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ABSTRACT

An implicit integration scheme was developed for simulating the viscoplastic constitutive behavior of
Sn3.0Ag0.5Cu solder and programmed into a user material subroutine of the finite element software ANSYS. The
numerical procedure first solves the essential state variables by using a three-level iterative procedure, and updates
the remaining stress and state variables accordingly. The numerical implementation was applied to consider the
responses of solder joints in an electronic assembly under temperature cycling condition. The viscoplastic strain
energy density accumulation over one temperature cycle was identified as a feasible parameter for evaluating the
thermomechanical reliability of the solder joints.
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1 Introduction

In state-of-the-art microelectronic assemblies, the individual integrated-circuit (IC) components
are connected to the printed-circuit board (PCB) through arrays of solder joints. Under service
conditions involving repetitive temperature changes, the mismatch between the coefficients of
thermal expansion (CTEs) of the PCB and IC components leads to thermomechanical fatigue
and failure of the electronic assembly. The solder joint, which is the electrical as well as the
structural interconnection between the component and PCB, is typically the weakest link from
the perspective of thermomechanical reliability. Accurate prediction of the solder joint response is
therefore imperative to the reliability modeling of the electronic assembly. In order to achieve that,
the simulation should be able to consider the constitutive behavior of the solder under service
conditions. One of the standard solder materials used in the board-level assembly is the Pb-free
Sn3.0Ag0.5Cu (96.5 wt.% Sn, 3.0 wt.% Ag, 0.5 wt.% Cu) alloy which has a melting temperature
of 217◦C. The homologous temperature of the Sn3.0Ag0.5Cu solder in typical system operating
conditions is around or above 0.5. As a result, the solder joint exhibits significant time-dependent
inelastic deformation during temperature cycling of the electronic assembly. An obvious choice
of modeling the time-dependent inelastic behavior of solder is by using the state-variable based
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unified viscoplasticity approach [1,2]. For considering the complex thermomechanical responses
of lead free solders, some of the recent studies modified the Chaboche-model framework to
incorporate features such as static recovery, temperature dependence and damage evolution [3–6].
Rate-or temperature-dependent model parameters were also implemented in the McDowell-model
and Anand-model frameworks [7–9] to consider the solder behavior under a wide range of strain
rates and temperatures.

The mathematical form of the unified viscoplastic model is typically a set of nonlinear
first-order differential equations, and the corresponding thermomechanical problem is solved by
using nonlinear finite element (FE) procedure. In the FE procedure for analyzing the viscoplastic
problem, the stress equilibrium is expressed in the form of nonlinear virtual work equations. The
process of obtaining the nodal displacements involves applying the load in a sequence of discrete
time steps and solving the global nonlinear equilibrium equations at each incremental step by
Newton-Raphson iteration. During each global equilibrium iteration, values of new stresses and
internal state variables at each Gaussian integration points are calculated for the prescribed strain
increment and temperature change. These results are then used to determine the residual force
vector and the material tangent stiffness for the FE stiffness matrix. The calculations of the new
stresses and state variables at Gaussian integration points are performed with a time-integration
scheme of the viscoplastic model. In the integration scheme, the coupled and nonlinear differential
constitutive equations are discretized in a strain-driven format. Time-integration procedures based
on non-iterative forward-Euler scheme had been adopted for the viscoplastic model due to their
easy implementation [10,11]. A disadvantage of the explicit scheme is that the time increment
is severely restricted because of numerical stability requirements. To overcome this issue, semi-
implicit time-integration schemes were developed to improve stability and to retain numerical
simplicity. These semi-implicit procedures [12–14] calculate the forward gradient of the relevant
constitutive function by using Taylor series expansion at the initial state. These semi-implicit
approaches are non-iterative and provide improvements over the explicit procedures. However, it is
still important to control the time increment carefully because the accuracy of the forward gradi-
ent method may be severely affected by the time step size, especially in rapid-changing deformation
regimes [14]. Fu et al. [15] developed another semi-implicit time-integration approach. In this
procedure, the effective viscoplastic strain increment is evaluated by using real implicit integration
method while the other state variables are obtained by explicit update. Similar approach was
adopted to address the integration problem for a damage-coupled unified viscoplastic model [16].

Fully-implicit backward Euler schemes had also been implemented in time-integration pro-
cedures for viscoplastic models [17–27]. Because of the unconditional stability in time step size,
it is possible to improve the computational efficiency of these schemes without much loss in
solution accuracy. In the implicit scheme, nonlinear equations of the new stress and other state
variables are derived from the constitutive equations, and then transformed to a set of nonlinear
algebraic equations of the unknown variables. Iterative procedures were usually applied to solve
the system of nonlinear equations. Because the iterative solutions are performed at every Gaussian
integration point for each time step, the computation cost would be very significant if the number
of unknowns is higher than the essentially independent variables in the constitutive model, espe-
cially when tensor-valued internal state variables are used [17,18]. For improving the computation
efficiency, efforts had been focused on simplifying the discretized nonlinear system of equations
such that the number of unknowns is reduced to the same as the number of independent variables
in the corresponding constitutive model [19–25,27]. Hartmann et al. [19,20] showed that, for
plastic and viscoplastic models with multiple Armstrong-Frederick kinematic hardening terms, the
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nonlinear system of equations can be reduced to one scalar nonlinear equation for calculating the
new state variables. By following a similar derivation, Kobayashi et al. [21] demonstrated that the
implicit integration of kinematic-hardening plastic model consisting strain hardening and dynamic
recovery terms can also be reduced to solving a scalar nonlinear equation. The approach was also
applied to reduce the number of equations for more complicated constitutive models [22–24].

Aside from the discretized form of the constitutive equations, the robustness of the numerical
solution is also influenced by the iterative procedure. In general, Newton-Raphson iteration can
readily be adopted for solving the equations. However, for handling equations of high nonlinearity,
designs of appropriate local iterative schemes were proposed [18,21,22,24–26]. Saleeb et al. [18]
applied line-search strategy to improve the robustness of the Newton-Raphson iterative solution.
Kobayashi and coworkers adopted a successive substitution method for solving nonlinear scalar
constitutive equations [21,22]. Multi-level iteration strategies were also adopted for solving the
discretized nonlinear constitutive equations: Kullig et al. [24] presented a two-level iteration strat-
egy by combing Pegasus method and fixed-point iteration to solve a system of three coupled
nonlinear equations, Lush et al. [25] developed a two-level iteration strategy that combines the
Newton-Raphson procedure with bracketing method for obtaining good global convergence.

