim, t> t0. (43)

the system was stable with probability Rlim, or the system was unstable with probability 1−Rlim.

Fig. 6 compares the results of the Np and fr spaces of the proposed method and the Lya-
punov method based on the maximal Lyapunov exponent λmax. The light gray and light green
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areas are the areas of instability and stability, respectively, that were determined by the Lyapunov
method. The black curve is the critical boundary between instability and stability. The yellow
“+” denotes the points of Np and fr obtained from the IEVIA-SA method, which were stable
with probability less than 10% (or unstable with probability greater than 90%). Since probability
greater than 90% indicated very high probability of instability, it was conservatively regarded as
approximately unstable. From Fig. 6, all points that were unstable with probability greater than
90% were located in the area of instability determined by the Lyapunov method. Additionally,
the outer contours of these points were consistent with the critical boundaries obtained by the
Lyapunov method. These well-matched results verified the effectiveness of the IEVIE-SA method.
From another perspective, the limitation of the Lyapunov method was also revealed because it
only obtained a binary qualitative result (stability or instability) without any intermediate values.
The judgment of stability or instability was too absolute and may be relatively unreasonable in
practice. In contrast, the IEVIE-SA method proposed in this study used probability to represent
the degree of vibrational stability (or instability), and it is more practical and persuasive. More-
over, the influence from randomness is also reflected in Fig. 6. When the value of bs is enlarged
to 1.5 bs, the instability area with points those were unstable with probability greater than 90% is
obviously reduced (the critical Np needed to trigger instability increases), which means the increase
of random disturbance is beneficial to the stability. This conclusion can also be found in the result
obtained by Lyapunov method.

Figure 6: Comparison of the IEVIE-SA and Lyapunov methods

6 Conclusions

This study established a framework to efficiently and quantitatively analyze the stability
reliability of the lateral vibration of a footbridge. The IN model was used to describe the
lateral vibration of footbridges, considering the correlation between pedestrian excitation and
bridge vibration, and the randomness of pedestrian excitation. The IEVIE method based on the
comparison of input energy and the variation of intrinsic energy was used to establish the judging
criteria to identify vibrational stability. In addition, the SA method was used to establish the
stochastic Itô equation with slow variables as well as the corresponding backward Kolmogorov
equation for condition reliability. Subsequently, the stability criterion established by the IEVIE
was combined and treated as the boundary condition of the first passage reliability within the
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backward Kolmogorov equation, by which the first passage reliability of vibrational stability was
obtained. The main results were as follows:

1) The proposed method was successfully applied to the central span of the Millennium
Bridge, and its validity was verified by comparing it with the MC and traditional Lyapunov
methods.

2) The frequency had an important influence on the lateral vibrational stability of the foot-
bridge. When the walking frequency was equal to the doubled bridge frequency, stability
reliability had an extremely small probability. This may explain the large vibration of the
central span of the Millennium Bridge, which has a fundamental frequency that is half
of the pedestrian walking frequency. The number of pedestrians also affected the lateral
vibrational stability of the footbridge. Stability reliability decreased with increasing numbers
of pedestrians. When the number of pedestrians reached 180 under the worst case (fr = 1),
the vibration was unstable with a probability of 96%, which was consistent with the on-site
observed result [30] (the critical number of pedestrians that triggered the unstable vibration
was approximately 170) and the results from other researchers [10,13].

3) Compared to the number of pedestrians, the frequency had a more dominant influence on
the lateral vibrational stability of the footbridge. However, the influence from the number
of pedestrians and the frequency were coupled: the greater the number of pedestrians, the
more frequency points that could cause a large probability of instability. On the other
hand, the closer the frequency ratio was to 1, the greater the change in stability reliability
caused by the number of pedestrians.

4) Compared to the traditional Lyapunov method, the proposed method could conduct
quantitative analysis of the random vibrational stability of the footbridge, which is more
practical and reasonable. Another advantage of the proposed method is that it uses the
stochastic averaging method to simplify the stochastic equations, which greatly reduces the
number of calculations.

Nevertheless, the proposed method also has some limitations. First, the IN model used in this
study was essentially a backstepping model and did not guarantee that the full mechanism of
the lateral vibration of the footbridge was revealed. In the future, more valuable data should be
collected to further refine this model. Second, in this study, only three parameters were analyzed:
the number of pedestrians, the frequency ratio, and the intensity of random disturbances. There
may be other key parameters that also have an important influence on the lateral vibrational
stability of the footbridge. Therefore, more detailed studies with respect to parametric analysis are
needed. Third, for the sake of simplicity, this paper considers only the first-order mode, thus the
suitability of the proposed method in another adjacent mode (e.g., the lateral second mode with
a frequency around 1 Hz in the central span of the Millennium Bridge) cannot be guaranteed.
Moreover, it cannot exclude the possibility that the forced resonance and subharmonic resonance
may act simultaneously to drive the large lateral vibration, which is worth studying in the future.
Finally, due to the limited data, this study only used the Millennium Bridge as a numerical
example. It is necessary to collect information from other footbridges as references to further
verify the generality of the proposed method.
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Appendix A: Peaceman–Rachford’s Alternate Direction Implicit Format

