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ABSTRACT

Hypersoft set is an extension of soft set as it further partitions each attribute into its corresponding attribute-valued
set. This structure is more flexible and useful as it addresses the limitation of soft set for dealing with the scenarios
having disjoint attribute-valued sets corresponding to distinct attributes. The main purpose of this study is to
make the existing literature regarding neutrosophic parameterized soft set in line with the need of multi-attribute
approximate function. Firstly, we conceptualize the neutrosophic parameterized hypersoft sets under the settings
of fuzzy set, intuitionistic fuzzy set and neutrosophic set along with some of their elementary properties and set
theoretic operations. Secondly, we propose decision-making-based algorithms with the help of these theories.
Moreover, illustrative examples are presented which depict the structural validity for successful application to the
problems involving vagueness and uncertainties. Lastly, the generalization of the proposed structure is discussed.
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1 Introduction

Fuzzy sets theory (FST) [1] and intuitionistic fuzzy set theory (IFST) [2] are considered apt
mathematical modes to tackle many intricate problems involving various uncertainties, in different
mathematical disciplines. The former one emphasizes on the degree of true belongingness of a
certain object from the initial sample space whereas the later one accentuates on degree of true
membership and degree of non-membership with condition of their dependency on each other.
These theories depict some kind of inadequacy regarding the provision of due status to degree
of indeterminacy. Such impediment is addressed with the introduction of neutrosophic set theory
(NST) [3,4] which not only considers the due status of degree of indeterminacy but also waives off
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the condition of dependency. This theory is more flexible and appropriate to deal with uncertainty
and vagueness. NST has attracted the keen concentration of many researchers [5–19] to further
utilization in statistics, topological spaces as well as in the development of certain neutrosophic-
like blended structures with other existing models for useful applications in decision making.
Edalatpanah [20] studied a system of neutrosophic linear equations (SNLE) based on the embed-
ding approach. He used (α, β, γ )-cut for transformation of SNLE into a crisp linear system.
Kumar et al. [21] exhibited a novel linear programming approach for finding the neutrosophic
shortest path problem (NSSPP) considering Gaussian valued neutrosophic number.

FST, IFST and NST have some kind of complexities which restrain them to solve problems
involving uncertainty professionally. The reason for these hurdles is, possibly, the inadequacy of
the parametrization tool. It demands a mathematical tool free of all such impediments to tackle
such issues. This scantiness is resolved with the development of soft set theory (SST) [22] which
is a new parameterized family of subsets of the universe of discourse. The researchers [23–34]
studied and investigated some elementary properties, operations, laws and hybrids of SST with
applications in decision making. The gluing concept of NST and SST, is studied in [35,36] to
make the NST adequate with parameterized tool. In many real life situations, distinct attributes
are further partitioned in disjoint attribute-valued sets but existing SST is insufficient for dealing
with such kind of attribute-valued sets. Hypersoft set theory (HST) [37] is developed to make
the SST in line with attribute-valued sets to tackle real life scenarios. HST is an extension of
SST as it transforms the single argument approximate function into a multi-argument approximate
function. Certain elementary properties, aggregation operations, laws, relations and functions of
HST, are investigated by [38–40] for proper understanding and further utilization in different
fields. The applications of HST in decision making is studied by [41–44] and the intermingling
study of HST with complex sets, convex and concave sets is studied by [45,46]. Deli [47] char-
acterized hybrid set structures under uncertainly parameterized hypersoft sets with theory and
applications. Gayen et al. [48] analyzed some essential aspects of plithogenic hypersoft alge-
braic structures. They also investigated the notions and basic properties of plithogenic hypersoft
subgroups, i.e., plithogenic fuzzy hypersoft subgroup, plithogenic intuitionistic fuzzy hypersoft
subgroup, plithogenic neutrosophic hypersoft subgroup.