In this paper, a fully-implicit time-integration scheme is presented for a novel viscoplastic
constitutive model of Sn3.0Ag0.5Cu solder [6]. The viscoplastic model, which was proposed by
the authors of this paper, was first discretized and reduced to a set of four coupled nonlin-
ear zero-form equations for the four essentially independent variables. A multi-level iteration
strategy was implemented for solving this set of nonlinear equations. The implicit integration
scheme was programmed for the user-defined material subroutine USERMAT in commercial FE
software ANSYS [28] to perform local computation. For each current load step in the global
equilibrium iteration, new local stress and state variables at every Gaussian integration point
are calculated from the given strain and temperature increments. Furthermore, the consistent
tangent stiffness was also derived and programmed into the USERMAT. It is used for preserving
the quadratic convergence of the global Newton–Raphson equilibrium iteration [29,30]. The FE
simulations of solder bar under strain- or stress-controlled uniaxial cyclic loadings were conducted
in ANSYS with the USERMAT subroutine, and compared to experimental results for validating
the implementation. The USERMAT subroutine is also applied to consider the thermomechanical
responses of the ball grid array (BGA) Sn3.0Ag0.5Cu solder joints in an electronic assembly under
temperature-cycling reliability test condition.

2 The Constitutive Model

From experimental characterizations under monotonic and cyclic loading conditions, a kine-
matic hardening rule based viscoplastic model was developed for the Sn3.0Ag0.5Cu alloy [6]. The
main features incorporated in the model include dynamic recovery function for considering cyclic
softening and static recovery term for considering relaxation under monotonic loading. A brief
description of the constitutive model is given in this section.

Within the framework of unified viscoplasticity, the strain tensor can be expressed as

ε∼= ε∼
e+ ε∼

vp+ ε∼
T (1)

where ε∼
e, ε∼

vp and ε∼
T are the elastic, the viscoplastic and the thermal strain tensors, respectively.

Assuming that the material is isotropic, the stress-elastic strain relationship can be described by
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using the Hooke’s law, given by

σ∼ =E˜̃ : ε∼
e (2)

where σ∼ is the stress tensor, E˜̃ is the isotropic fourth-order elastic stiffness, and: denotes the double

contraction operator. Eq. (2) can be expressed in an alternative form:

σ∼ = s∼+ 1
3
tr
(
σ∼

)
I∼= 2μe∼

e+ 3K
1
3
tr
(
ε∼
e
)
I∼ (3)

where s∼ and e∼
e are the deviatoric stress and elastic strain tensors, respectively, I∼ is second-order

unit tensor, tr( ) denotes the trace of a second-order tensor, and μ, K are the shear and bulk
moduli, respectively. During anisothermal loading condition, stress response changes with respect
to time and temperature. The time derivative of Eq. (2) is given by

σ̇∼ =E˜̃ (T) : ε̇∼
e+ Ė˜̃ (T) : ε∼

e (4)

where Ė˜̃ is the rate of fourth-order elastic stiffness and T is the temperature. The thermal strain

is given by

ε∼
T = α (T −T0) I∼ (5)

where α is the CTE and T0 is the reference temperature of zero thermal strain.

The flow equation of the unified viscoplastic model is given by

ε̇∼
vp = 3

2
ṗn∼ (6)

where ṗ and n∼ are the viscoplastic strain rate norm and the viscoplastic normal tensor, respectively,

and are given by

ṗ=
√
2
3

(
ε̇∼
vp : ε̇∼

vp
)
=A exp

(−Q
RT

)
sinh

⎛⎜⎝〈J
(
σ∼ −X∼

)
−Y0

D

〉⎞⎟⎠
1/m

(7)

n∼=
s∼−X∼

′

J
(
σ∼ −X∼

) =
s∼−X∼

J
(
σ∼−X∼

) (8)

In Eq. (7), A, D, m, Q/R and Y0 are material parameters, X∼ is the back stress tensor for

which the trace is zero, J
(
σ∼ −X∼

)
is the von-Mises invariant of the effective stress, the Macaulay

brackets, 〈 〉, is defined as 〈x〉 = (x+ |x|) /2. In Eq. (8), X∼
′ is the deviatoric back stress tensor,

and the effective deviatoric stress, s∼ −X∼
′, also gives the direction of the viscoplastic strain rate.

Because the trace of the back stress tensor is zero, it is such that X∼
′ =X∼ .
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The internal state variable of the viscoplastic model is the back stress, X∼ , which consists two

components, i.e.,

X∼ =X1∼
+X2∼

(9)

where X1∼
and X2∼

are related to the kinematic hardenings in the transient and secondary stages,

respectively, of the viscoplastic deformation. The evolution equations for both X1∼
and X2∼

have

identical form, which consists of a linear hardening term, a dynamic recovery term, a static
recovery term and a temperature dependence term, given by

Ẋi∼
= 2

3
Ci ε̇∼

vp− γi (p, q)Xi∼
ṗ− diJ

mi−1
X , i Xi∼

+ 1
Ci

∂Ci
∂T

Xi∼
Ṫ , i= 1, 2 (10)

where Ci, di, and mi are the material parameters, JX , i is the second invariant of the back stress
tensor, γi is the dynamic recovery parameter and is a function of the viscoplastic strain norm, p,
and the radius of the strain memory surface, q. For considering the cyclic-softening behavior of
the material, γi is modeled as

γi (p, q)= γ 0
i + γ sat

i (q)
[
1− exp

(−dγ
i p
)]
, γ sat

i (q)= aγ
i

[
1+ (bγ

i − 1
)
exp

(−cγi q)] , i= 1, 2 (11)

where γ 0
i is the initial value of γi, and γ 0

i , a
γ
i , b

γ
i , c

γ
i , d

γ
i are material parameters. The dependence

of γi on strain-range is considered by modeling γ sat
i as a function of the strain memory surface

radius. The strain memory surface equation is introduced by [31]

gM = J
(

ε∼
vp− ξ

∼

)
− q=

√
2
3

(
ε∼
vp− ξ

∼

)
:
(

ε∼
vp− ξ

∼

)
− q (12)

where ξ
∼

represents the center location of the strain memory surface, J
(

ε∼
vp− ξ

∼

)
is the second

invariant of the tensor ε∼
vp − ξ

∼
. The evolution equations of the center and radius of the strain

memory surface are given, respectively, by

ξ̇
∼
=
√
3
2

(1− η)H (gM)

〈
n∼ : n∼

∗
〉
ṗn∼

∗ (13)

q̇= ηH (gM)

〈
n∼ : n∼

∗
〉
ṗ (14)

where η is a material parameter, H( ) is the Heaviside step function (H(x) = 1 if x≥ 0, H(x) =
0 if x< 0), n∼ and n∼

∗ are the unit normal tensors of the viscoplastic flow and the strain memory

surface, respectively, and are given by

n∼=
√
3
2

s∼−X∼
J
(
σ∼−X∼

) , n∼
∗ =

√
2
3

ε∼
vp− ξ

∼

J
(

ε∼
vp− ξ

∼

) (15)

The unified viscoplastic model described in Eqs. (6)–(15) consists 22 material parameters:
A, Q/R, D, m, Y0, η and Ci, γ 0

i , di, mi, a
γ
i , b

γ
i , c

γ
i , d

γ
i , i = 1, 2. A summary of the these
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material parameters for Sn3.0Ag0.5Cu solder is given in Tab. 1. The model was validated through
comparing the numerical results to experimental solder responses under constant strain-rate, creep
and creep-relaxation conditions at constant temperatures between 25 and 150◦C [6]. Note that the
viscoplastic model described in Eqs. (6)–(15) is a phenomenological model. The back stress evolu-
tion equation is used for modeling the macroscopic response associated to the competition between
the hardening and recovery effects of the microstructure. A micromechanics based multi-scale
physical model would be more suited for considering the influence of grain rotation, subdivision
and local fractures in the material.