The two-dimensional partial differential Eq. (33) can be solved using the finite difference
method. When the convergent condition is strict, the backward Euler and Crank–Nicolson
schemes can be used because they are unconditionally stable. However, in these two methods,
the difference equations on each time layer will have a huge number, and they are no longer
tridiagonal linear equations. The calculations for solving such equations are unacceptable. In this
study, the Peaceman–Rachford’s alternate direction implicit format (PR ADI) was used, and PR
ADI was unconditionally stable and could be solved using the chasing method. For convenience,
R(A0,�0, t) in Eq. (33) was abbreviated to R. In addition, the time step was set as dt = t/s,
and tn = ndt, 0 ≤ n ≤ s. The space steps with regard to A and � were set as hA and hΔ,
respectively, resulting in A0,i = A0,min+ (i− 1)hA, 1≤ i ≤ k and �0,j = �0,min+ (j− 1)hΔ, 1≤ j ≤m.
To establish the one-dimensional implicit format, the derivative with regard to A0 was replaced
by the unknown center difference quotient of R on the n+1th time layer, and the derivative with
regard to �0 was replaced by the known center difference quotient of R on the nth time layer.
The resulting equations were only implicit in the direction of A0, which was easier to solve by
using the chasing method. For the sake of symmetry, the above steps were repeated on the next
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time layer, on which the �0 direction was implicit and the A0 direction was explicit. By doing this,
the two adjacent time layers could be combined to form a difference format. The corresponding
PR ADI format of Eq. (33) was as follows:

R
n+ 1

2
ij −Rnij
dt/2

=αijδA0R
n+ 1

2
ij +βijδ�0R

n
ij+ κδ2�0

Rnij, (A1)

Rn+1
ij −R

n+ 1
2

ij

dt/2
= αijδA0R

n+ 1
2

ij +βijδ�0R
n+1
ij + κδ2�0

Rn+1
ij , (A2)

where n denotes the time mesh step index and i and j represent the space mesh step indices. Other
symbols were defined as follows:

R
n+ 1

2
ij = 1

2

(
Rnij+Rn+1

ij

)
; αij =m1

(
A0,i,�0,j

)
; βij =m2

(
A0,i,�0,j

)
; κ = δ2

2

δA0R
n+ 1

2
ij =

R
n+ 1

2
i+1,j−R

n+ 1
2

i−1,j

2hA
; δ�0R

n
ij =

Rni,j+1−Rni,j−1

2h�

; δ2�0
Rnij =

Rni,j+1− 2Rni,j+Rni,j−1

h2�
.

By setting λ values as

λa =
αijdt
4hA

; λb =
βijdt
4hΔ

; λκ = κdt

2h2Δ
,

Eq. (A1) could be rearranged as

λaR
n+ 1

2
i−1,j+R

n+ 1
2

i,j −λaR
n+ 1

2
i+1,j = (λκ −λb)R

n
i,j−1+ (1− 2λκ)Rni,j+ (λb+λκ)Rni,j+1. (A3)

The matrix form corresponding to Eq. (A1) had the following form:

⎡
⎢⎢⎢⎢⎢⎢⎣

1 λa 0 · · · · · ·
λa 1 −λa · · · · · ·
0 λa 1 −λa· · ·
...

...
...

...
...

0 · · · · · · λa 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
n+ 1

2
2,j

R
n+ 1

2
3,j
...
...

R
n+ 1

2
k−1,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λaR
n+ 1

2
1,j

0
...

0

λaR
n+ 1

2
k,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(λκ −λb)Rn2,j−1+ (1− 2λκ)Rn2,j+ (λb+λκ)Rn2,j+1

(λκ −λb)Rn3,j−1+ (1− 2λκ)Rn3,j+ (λb+λκ)Rn3,j+1
...

0

(λκ −λb)Rnk−1,j−1+ (1− 2λκ)Rnk−1,j+ (λb+λκ)Rnk−1,j+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(A4)
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By combining the initial condition (Eq. (34)) and the boundary conditions (Eqs. (35) and (36))

and using the chasing method to solve Eq. (A4), the solution of
[
R
n+ 1

2
2,j ,R

n+ 1
2

3,j , · · · ,Rn+
1
2

k−1,j

]T
was

easily obtained. Then, Eq. (A2) was rearranged as

(λb−λκ)Rn+1
i,j−1+ (1+ 2λκ)Rn+1

i,j − (λb+λκ)Rn+1
i,j+1 =−λaR

n+ 1
2

i−1,j+R
n+ 1

2
i,j +λaR

n+ 1
2

i+1,j. (A5)

The matrix form corresponding to Eq. (A5) can be expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1+λκ −λκ −λb 0 · · · · · ·
λb−λκ 1+λκ −λκ −λb · · · · · ·
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...

...
...

...
...

0 · · · · · · λb−λκ 1+λκ

⎤
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2
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(A6)

Like that for Eq. (A4), the chasing method can be used to solve Eq. (A6) to obtain the result
of the n+ 1th time layer. It can be seen that the calculation of Rn+1

ij consisted of two steps, and

each step was only implicit in one direction. By repeating the above steps on the following time
layers, the final result of the last time layer could be obtained.