1.1 Motivation
In miscellany of real-life applications, the attributes are required to be further partitioned into

attribute values for more vivid understanding. Hypersoft set as a generalization of soft set, accom-
plishes this limitation and accentuates the disjoint attribute-valued sets for distinct attributes. This
generalization reveals that the hypersoft set with neutrosophic, intuitionistic, and fuzzy set theory
will be very helpful to construct a connection between alternatives and attributes. It is interesting
that the hypersoft theory can be applied on any decision-making problem without the limitations
of the selection of the values by the decision-makers. This theory can successfully be applied
to Multi-criteria decision making (MCDM), Multi-criteria group decision making (MCGDM),
shortest path selection, employee selection, e-learning, graph theory, medical diagnosis, probability
theory, topology, and many others. It is pertinent that the existing literature regarding soft set
should be adequate with the existence and the consideration of attribute-valued sets, therefore,
this study aims to develop novel theories of embedding structures of parameterized neutrosophic
set and hypersoft set with the setting of fuzzy, intuitionistic fuzzy and neutrosophic sets through
the extension of concept investigated in [49–54]. Moreover, decision-making based algorithms are
proposed for each setting to solve a real life problem relating to the purchase of most suitable
and appropriate product with the help of some essential operations of these presented theories.
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1.2 Organization of Paper
The rest of the paper is systemized as:

Section 2 Some essential definitions and terminologies are recalled.
Section 3 Theory of neutrosophic parameterized fuzzy hypersoft set is developed with

suitable examples.
Section 4 Theory of neutrosophic parameterized intuitionistic fuzzy hypersoft set is

characterized with suitable examples.
Section 5 Theory of neutrosophic parameterized neutrosophic hypersoft set is investigated

with suitable examples.
Section 6 Analysis of proposed structure is discussed.
Section 7 Paper is summarized with future directions.

2 Preliminaries

Here some basic terms are recalled from existing literature to support the proposed work.
Throughout the paper, X, P(X) and I will denote the universe of discourse, power set of X and
closed unit interval respectively. In this work, algorithmic approaches are followed from decision
making methods stated in [49–54].

Definition 2.1. [1]

A fuzzy set F defined as F = {(â, AF (â)) | â ∈X} such that AF : X→ I where AF (â) denotes
the belonging value of â ∈F .

Definition 2.2. [2]

An intuitionistic fuzzy set Y defined as Y = {(b̂, <AY(b̂), BY(b̂) >) | b̂ ∈X} such that AY : X→
I and BY : X → I, where AY(b̂) and BY(b̂) denote the belonging value and not-belonging value

of b̂ ∈Y with condition of 0≤AY(b̂)+BY (b̂)≤ 1.

Definition 2.3. [3]

A neutrosophic set Z defined as Z = {(ĉ, < AZ(ĉ), BZ(ĉ), CZ(ĉ) >) | ĉ ∈ X} such that
AZ(ĉ), BZ(ĉ), CZ(ĉ) : X → (−0, 1+), where AZ(ĉ), BZ(ĉ) and CZ(ĉ) denote the degrees of
membership, indeterminacy and non-membership of ĉ ∈ Z with condition of −0 ≤ AZ(ĉ) +
BZ(ĉ)+CZ (ĉ)≤ 3+.

Definition 2.4. [22]

A pair (FS, �) is called a soft set over X, where FS : �→ P(X) and � be a subset of a set
of attributes E.

For more detail on soft set, see [23–32].

Definition 2.5. [37]

The pair (W , G) is called a hypersoft set over X, where G is the cartesian product of n
disjoint sets G1, G2, G3, . . . , Gn having attribute values of n distinct attributes ĝ1, ĝ2, ĝ3, . . . , ĝn
respectively and W : G → P(X).

For more definitions and operations of hypersoft set, see [38–40].
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3 Neutrosophic Parameterized Fuzzy Hypersoft Set (npfhs-Set) with Application

In this section, npfhs-set theory is conceptualized and a decision making application is
discussed.