Table 1: The unified viscoplastic material parameters of the Sn3.0Ag0.5Cu (T in K) [6]

Parameter Unit Value

A 1/s 3.530 × 106

Q/R K 10282
D MPa 6.92
m 0.18
Y0 MPa 0
C1 MPa 4.912 × 104 exp(−1.552 × 10−3 T)
C2 MPa 1.508 × 102 exp(8.715 × 10−3 T)

γ 0
1 3.278 × 102 exp(6.927 × 10−3 T)

γ 0
2 5.493 exp(1.325 × 10−2 T)

d1 1.429 × 10−8 exp(1.871 × 10−2 T)
d2 1.041 × 10−6 exp(9.557 × 10−3 T)
m1 1.228 exp(2.073 × 10−3 T)
m2 1.291 exp(2.597 × 10−3 T)

aγ

1 3.618 × 101 exp(1.241 × 10−2 T)

aγ

2 8.963 × 10−2 exp(2.269 × 10−2 T)

bγ

1 1.286–1.597 × 10−3 T

bγ

2 1.173–1.488 × 10−3 T

cγ1 2.936 × 102 exp(−4.064 × 10−3 T)

cγ2 4.456 × 102 exp(−8.327 × 10−3 T)

dγ

1 3.599 × 10−3 exp(1.839 × 10−2 T)

dγ

2 2.245 × 10−3 exp(1.837 × 10−2 T)

η 5.181 × 10−1–5.417 × 10−4 T

3 Numerical Implementation

The unified viscoplastic model described in Section 2 is discretized for numerical FE imple-
mentation by using an implicit backward-Euler integration scheme. Details of the time dis-
cretization, the numerical integration procedure, the approach for solving the nonlinear algebraic
equations and the formulation of the consistent tangent modulus are given as follows.
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3.1 Backward Euler Integration Scheme
In the FE procedure, the viscoplastic model, given as a system of nonlinear first-order

differential equations, is integrated for a prescribed strain increment to update the stresses and
state variables at the Gaussian integration points by using the implicit backward-Euler integration
scheme. In this scheme, the time discretization of a general first-order differential equation ẏ =
f (y, t) can be written as

	y= yn+1− yn = f (yn+1, tn+1)	t (16)

where the subscripts n and n+1 indicate the values of the variables y at the start- and end-points
of the time step 	t. The unknown value of yn+1 can be obtained by an iterative procedure for
the implicit Eq. (16). For simplifying the presentation of the discretized constitutive equations, yn
and yn+1 are replaced by ŷ and y, respectively, in the subsequent formulation.

Given that the stresses and state variables are known at time tn, the stress increment for a
prescribed strain increment can be calculated from the discretized form of Eq. (4), given by

	σ∼ = σ∼ − σ̂∼ =E˜̃ :
(
	ε∼−	ε∼

vp−	ε∼
T
)
+	E˜̃ :

(
ε̂∼− ε̂∼

vp− ε̂∼
T
)

(17)

It is emphasized in Eq. (17) that E˜̃ should be considered as temperature dependent under

anisothermal loading conditions. The assumption of incompressibility in viscoplastic deformation
gives E˜̃ :	ε∼

vp = 2μ	ε∼
vp, and Eq. (17) can be rewritten as

σ∼ = σ∼
trial− 2μ	ε∼

vp = σ∼
trial− 3μ	pn∼ (18)

where σ∼
trial is referred to as the trial stress or the elastic predictor for the given 	ε∼ and is given by

σ∼
trial= E˜̃ :

(
	ε∼−	ε∼

T
)
+	E˜̃ :

(
ε̂∼− ε̂∼

vp− ε̂∼
T
)
+ σ̂∼

= E˜̃ :
(
ε∼− ε̂∼

vp− ε∼
T
) (19)

Eq. (18) leads to a predictor-corrector approach which is also known as the return mapping
method [32,33]. In this approach, the stress is first estimated by the trial stress, which is calculated
by substituting the prescribed 	ε∼ into Eq. (19), and then updated through viscoplastic correction

by the term 2μ	ε∼
vp. By decomposing the stress tensor in Eq. (18) into the hydrostatic and

deviatoric parts and using the assumption of viscoplastic incompressibility, the hydrostatic and
deviatoric stress tensors are given, respectively, by

1
3
tr
(
σ∼

)
I∼= 1

3
tr
(
σ∼
trial
)
I∼ (20)

s∼= 2μ
(
e∼− ε̂∼

vp
)
− 3μ	pn∼= s∼

trial− 3μ	pn∼ (21)

where s∼
trial and e∼ are the deviatoric trial stress and deviatoric strain tensors, respectively.
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The discretization of the viscoplastic model in the backward-Euler form is given as follows.
The discretized flow equations corresponding to Eqs. (6)–(8) are given by

	ε∼
vp = 3

2
	pn∼= 3

2
	p

s∼−X∼
J
(
σ∼ −X∼

) (22)

	p
	t

=A exp
(−Q
RT

)
sinh

⎛⎜⎝〈J
(
σ∼−X∼

)
−Y0

D

〉⎞⎟⎠
1/m

(23)

The discretized back stress equation corresponding to Eq. (10) is given by

Xi∼
= θi

(
X̂i∼

+Ci	pn∼

)
, θi =

[
1+ γi (p, q)	p+ diJ

mi−1
X , i 	t− 1

Ci

∂Ci
∂T

	T
]−1

, i= 1, 2 (24)

The evolution equation of the dynamic recovery parameter corresponding to Eq. (11) is
given by

γi (p, q)= γ 0
i + aγ

i

[
1+ (bγ

i − 1
)
exp

(−cγi q)] [1− exp
(−dγ

i q
)]
, i= 1, 2

q= q̂+	q, p= p̂+	p
(25)

The strain-memory-surface related evolution equations corresponding to Eqs. (13) and (14)
are given by

	q= q− q̂= ηH (gM)
〈
n∼ : n∼

∗
〉
	p (26)

	ξ
∼
= ξ

∼
− ξ̂

∼
=
√
3
2

(1− η)H (gM)

〈
n∼ : n∼

∗
〉
	pn∼

∗ (27)

The discretization of the constitutive equations leads to a set of 26 unknowns:
s∼, 	p, X1∼

, X2∼
, 	q and 	ξ

∼
. The implicit time integration scheme involves solving these 26

unknowns from a system of 26 simultaneous nonlinear equations given by Eqs. (21), (23), (24),
(26) and (27). For simplifying the solution process, the discretized equations were reformed to
reduce the number of unknowns. First, from Eq. (23), the von-Mises invariant of the effective
stress can be written as a function of 	p, given by

h (	p)= J
(
σ∼−X∼

)
=D sinh−1

{[
1
A

(
	p
	t

)
exp

(
Q
RT

)]m}
+Y0 (28)

The effective stress at the new state can be obtained from Eqs. (21) and (24), and is given by

s∼−X∼ =
Z∼
β

(29)
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where β and Z∼ are both functions of 	p, JX , 1, JX , 2, 	q, and are given, respectively, by

β = 1+ (3μ+ θ1C1+ θ2C2)
	p
h

(30)

Z∼ = s∼
trial− θ1X̂1∼

− θ2X̂2∼
(31)

Eq. (29) can be converted to a scalar equation by calculating the von-Mises invariant of the
effective stress tensor [20,24], which is given by

h=
√
3
2

(
s∼−X∼

)
:
(
s∼−X∼

)
= JZ

β
(32)

where JZ =
√
3
2
Z∼ :Z∼. It can be seen that Eq. (32) contains 4 unknowns: 	p, JX , 1, JX , 2 and 	q.

If the static recovery term, temperature dependence term and evolution of the dynamic recovery
parameter were not present in the back stress evolution equation, 	p is the only unknown
in Eq. (32). By taking the von-Mises invariants of the discretized back stress tensors given in
Eq. (24), another two equations for 	p, JX , 1, JX , 2 and 	q are given by [24]

JX , 1 = θ1

√
Ĵ2X , 1+ 3C1	p

(
X̂1∼

: n∼

)
+ (C1	p)2 (33)

JX , 2 = θ2

√
Ĵ2X , 2+ 3C2	p

(
X̂2∼

: n∼

)
+ (C2	p)2 (34)

An additional equation for 	p, JX , 1, JX , 2 and 	q can be obtained from the strain memory
surface Eq. (12), which requires ε∼

vp, 	q and 	ξ
∼
to satisfy

gM = J
(

ε∼
vp− ξ

∼

)
− q= J

(
ε∼
vp− ξ̂

∼
−	ξ

∼

)
− (q̂+	q

)= 0 (35)

It can be seen from Eq. (35) that q equals to J
(

ε∼
vp− ξ

∼

)
. By substituting this equivalence

and Eq. (26) into Eq. (27), 	ξ
∼
can be expressed explicitly in terms of 	q and ε∼

vp, given by

	ξ
∼
= (1− η)	q

ηq̂+	q

(
ε∼
vp− ξ̂

∼

)
(36)

By substituting Eq. (36) into Eq. (35) and through some algebraic manipulations, it can be
shown that

	q= η

[
J
(

ε∼
vp− ξ̂

∼

)
− q̂
]

(37)

where ε∼
vp is also a function of 	p, JX , 1, JX , 2 and 	q.



648 CMES, 2021, vol.128, no.2

A nonlinear algebraic system consisted of four essential zero-form scalar equations for 	p,
JX , 1, JX , 2 and 	q can be assembled by rewriting Eqs. (32)–(34) and (37), respectively, as

f1 = Jz
β

− h= 0 (38)

f2 = JX , 1− θ1

√
Ĵ2X , 1+ 3C1	p

(
X̂1∼

: n∼

)
+ (C1	p)2 = 0 (39)

f3 = JX , 2− θ2

√
Ĵ2X , 2+ 3C2	p

(
X̂2∼

: n∼

)
+ (C2	p)2 = 0 (40)

f4 = η

[
J
(

ε∼
vp− ξ̂

∼

)
− q̂
]
−	q= 0 (41)

The evaluations of the 26 unknowns s∼, 	p, X1∼
, X2∼

, 	q and 	ξ
∼

involve solving the four

essentially independent variables (	p, JX , 1, JX , 2 and 	q) from the residual Eqs. (38)–(41) and then
calculating s∼, X1∼

, X2∼
and 	ξ

∼
from these four independent variables.

3.2 The Time-Integration Procedure
The flow chart of the time-integration procedure is shown in Fig. 1. The time-integration

procedure is used for calculating the stresses, strains, viscoplastic strains and other state variables
at time tn+1 from the known values at time tn and the incremental time, strain and temperature
steps. In this procedure, the trial stresses σ∼

trial and s∼
trial are first calculated for the given 	ε∼ and

	T by using Eqs. (19) and (21), respectively.

The second step in the time-integration procedure is to update the back stresses for the
assumed purely elastic state. Under the assumed elastic state, the viscoplastic strain norm incre-
ment, 	p, and the strain memory surface radius increment, 	q, are both zero. Therefore, in the
four independent variables required for updating stresses and other state variables, only JX , 1 and
JX , 2 remain to be solved. It is worthwhile to note that, even under purely elastic increment,
the back stresses may change because the static recovery and temperature dependence terms
are present in the back stress evolution Eq. (10). Under the assumed purely elastic state, the
discretized back stress equation can be simplified from Eq. (24) to

Xi∼
=
(
1+ diJ

mi−1
X , i 	t− 1

Ci

∂Ci
∂T

	T
)−1

X̂i∼
, i= 1, 2 (42)

The zero-form equations that are used for solving JX , 1 and JX , 2 for the assumed elastic state
can be simplified from Eqs. (39) and (40) with 	p= 0, and are given by

f5 = JX , 1−
(
1+ d1J

m1−1
X , 1 	t− 1

C1

∂C1

∂T
	T

)−1

ĴX , 1 = 0 (43)

f6 = JX , 2−
(
1+ d2J

m2−1
X , 2 	t− 1

C2

∂C2

∂T
	T

)−1

ĴX , 2 = 0 (44)
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Figure 1: The time-integration procedure
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The solutions of Eqs. (43) and (44) can be obtained by using the Newton-Raphson method.
In this iterative procedure, initial guesses of JX , 1 and JX , 2 for the case of 	p= 0 were determined
by following the approach of Kullig et al. [24], and are given by

J intX ,i =
√
3
2
Xi∼

int : Xi∼
int, Xi∼

int =
⎡⎣ di	t (mi− 1) Ĵmi−1

X ,i

(mi− 1)
(

1
Ci

∂Ci
∂T 	T

)
+ 1

+ 1

⎤⎦
1

1−mi

X̂i∼
, i= 1, 2 (45)

where the superscript “int” denotes the initial guess. Once JX , 1 and JX , 2 are solved, the new back
stresses can be calculated by using Eq. (42). The trial stress solutions are subsequently checked
with the von-Mises yield criterion given by

f7 = J
(
σ∼
trial−X∼

e
)
−Y0 =

√
3
2

(
s∼
trial−X∼

e
)
:
(
s∼
trial−X∼

e
)
−Y0 (46)

where X∼
e is the back stress tensor at purely elastic state. If f7 ≤ 0, there is no viscoplastic

deformation in the particular incremental step, and σ∼
trial are accepted as the stresses at time tn+1.

In addition, the back stresses calculated for the purely elastic state are accepted as the new back
stresses. If, on the other hand, f7 > 0, viscoplastic deformation occurs within the incremental step.
In this case, the values of 	p, JX , 1, JX , 2, 	q are solved from Eqs. (38)–(41), for which the details
are described in the next section. Once these four variables are solved, the remaining quantities of
the new state can be obtained: the effective stresses are calculated from Eq. (29); the viscoplastic
strain increments are calculated from Eq. (22); the back stresses are calculated from Eq. (24);
the increment in strain memory surface center location is calculated from Eq. (36); the stresses
are updated with the viscoplastic corrections as in Eq. (18); and the elastic strain increments are
calculated by subtracting the viscoplastic strain increments form the prescribed mechanical strain
increments.