Definition 3.1. Let X = {X1, X2, X3, . . . ,Xn} be a collection of disjoint attribute-valued sets
corresponding to n distinct attributes α1, α2, α3, . . . , αn, respectively. A npfhs-set �A over X is
defined as

�A = {(<PA(g), QA(g), RA(g) > /g, ψA(g)) : g ∈G, ψA(g)∈ F(X)}
where

(i) F(X) is a collection of all fuzzy sets over X

(ii) G=X1 ×X2×X3× . . .×Xn
(iii) A is a neutrosophic set over G with PA, QA, RA : G → I as membership function,

indeterminacy function and nonmembership function of npfhs-set.
(iv) ψA(g) is a fuzzy set for all g ∈G with ψA : G→ F(X) and is called approximate function

of npfhs-set.

Note that collection of all npfhs-sets is represented by �NPFHS(X).

Definition 3.2. Let �A ∈ �NPFHS(X). If ψA(g) = φ, PA(g) = 0, QA(g) = 1, RA(g) = 1 for all
g ∈ G, then �A is called A-empty npfhs-set, denoted by �
A . If A= φ, then A-empty npfhs-set
is called an empty npfhs-set, denoted by �
.

Definition 3.3. Let �A ∈ �NPFHS(X). If ψA(g) = X, PA(g) = 1, QA(g) = 0, RA(g) = 0 for all
g ∈ G, then �A is called A-universal npfhs-set, denoted by �Ã. If A = G, then the A-universal
npfhs-set is called universal npfhs-set, denoted by �

G̃
.

Example 3.1. Consider X= {u1, u2, u3, u4, u5} and X = {X1, X2, X3} with X1 = {x̂11, x̂12},
X2 = {x̂21, x̂22}, X3 = {x̂31}, then G=X1×X2 ×X3

G= {(
x̂11, x̂21, x̂31

)
,
(
x̂11, x̂22, x̂31

)
,
(
x̂12, x̂21, x̂31

)
,
(
x̂12, x̂22, x̂31

)}= {g1,g2,g3,g4}.
Case 1.

If A1 = {< 0.2, 0.3, 0.4> /g2,< 0, 1, 1> /g3,< 1, 0, 0> /g4} and

ψA1(g2)= {0.4/u2, 0.6/u4}, ψA1(g3)=∅, and ψA1(g4)=X, then

�A1 = {(< 0.2, 0.3, 0.4> /g2, {0.4/u2, 0.6/u4}), (< 0, 1, 1> /g3,∅) , (< 1, 0, 0> /g4,X)} .
Case 2.

If A2 = {< 0, 1, 1> /g2,< 0, 1, 1> /g3},ψA2(g2)=∅ and ψA2(g3)=∅, then �A2 =�
A2
.

Case 3.

If A3 =∅ corresponding to all elements of G, then �A3 =�
.
Case 4.

If A4 = {< 1, 0, 0> /g1,< 1, 0, 0> /g2} ,ψA4(g1)=X, and ψA4(g2)=X, then �A4 =�Ã4
.

Case 5.

If A5 =X with respect to all elements of G, then �A5 =�G̃
.
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Definition 3.4. Let �A1 , �A2 ∈�NPFHS(X) then �A1 is an npfhs-subset of �A2 , denoted by
�A1⊆̃f�A2 if

PA1(g)≤PA2(g),QA1(g)≥QA2(g),RA1(g)≥RA2(g) and ψA1(g)⊆f ψA2(g) for all g ∈G.

Definition 3.5. Let �A1 ,�A2 ∈�NPFHS(X) then, �A1 and �A2 are npfhs-equal, represented as
�A1 = �A2 , if and only if PA1(g) = PA2(g), QA1(g)= QA2(g), RA1(g) = RA2(g) and ψA1(g) =f
ψA2(g) for all g ∈ G.

Definition 3.6. Let �A ∈�NPFHS(X) then, complement of �A (i.e., � c̃
A) is an npfhs-set given

as Pc̃A(g)= 1−PA(g), Qc̃
A(g)= 1−QA(g), Rc̃A(g)= 1−RA(g) and ψ c̃

A(g)=X \f ψA(g).
Proposition 3.1. Let �A ∈�NPFHS(X) then,

1. (� c̃
A)

c̃ =�A.