3.3 Solution of the Nonlinear Algebraic System
Among the 4 unknowns to be solved from the simultaneous Eqs. (38)–(41), the orders of JX , 1

and JX , 2 are much higher than those of 	p and 	q. Furthermore, the flow equation related zero-
form equation, Eq. (38), has high nonlinearity. Consequently, the application of standard Newton-
Raphson procedure for solving the nonlinear system is prone to convergence issue. To overcome
this issue, a three-level iterative scheme as shown in Fig. 2 is developed by following the multi-level
iteration strategy proposed by Kullig et al. [24]. As shown in Fig. 2, the global loop of the three-
level scheme, which is denoted as Level-1 iteration, operates to solve Eq. (38) for 	p by using
the Pegasus method [34]. The Pegasus method is one of the regula-falsi methods for obtaining
the root of a nonlinear equation between prescribed lower and upper bounds. A natural lower-
bound value of 	p is zero, which corresponds to the purely elastic state. From the discussion in
Section 3.2, it can be seen that Eq. (38) reduces to Eq. (46) when 	p= 0, and that the residual
function evaluation would result in f1 (	p= 0)= f7 > 0 when viscoplastic response is present. The
upper-bound for 	p is selected from one of the two estimates given by

	pup1 =A exp
(−Q
RT

)⎡⎢⎣sinh
⎛⎜⎝J

(
σ∼
trial −X∼

e
)
−Y0

D

⎞⎟⎠
⎤⎥⎦
1/m

	t (47)
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	pup2 =
√
2
3
	ε∼

m : 	ε∼
m+ σ

E
, σ = J

(
σ̂∼−X∼

e
)
−Y0 (48)

Figure 2: The multi-level iteration scheme

In Eqs. (47) and (48), X∼
e is the back stress tensor obtained from the assumed purely elastic

state and 	ε∼
m is the mechanical strain increment. The estimations of 	pup1 and 	pup2 are

based on that the actual incremental 	p is smaller or larger than the elastic strain increment,
respectively [24]. By selecting the smaller quantity of 	pup1 and 	pup2 that also satisfies f1 ≤ 0
(Eq. (38)) as the upper bound, the Pegasus method is then applied to obtain the renew value of
	p.

For each Level-1 iteration of evaluating f1 and updating 	p, the remaining three unknowns
(JX , 1, JX , 2, 	q) are calculated in the Level-2 and Level-3 iterations, as shown in Fig. 2. In the
second-layer (Level-2) iterative loop, Eqs. (39) and (40) are solved by using the Newton–Raphson
method to determine JX , 1 and JX , 2. After each Level-2 iteration of updating JX , 1 and JX , 2, the
solution process enters into the third-layer (Level-3) loop to estimate 	q. The solution process
evaluates Eq. (41) with 	p value (estimated in Level-1) and JX , 1 and JX , 2 values (estimated in
Level-2) by using the Pegasus method. In the Pegasus method, the natural bound of 	q = 0 is



652 CMES, 2021, vol.128, no.2

selected as the lower bound for the iterative procedure. It can be shown that, when 	q= 0, 	ξ
∼
= 0

and Eq. (41) reduces to

f4 (	q= 0)= η

[
J
(

ε∼
vp− ξ̂

∼

)
− q̂
]

(49)

Eq. (49) is expected to have a value greater than zero when 	q> 0. The upper bound of 	q
is selected to be the same as the value of 	p, which results in f4 < 0 in the zero-form function
evaluation.

Once the Level-3 iterative solution for 	q is converged, the process returns to Level-2 to
check if the updated values of JX , 1 and JX , 2 have reached convergence. If convergence is not
reached, the Newton-Raphson iteration continues to update JX , 1 and JX , 2, together with the
Level-3 iterative solution for 	q. If JX , 1 or JX , 2 fails to converge in the Level-2 iteration, it
implies that the given step size (	ε∼) is too large, and the step size is reduced subsequently

until the convergence is reached. Reducing the step-size could be achieved directly by using the
keycut command built in the USERMAT subroutine. After the solutions of JX , 1, JX , 2 and 	q
reach convergence, the process returns to Level-1 iteration to update 	p. The multi-level process
continues until 	p convergence is reached.

For the iterative solution at each level iteration, it is considered as converged if the following
condition is met:∣∣yk− yk−1

∣∣
|yk|

< tolenerce
(
e.g., 10−8

)
(50)

where y represents the variable to be solved, the subscript k denotes the number of the current
iteration.

3.4 Consistent Tangent Modulus
The consistent tangent moduli are typically used in nonlinear FE procedures to preserve

the rate of convergence in the Newton-Raphson solution for the global equilibrium equations in
nonlinear problems. However, it does not affect the accuracy of the global iterative solution [30].
The consistent tangent modulus is obtained by linearizing the stress expression with respect to
the mechanical strain increment. In this study, derivation of the consistent tangent modulus is
conducted by following the procedures proposed by Kobayashi et al. [22] and Akamatsu et al. [27].
In the derivation, the differentials of the viscoplastic strain increment and the back stress are first
expressed, respectively, as

d	ε∼
vp =P˜̃ :

(
d s∼− dX∼

)
(51)

dX∼ =
2∑
i=1

dXi∼
=

2∑
i=1

H i˜̃ : d	ε∼
vp, H˜̃ =

2∑
i=1

H i˜̃ (52)

where P˜̃ and H˜̃ are fourth-order tensors and represent the partial derivatives that correspond to

the linearizations of Eqs. (22) and (24), respectively. For determining P˜̃, the discretized viscoplastic
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strain rate norm given in Eq. (23) is rewritten in the form of

	p= g
(
J
(
σ∼−X∼

)
,T
)

	t=A exp
(
− Q
RT

)
sinh

⎛⎜⎝J
(
σ∼ −X∼

)
−Y0

D

⎞⎟⎠
1/m

	t (53)

where g is a function of the von-Mises invariant of the effective stress and temperature. Because
the temperature is prescribed as the input in the time-integration procedure, the differential of 	p
can be subsequently expressed as

d	p= dg	t= ∂g

∂J
(
σ∼ −X∼

)dJ (σ∼ −X∼

)
	t (54)

where the differential dJ
(
σ∼ −X∼

)
is given by

dJ
(
σ∼ −X∼

)
= 3

2

(
s∼−X∼

)
:
(
d s∼− dX∼

)
J
(
σ∼−X∼

) (55)

The differential d	ε∼
vp can be derived from Eq. (22) as

d	ε∼
vp = 3

2

⎡⎢⎣dg
(
s∼−X∼

)
J
(
σ∼ −X∼

) + g

(
d s∼− dX∼

)
J
(
σ∼−X∼

) − g

(
s∼−X∼

)
J
(
σ∼−X∼

)2 dJ (σ∼ −X∼

)⎤⎥⎦	t (56)

From Eqs. (51) and (56), it can be shown that

P˜̃ = 3
2

⎡⎢⎣ g

J
(
σ∼−X∼

) I˜̃+3
2

⎛⎜⎝ ∂g

∂J
(
σ∼−X∼

) − g

J
(
σ∼ −X∼

)
⎞⎟⎠(n∼⊗ n∼

)⎤⎥⎦	t (57)

where I˜̃ is fourth-order unit tensor, the operator ⊗ denotes the tensor product, and ∂g/∂J
(
σ∼ −X∼

)
is given by

∂g

∂J
(
σ∼−X∼

) = A
mD

exp
(
− Q
RT

)
sinh

⎛⎜⎝J
(
σ∼ −X∼

)
−Y0

D

⎞⎟⎠
1
m−1

cosh

⎛⎜⎝J
(
σ∼−X∼

)
−Y0

D

⎞⎟⎠ (58)

For determining H i˜̃ , the differential back stresses are first derived from Eq. (24) as

dXi∼
= dθi

θi
Xi∼

+ 2
3
θiCid	ε∼

vp, i= 1, 2 (59)

where

dθi = ∂θi

∂JX , i
dJX , i+ ∂θi

∂	p
d	p+ ∂θi

∂	q
d	q, i= 1, 2 (60)
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In Eq. (60), dJX , i and d	p are given, respectively, by

dJX , i = 3
2

(
Xi∼

: dXi∼

)
JX , i

, i= 1, 2

d	p= 2
3

(
	ε∼

vp : d	ε∼
vp
)

	p

(61)

The differential d	q in Eq. (60) can be obtained from Eq. (37), and is given by

d	q= 2
3
η
(
n∼
s : d	ε∼

vp
)
, n∼

s =
ε∼
vp− ξ̂

∼

J
(

ε∼
vp− ξ̂

∼

) (62)

By comparing Eqs. (52) and (59), it can be shown that

H i˜̃ = 2
3
θiCi I˜̃+

θiCi
JX , i

∂θi
∂JX , i

(
Xi∼

⊗Xi∼

)
+ ∂θi

∂	p

(
Xi∼

⊗ n∼

)
+ 2

3η
∂θi
∂	q

(
Xi∼

⊗ n∼
s
)

θi− ∂θi
∂JX ,i

JX ,i
, i= 1, 2 (63)

where ∂θi/∂JX , i, ∂θi/∂	p and ∂θi/∂	q are given by

∂θi

∂JX , j
= 0, i �= j,

∂θi

∂JX , i
=− di	t (mi− 1)Jmi−2

X , i(
1+ γi	p+ diJ

mi−1
X , i 	t− 1

Ci
∂Ci
∂T 	T

)2 , i= 1, 2
(64)

∂θi

∂	p
=−

γi+ ∂γi
∂	p	p(

1+ γi	p+ diJ
mi−1
X , i 	t− 1

Ci
∂Ci
∂T 	T

)2 , i= 1, 2 (65)

∂θi

∂	q
=−

∂γi
∂	q	p(

1+ γi	p+ diJ
mi−1
X , i 	t− 1

Ci
∂Ci
∂T 	T

)2 , i= 1, 2 (66)

The ∂γi/∂	p in Eq. (65) and ∂γi/∂	q in Eq. (66) are given, respectively, by

∂γi

∂	p
= aγ

i d
γ
i

[
1+ (bγ

i − 1
)
exp

(−cγi q)] exp (−dγ
i p
)
, i= 1, 2 (67)

∂γi

∂	q
=−aγ

i c
γ
i

(
bγ
i − 1

)
exp

(−cγi q) [1− exp
(−dγ

i p
)]
, i= 1, 2 (68)
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By substituting Eq. (52) into Eq. (51) and rearranging, it gives

M˜̃ : d	ε∼
vp =P˜̃ : d s∼, M˜̃ = I˜̃+P˜̃ :H˜̃ (69)

From Eqs. (18) and (19), the differential stress can be expressed as

dσ∼ =E˜̃ :
(
d	ε∼

m− d	ε∼
vp
)

(70)

where d	ε∼
m is the differential mechanical strain increment, given by

d	ε∼
m = d	ε∼− d	ε∼

T (71)

The deviatoric part of the differential stress can be expressed as

d s∼= Id˜̃ :E˜̃ :
(
d	ε∼

m− d	ε∼
vp
)

(72)

where Id˜̃ is the deviatoric operator given by

Id˜̃ = I˜̃−
1
3
I∼⊗ I∼ (73)

By substituting Eq. (72) into Eq. (69), the differential viscoplastic strain increment can be
expressed as

d	ε∼
vp =

(
M˜̃ +U˜̃

)−1

:U˜̃ : d	ε∼
m,U˜̃ =P˜̃ : Id˜̃ :E˜̃ (74)

By further substituting Eq. (74) into Eq. (70), the consistent tangent modulus can be written
as

∂σ∼
∂	ε∼

m =E˜̃ :

[
I˜̃−
(
M˜̃ :U˜̃

)−1

:U˜̃
]

(75)

4 Finite Element Results

The time-integration scheme and the consistent tangent modulus of the viscoplastic constitu-
tive model was implemented as a USERMAT subroutine in the FEM software ANSYS. Numerical
results of the Sn3.0Ag0.5Cu solder rod under cyclic loadings were first obtained and validated to
the experimental data. The numerical model is then applied to simulate the responses of BGA
solder joints under temperature cycling condition.

4.1 Solder Rod under Mechanical Cycling
The responses of Sn3.0Ag0.5Cu solder rod under uniaxial cyclic loadings at constant temper-

atures of 25, 75 or 125◦C were considered by using FE simulations and compared to experimental
results. The cyclic experiments were conducted on dog-bone shaped as-cast Sn3.0Ag0.5Cu speci-
mens in an Instron 5565 tester. The cyclic loading was measured by using either a 500-N or 5-kN
load cell, and the deformation was measured by using a dynamic extensometer. The finite element
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model, as shown in Fig. 3, considers 1/8 of the gauge-length section with symmetric boundary
conditions assigned on the 3 corresponding faces. The FE model has an overall dimension of
2.5 mm × 2.5 mm × 10 mm, and is meshed with 500 8-noded brick (solid 185) elements. The
viscoplastic model parameters and the elastic constants of the Sn3.0Ag0.5Cu solder are given in
Tabs. 1 and 2, respectively.