2. � c̃
φ =�G̃

.

Definition 3.7. Let �A1 , �A2 ∈ �NPFHS(X) then, union of �A1 and �A2 , denoted by
�A1∪̃f �A2 , is an npfhs-set defined by

(i) PA1∪̃A2
(g)=max{PA1(x),PA2(g)},

(ii) QA1∪̃A2
(g)=min{QA1(x),QA2(g)},

(iii) RA1∪̃A2
(g)=min{RA1(x),RA2(g)},

(iv) ψA1∪̃A2
(g)=ψA1(g)∪̃fψA2(g), for all g ∈G.

Definition 3.8. Let �A1 , �A2 ∈ �NPFHS(X) then intersection of �A1 and �A2 , denoted by
�A1∩̃f �A2 , is an npfhs-set defined by

(i) PA1∩̃A2
(g)=min{PA1(x), PA2(g)},

(ii) QA1∩̃A2
(g)=max{QA1(x), QA2(g)},

(iii) RA1∩̃A2
(g)=max{RA1(x), RA2(g)},

(iv) ψA1∩̃A2
(g)=ψA1(g)∩̃fψA2(g), for all g ∈G.

Remark 3.1. Let �A ∈�NPFHS(X). If �A 
=f �G̃
, then �A ∪̃f � c̃

A 
=f �G̃
and �A ∩̃f � c̃

A 
=f �


Proposition 3.2. Let �A1 , �A2 ∈�NPFHS(X) D. Morgan laws are valid

1. (�A1 ∪̃f �A2)
c̃ =� c̃

A1
∩̃f � c̃

A2
.

2. (�A1 ∩̃f �A2)
c̃ =� c̃

A1
∪̃f � c̃

A2
.

Proof. For all g ∈ G,

(1). Since (PA1∪̃A2
)c̃(g)= 1−PA1∪̃A2

(g)

= 1−max{PA1(g), PA2(g)}
=min{1−PA1(g), 1−PA2(g)}
=min{Pc̃A1

(g), Pc̃A2
(g)}

=Pc̃A1∩̃A2
(g)
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also

(QA1∪̃A2
)c̃(g)= 1−QA1∪̃A2

(g)

= 1−min{QA1(g), QA2(g)}
=max{1−QA1(g), 1−QA2(g)}
=max{Qc̃

A1
(g), Qc̃

A2
(g)}

=Qc̃
A1∩̃A2

(g)

and

(RA1∪̃A2
)c̃(g)= 1−RA1∪̃A2

(g)

= 1−min{RA1(g), RA2(g)}
=max{1−RA1(g), 1−RA2(g)}
=max{Rc̃A1

(g), Rc̃A2
(g)}

=Rc̃A1∩̃A2
(g)

and

(ψA1∪̃A2
)c̃(g)=X \f ψA1∪̃A2

(g)

=X \f (ψA1(g)∪̃fψA2(g))

= (X \f ψA1(g))∩̃f (X \f ψA2(g))

=ψ c̃
A1
(g) ∩̃f ψ c̃

A2
(g)

=ψ c̃
A1 ∩̃A2

(g).

similarly (2) can be proved easily.

Proposition 3.3. Let �A1 , �A2 , �A3 ∈�NPFHS(X) then

1. �A1 ∪̃f (�A2 ∩̃f �A3)= (�A1 ∪̃f �A2) ∩̃f (�A1 ∪̃f �A3).

2. �A1 ∩̃f (�A2 ∪̃f �A3)= (�A1 ∩̃f �A2) ∪̃f (�A1 ∩̃f �A3).

Proof. For all g ∈G,

(1). Since PA1∪̃(A2∩̃A3)
(g)=max{PA1(g), PA2∩̃A3

(g)}
=max{PA1(g), min{PA2(g), PA3(g)}}
=min{max{PA1(g), PA2(g)}, max{PA1(g), PA3(g)}}
=min{PA1∪̃A2

(g), PA1∪̃A3
(g)}

=P(A1∪̃A2)∩̃(A1∪̃A3)
(g)
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and

QA1∪̃(A2∩̃A3)
(g)=min{QA1(g), QA2∩̃A3

(g)}
=min{QA1(g), max{QA2(g), QA3(g)}}
=max{min{QA1(g), QA2(g)}, min{QA1(g), QA3(g)}}
=max{QA1∪̃A2

(g), QA1∪̃A3
(g)}

=Q(A1∪̃A2)∩̃(A1∪̃A3)
(g)

and

RA1∪̃(A2∩̃A3)
(g)=min{RA1(g),RA2∩̃A3

(g)}
=min{RA1(g),max{RA2(g), RA3(g)}}
=max{min{RA1(g), RA2(g)}, min{RA1(g), RA3(g)}}
=max{RA1∪̃A2

(g), RA1∪̃A3
(g)}

=R(A1∪̃A2)∩̃(A1∪̃A3)
(g)

and

ψA1∪̃(A2∩̃A3)
(g)=ψA1(g)∪f ψA2∩̃A3

(g)

=ψA1(g)∪f (ψA2(g)∩f ψA3(g))

= (ψA1(g)∪f ψA2(g))∩f (ψA1(g)∪f ψA3(g))

=ψA1∪̃A2
(g)∩f ψA1ŨA3

(g)

=ψ(A1∪̃A2)∩̃(A1∪̃A3)
(g)

In the same way, (2) can be proved.

Definition 3.9. Let �A1 , �A2 ∈�NPFHS(X) then OR-operation of �A1 and �A2 , denoted by
�A1�̃�A2, is an npfhs-set defined by

(i) PA1�̃A2
(g1, g2)=max{PA1(g1), PA2(g2)},

(ii) QA1�̃A2
(g1, g2)=min{QA1(g1), QA2(g2)},

(iii) RA1�̃A2
(g1, g2)=min{RA1(g1), RA2(g2)},

(iv) ψA1�̃A2
(g1, g2)=ψA1(g1)∪f ψA2(g2), for all (g1, g2) ∈A1×A2.

Definition 3.10. Let �A1 , �A2 ∈�NPFHS(X) then AND-operation of �A1 and �A2 , denoted
by �A1�̃�A2 , is an npfhs-set defined by

(i) PA1�̃A2
(g1, g2)=min{PA1(g1), PA2(g2)},

(ii) QA1�̃A2
(g1, g2)=max{QA1(g1), QA2(g2)},

(iii) RA1�̃A2
(g1, g2)=max{RA1(g1), RA2(g2)},

(iv) ψA1�̃A2
(g1, g2)=ψA1(g1)∩f ψA2(g2), for all (g1, g2) ∈A1×A2.



750 CMES, 2021, vol.128, no.2

Proposition 3.4. Let �A1 , �A2 , �A3 ∈�NPFHS(X) then

1. �A1�̃�
 =�
.
2. (�A1 �̃�A2)�̃�A3 =�A1�̃ (�A2�̃�A3).
3. (�A1 �̃�A2)�̃�A3 =�A1�̃ (�A2�̃�A3).

3.1 Neutrosophic Decision Set of npfhs-Set
An algorithm is presented with the help of characterization of neutrosophic decision set on

npfhs-set which based on decision making technique and is explained with example.

Definition 3.11. Let �A ∈ �NPFHS(X) then a neutrosophic decision set of �A (i.e., �D
A) is

represented as

�D
A =

{
< T D

A (u), ID
A(u), FD

A(u) > /u : u ∈X

}
where T D

A , ID
A, FD

A : X→ I and

T D
A (u)=

1
|X|

∑
v∈S(A)

TA(v)�ψA(v)(u)

ID
A(u)=

1
|X|

∑
v∈S(A)

IA(v)�ψA(v)(u)

FD
A(u)=

1
|X|

∑
v∈S(A)

FA(v)�ψA(v)(u)

where | • | denotes set cardinality with

�ψA(v)(u)=
{
ψA(v); u ∈�ψA(v)