Figure 3: Finite element model of the solder rod under uniaxial cyclic loading

Table 2: The thermomechanical properties of the electronic assembly (T in K)

Material Elastic modulus (GPa) Poisson’s ratio CTE (×10−6/◦C)
Sn3.0Ag0.5Cu 92.923–0.147T 0.33 23.5
Si die 150 0.17 2.9
Cu pad 84.9 0.34 16.7
Polymer dielectric 3.63 (−50◦C), 3.34 (−10◦C),

2.95 (30 ◦C), 2.64 (90◦C),
2.46(120◦C), 2.09 (160◦C)

0.4 80.6

PCB solder mask 4.137 0.4 30
PCB FR4 core 38.025–0.037T (x, y),

16.572–0.016T (z)
17.159–0.0167T (shear, xy),
7.493–0.0073T (shear, yz, xz)

0.39 (xz, yz),
0.11 (xy)

16 (x, y),
84 (z)

The FE model was first applied to consider the solder response under cyclic straining with
a constant rate of 2 × 10−5 1/s and at temperatures of 75 and 125◦C. The strain waveform was
triangular with a symmetric range of ±0.2%. In the numerical simulation, each half-cycle of the
triangular wave was considered as one load step in the solution process, and the solution step size
was controlled by the ANSYS built-in automatic time-stepping strategy. For each load step, the
minimum number of sub-steps was set as 48 per load step, and the eventual number of sub-steps
was about 50 per load step. Shown in Fig. 4 are the hysteresis loops obtained from the numerical
model and the corresponding experimental results. It can be seen from Fig. 4 that the numerical
results exhibit cyclic softening response, which agree well to the experimental observations. The
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effect of step size on the numerical solution was considered by solving the problem with either 5
or 30 uniform sub-steps per half-cycle and comparing the results to the automatic time-stepping
solution, which is denoted as the baseline. The comparisons of the various numerical solutions
for the first 10 strain cycles are shown in Fig. 5. It can be seen from Fig. 5 that the 30-sub-step
procedure gives stress solutions practically the same as the baseline, while the 5-sub-step procedure
under-estimates the peak stress slightly by about 3% for both the 75 and 125◦C cases.

Figure 4: Solder responses under cyclic straining with strain range of ±0.2%, (a) simulation result,
at 75◦C, (b) experimental result, at 75◦C, (c) simulation result, at 125◦C, (d) experimental result,
at 125◦C

(a) (b)
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Figure 5: Effect of solution step size on simulation results for cyclic straining under strain range
of ±0.2%, (a) at 75◦C, (b) at 125◦C
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The cyclic response of the solder rod under a triangular strain wave of range 0%–0.25%
was also considered by using the FE model shown in Fig. 6. The cyclic loading was applied
at a constant strain rate of 2 × 10−5 1/s and at temperatures of 25 or 125◦C. The simulation
was first conducted with automatic time-stepping strategy with the minimum number of sub-
steps set as 38 for each load step (half cycle). The eventual number of sub-steps was about 40
per half-cycle. As shown in Fig. 6, the hysteresis loops obtained from the numerical simulation
compare well with the experimental data. It can also be seen from Fig. 6 that the cyclic softening
behavior also exists when the mean strain value of the fatigue cycle is not zero. To evaluate the
influence of solution step size for the case of 0%–0.25% strain range, the numerical solutions of
the procedures using either 3 or 20 uniform sub-steps per half-cycle are compared to the baseline,
automatic time-stepping solution. The comparisons of the various numerical solutions for the first
10 strain cycles are shown in Fig. 7. It can be seen from Fig. 7 that the 20-sub-step procedure
gives stress solutions practically the same as the baseline, while the 3-sub-step procedure under-
estimates the peak stress by about 6.5% for the 25◦C case and 5.5% for the 125◦C case. From
the step-size comparisons shown in Figs. 5 and 7, it can be concluded that the numerical stress
solution is affected by the sub-step, and that a larger number of uniform sub-steps or automatic
time-stepping allows a converged stress solution in the strain-controlled cyclic loading conditions.

Figure 6: Solder responses under cyclic straining with strain range of 0%–0.25%, (a) simulation
result, at 25◦C, (b) experimental result, at 25◦C, (c) simulation result, at 125◦C, (d) experimental
result, at 125◦C
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Figure 7: Effect of solution step size on simulation results for cyclic straining under strain range
of 0%–0.25%, (a) at 25◦C, (b) at 125◦C

The ratcheting response of the Sn3.0Ag0.5Cu rod under cyclic stress loading at constant
temperature of 75◦C was also considered by using the model as shown in Fig. 8. The cyclic stress
waveform is triangular in the range of 7.28 and 21.8 MPa, and has a constant rate of 0.91 MPa/s.
The numerical solutions were obtained with either the automatic time-stepping strategy or uniform
steps. In the case of automatic time-stepping, the minimum number of sub-steps for each load
step (half-cycle) was set as 48, and the eventual number of sub-steps was about 49 steps per
load step.
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Figure 8: Ratcheting responses under cyclic stressing test at 75◦C, (a) simulation result compared
to experimental data (b) effect of solution step size on simulation results

In the cases of uniform steps, the sub-step numbers of 5 and 25 were considered. Shown
in Fig. 8 are the results of the ratcheting simulations. The comparison of the automatic time-
stepping solution to the experimental results is shown in Fig. 8a, from which it can be seen that
the numerical results correlate well to the experimental data. The effect of time-stepping strategy
on the numerical ratcheting solution is shown in Fig. 8b. It can be seen from Fig. 8b that the
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25-sub-step procedure gives stress solutions practically the same as the automatic time-stepping
solution, which is denoted as the baseline. On the other hand, the 5-sub-step procedure clearly
over-estimates the ratcheting strain, especially for the first few cycles. The poor numerical result
for the 5-sub-step case can be attributed to the low tangent modulus of the solder, which would
lead to a higher simulation error when large stress step is assigned in the incremental strain-
based iterative scheme. A similar observation was also made in [23]. From the comparisons of the
numerical results shown in Figs. 5, 7 and 8, it can be seen that the incremental step size has a
stronger influence on the numerical solutions of the stress-controlled problems than that of the
strain-controlled problems.

4.2 BGA Solder Joints under Temperature Cycling
The viscoplastic responses of the BGA Sn3.0Ag0.5Cu solder joints in the assembly of a

wafer-level package (WLP) on PCB under a standard −40◦C/125◦C temperature cyclic reliability
test was considered by using the FE simulation. The WLP considered has an overall size of 4.5
mm × 4.5 mm, with 0.4 mm-pitch, 10 × 10 array of solder joints, and the test PCB has an
overall size of 7.2 mm × 7.2 mm. Shown in Fig. 9 is the cross-sectional schematic of the board-
level assembly. In the assembly, the barrel-shaped solder joints are formed between Cu pads on
both the package and the PCB sides. The solder-Cu interconnection is in a bump-on-trace (BOT)
configuration on the package side, and is in a non-solder-mask defined (NSMD) configuration
on the PCB side. The Si chip thickness, the solder joint height and the PCB thickness are 0.28,
0.16 and 1 mm, respectively. By taking advantage of the geometrical symmetry of the assembly, a
quarter FE model with symmetric boundary conditions as shown in Fig. 10 was developed for the
temperature-cycling simulation. The model was constructed by using the submodeling approach
in which a “unit-cell” of the assembly at the critical solder joint location is meshed with fine
elements to ensure accuracy, the rest of the model is populated with relatively coarse elements to
reduce solution time, and displacement couplings are reinforced at the interfaces of the densely
and coarsely meshed regions. The model as shown in Fig. 10 contains 20781 quadratic (solid 186)
elements, among which 7608 elements are in the “unit cell”. In this model, only the behavior of
the Sn3.0Ag0.5Cu solder joint is considered as inelastic, while the other materials are assumed
as linear elastic with temperature dependent thermomechanical constants given in Tab. 2. For
evaluating the mesh convergence and the computation efficiency, uniform cooling of the assembly
as shown in Fig. 9 from 125 to −40◦C in 600 s were considered by using the quarter model
with various local mesh density as shown in Fig. 11. The numerical results obtained by using a
personal computer with Intel Core i7-8700 processor under 6-core shared-memory parallel mode
are shown in Fig. 12 and Tab. 3. It can be seen from Tab. 3 that the difference in maximum stress
values is less than 4%, while the solution time increases significantly for the two finest meshes.
As such, the baseline FE mesh with 1728 solder elements in Figs. 10 and 11 were used for the
temperature cycling simulation.
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Figure 9: The cross-section schematic of a WLP assembled on PCB
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Figure 10: Finite element model of the WLP assembled on PCB (a) the submodeling FE mesh,
(b) boundary conditions