0; u /∈�ψA(v)

Definition 3.12. If �A ∈�NPFHS(X) with neutrosophic decision set �D
A then reduced fuzzy set

of �D
A is a fuzzy set represented as

R(�D
A)=

{
ζ�D

A
(u)/u : u ∈X

}
where ζ�D

A
: X→ I with ζ�D

A
(u)= T D

A (u)+ID
A(u)−FD

A(u)

Algorithm 3.1. Once �D
A has been established, it may be indispensable to select the best single

substitute from the options. Therefore, decision can be set up with the help of following algorithm.

Step 1 Determine A= {<TA(g), IA(g), FA(g) > /g : TA(g), IA(g), FA(g) ∈ I,g ∈G},
Step 2 Find ψA(g)
Step 3 Construct �A over X,

Step 4 Compute �D
A,

Step 5 Choose the maximum of ζ�D
A
(u).
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Example 3.2. Suppose that Mr. James Peter wants to buy a mobile tablet from a mobile
market. There are eight kinds of tablets (options) which form the set of discourse X =
{T̂1, T̂2, T̂3, T̂4, T̂5, T̂6, T̂7, T̂8}. The best selection may be evaluated by observing the attributes,
i.e., a1 = Storage (GB), a2 = Camera Resolution (mega pixels), a3 = Size (inches), a4 = RAM
(GB), and a5 = Battery power (mAh). The attribute-valued sets corresponding to these attributes
are:

A1 = {a11 = 64,a12 = 128}
A2 = {a21 = 8,a22 = 16}
A3 = {a31 = 10,a32 = 11}
A4 = {a41 = 2,a42 = 4}
A5 = {a51 = 5000}
then R=A1×A2×A3×A4×A5

R= {r1, r2, r3, r4, . . . , r16} where each ri, i= 1, 2, . . . , 16, is a 5-tuples element.

Step 1:

From Tabs. 1–3, we can construct A as

A=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< 0.1, 0.2, 0.3> /r1, < 0.2, 0.3, 0.4> /r2, < 0.3, 0.4, 0.5> /r3, < 0.4, 0.5, 0.6> /r4,

< 0.5, 0.6, 0.7> /r5, < 0.6, 0.7, 0.8> /r6, < 0.7, 0.8, 0.9> /r7, < 0.8, 0.9, 0.1> /r8,

< 0.9, 0.1, 0.2> /r9, < 0.16, 0.27, 0.37> /r10, < 0.25, 0.35, 0.45> /r11,

< 0.45, 0.55, 0.65> /r12, < 0.35, 0.45, 0.55> /r13, < 0.75, 0.85, 0.95> /r14,

< 0.65, 0.75, 0.85> /r15, < 0.85, 0.95, 0.96> /r16

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Step 2:

Tab. 4 presents ψA(ri) corresponding to each element of G.

Table 1: Degrees of membership TA(ri)

TA(ri) Degree TA(ri) Degree

TA(r1) 0.1 TA(r9) 0.9
TA(r2) 0.2 TA(r10) 0.16
TA(r3) 0.3 TA(r11) 0.25
TA(r4) 0.4 TA(r12) 0.45
TA(r5) 0.5 TA(r13) 0.35
TA(r6) 0.6 TA(r14) 0.75
TA(r7) 0.7 TA(r15) 0.65
TA(r8) 0.8 TA(r16) 0.85
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Table 2: Degrees of indeterminacy IA(ri)

IA(ri) Degree IA(ri) Degree

IA(r1) 0.2 IA(r9) 0.1
IA(r2) 0.3 IA(r10) 0.27
IA(r3) 0.4 IA(r11) 0.35
IA(r4) 0.5 IA(r12) 0.55
IA(r5) 0.6 IA(r13) 0.45
IA(r6) 0.7 IA(r14) 0.85
IA(r7) 0.8 IA(r15) 0.75
IA(r8) 0.9 IA(r16) 0.95