Shown in Fig. 13 is the −40◦C/125◦C temperature cycling profile considered in this simu-
lation. Each temperature cycle consists of two 600-s linear temperature ramping (from −40 to
125◦C, and from 125 to −40◦C) stages and two 600-s temperature dwelling (at −40 and 125◦C)
stages. It was shown from experimental investigation [35] that the process-induced residual stress in
electronic package is zero near the glass transition temperature of the laminate PCB, which is also
around 125◦C. It is therefore assumed that the assembly is stress-free at 125◦C and the thermal
stress is the highest at the lower bound temperature during temperature cycling. In the simulation,
the temperature cycling load was applied in a repeating sequence of cooling from 125 to −40◦C,
dwelling at −40◦C, heating from −40 to 125◦C and dwelling at 125◦C. For the solution control,
each of the temperature ramping or dwelling stages was assigned as one load step. Within each
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load step, ANSYS automatic time stepping strategy with initial sub-step size for each load step
was set as 5 s (1/120 of the load step). The averaged solution sub-steps were 33 for the ramping
stages, and was 16 for the dwelling stages.

832 elements

7424 elements 14760 elements

1728 elements100 elements

Figure 11: Various meshes of the critical solder joint
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Figure 12: The von-Mises stress contour of the critical solder joint
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Table 3: Effect of mesh density on stress and computation time

Number of elements in the critical joint Max. von-Mises stress (MPa) Solution time (s)

100 56.4 470
832 57.0 822
1728 (baseline) 57.4 885
7424 57.4 2617
14760 58.3 5478
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Figure 13: The −40◦C/125◦C temperature cycling profile

The von-Mises stress distribution in the critical solder joint at the end of the cooling stage
of the 11th cycle is shown in Fig. 14. Because the thermal strain is the highest at −40◦C, it is
expected that the thermal stress is also the most significant at this state. It can be seen from
Fig. 14 that high stress concentration occurs around the copper pad. Furthermore, the magnitude
of solder stress around the package Cu pad is higher on the side away from the center of package,
which is consistent with the location of crack formation in experiments [36]. The viscoplastic
equivalent strain accumulation in the critical solder joint at the end of the 20th cycle is shown
in Fig. 15, from which it can be seen that the equivalent viscoplastic strain concentration zone is
consistent with the von-Mises stress distribution as shown Fig. 14. To further examine the solder
joint response under the temperature cycling condition, the shear stress-viscoplastic shear strain
relationship near the outer corner of the critical solder joint on the package side was monitored
and is shown in Fig. 16. It can be seen from Fig. 16 that the shear stress reaches peak value at
the end of cooling stage, and that the viscoplastic shear strain accumulates at a relatively constant
rate as the number of temperature cycle increases.

In addition to the stress and strain solutions, the viscoplastic strain energy density is another
parameter considered extensively in the semi-empirical approaches for predicting temperature
cycling reliability of solder joints [36,37]. The viscoplastic strain energy density is given by

W =
∫

σ∼ : dε∼
vp (76)
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Figure 14: von-Mises stress distribution in the critical solder joint

Figure 15: Equivalent viscoplastic strain in the critical solder joint
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Figure 16: Shear stress-viscoplastic shear strain relationship at the point Ps
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The viscoplastic strain energy density is evaluated at each element in an incremental fashion.
For each solution sub-step, the viscoplastic strain energy density increment is calculated in the
USERMAT subroutine by using trapezoidal integration. The volume-averaged viscoplastic strain
energy density is defined as

Wavg =
∑
W ·V∑
V

(77)

where V is the volume of the element. By following Darveaux’s approach [37], the volume-
averaged viscoplastic strain energy density (Wavg) in the 25-μm disk region next to the package-
side Cu pad interface at the critical solder joint was calculated and is shown in Fig. 17. It can be
seen from Fig. 17a that the accumulation of the volume-averaged viscoplastic strain energy density
increases at a relatively constant rate over the temperature cycles. In addition, the increases in
Wavg occur mainly during the temperature ramping stages of the cycles, as shown in Fig. 17b. The
volume-averaged viscoplastic strain energy density increment accumulated over one temperature
cycle (	Wavg), which has a relatively linear relationship to the fatigue crack growth rate in the
semi-empirical temperature-cycling solder joint reliability models [37], was also calculated and is
shown in Fig. 18. It can be seen from Fig. 18 that the value of 	Wavg is relatively unchanged
after the second cycle. Consequently, 	Wavg can be served as a quantitative indicator in the
numerical simulation procedure described in this paper to establish the solder-joint reliability
model under temperature-cycling condition. For enabling quantitative reliability prediction, it
would require additional FE simulations and correlation to experimental data in a similar fashion
to [37] for establishing the solder joint fatigue crack growth model.
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Figure 17: The volume-averaged viscoplastic strain energy density near the package-solder inter-
face (a) the evolution over time, (b) zoom-in at the 11th cycle
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Figure 18: The volume-averaged viscoplastic strain energy density increment per cycle

5 Conclusions

A fully implicit integration procedure was developed for a unified viscoplastic constitutive
model and implemented as a user-defined material subroutine (USERMAT) in the commercial
FE software ANSYS. In the numerical implementation, a Chaboche framework based viscoplastic
model that considers the cyclic softening behavior of Sn3.0Ag0.5Cu solder was first discretized
as a set of nonlinear system of equations for 26 unknowns. Additional simplification was applied
to reduce the nonlinear system to solving four equations for four essential variables. The implicit
integration scheme first solves the four essential variables by using a three-level, Newton-Raphson
and Pegasus method based iterative procedure, and updates the remaining stresses and state vari-
ables accordingly. A consistent tangent modulus for the constitutive equation was also derived and
implemented in the USERMAT subroutine. Validation of the USERMAT was accomplished by
simulating the solder rod responses under either strain-or stress-controlled cycling and compared
to experimental measurements. It was shown that the numerical model is capable of predicting
the softening response under cyclic straining and the ratcheting response under cyclic stressing. A
FE model of WLP connected to PCB through BGA solder joints was also developed to simulate
the solder joint response under board-level temperature cyclic condition. From the simulation,
the viscoplastic strain energy density accumulation over one temperature cycle was identified as
a feasible parameter for evaluating the thermomechanical reliability of the of solder joints in
electronic assembly.
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