Table 3: Degrees of non-membership FA(ri)

FA(ri) Degree FA(ri) Degree

FA(r1) 0.3 FA(r9) 0.2
FA(r2) 0.4 FA(r10) 0.37
FA(r3) 0.5 FA(r11) 0.45
FA(r4) 0.6 FA(r12) 0.65
FA(r5) 0.7 FA(r13) 0.55
FA(r6) 0.8 FA(r14) 0.95
FA(r7) 0.9 FA(r15) 0.85
FA(r8) 0.1 FA(r16) 0.96

Table 4: Approximate functions ψA(ri)

ri ψA(ri) ri ψA(ri)

r1 {0.2/T̂1, 0.3/T̂2} r9 {0.4/T̂2, 0.6/T̂7, 0.5/T̂8}
r2 {0.1/T̂1, 0.5/T̂2, 0.1/T̂3} r10 {0.2/T̂6, 0.6/T̂7, 0.4/T̂8}
r3 {0.4/T̂2, 0.5/T̂3, 0.6/T̂4} r11 {0.5/T̂2, 0.6/T̂4, 0.7/T̂6}
r4 {0.6/T̂4, 0.7/T̂5, 0.8/T̂6} r12 {0.7/T̂2, 0.8/T̂3, 0.9/T̂6}
r5 {0.2/T̂6, 0.1/T̂7, 0.4/T̂8} r13 {0.2/T̂3, 0.4/T̂5, 0.6/T̂7}
r6 {0.4/T̂2, 0.3/T̂3, 0.4/T̂4} r14 {0.2/T̂1, 0.5/T̂3, 0.6/T̂5}
r7 {0.2/T̂1, 0.3/T̂3, 0.4/T̂5} r15 {0.6/T̂5, 0.4/T̂7, 0.2/T̂8}
r8 {0.1/T̂2, 0.3/T̂3, 0.5/T̂7} r16 {0.3/T̂4, 0.5/T̂5, 0.7/T̂6}

Step 3:

With the help of Step 1 and Step 2, we can construct �A as
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�A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
< 0.1, 0.2, 0.3> /r1, {0.2/T̂1, 0.3/T̂2}

)
,(

< 0.2, 0.3, 0.4> /r2, {0.1/T̂1, 0.5/T̂2, 0.1T̂3}
)
,(

< 0.3, 0.4, 0.5> /r3, {0.4/T̂2, 0.5/T̂3, 0.6/T̂4}
)
,(

< 0.4, 0.5, 0.6> /r4, {0.6/T̂4, 0.7/T̂5, 0.8/T̂6}
)
,(

< 0.5, 0.6, 0.7> /r5, {0.2/T̂6, 0.1/T̂7, 0.4/T̂8}
)
,(

< 0.6, 0.7, 0.8> /r6, {0.4/T̂2, 0.3/T̂3, 0.4/T̂4}
)
,(

< 0.7, 0.8, 0.9> /r7, {0.2/T̂1, 0.3/T̂3, 0.4/T̂5}
)
,(

< 0.8, 0.9, 0.1> /r8, {0.1/T̂2, 0.3/T̂3, 0.5/T̂7}
)
,(

< 0.9, 0.1, 0.2> /r9, {0.4/T̂2, 0.6/T̂7, 0.5/T̂8}
)
,(

< 0.16, 0.27, 0.37> /r10, {0.2/T̂6, 0.6/T̂7, 0.4/T̂8}
)
,(

< 0.25, 0.35, 0.45> /r11, {0.5/T̂2, 0.6/T̂4, 0.7/T̂6}
)
,(

< 0.45, 0.55, 0.65> /r12, {0.7/T̂2, 0.8/T̂3, 0.9/T̂6}
)
,(

< 0.35, 0.45, 0.55> /r13, {0.2/T̂3, 0.4/T̂5, 0.6/T̂7}
)
,(

< 0.75, 0.85, 0.95> /r14, {0.2/T̂1, 0.5/T̂3, 0.6/T̂5}
)
,(

< 0.65, 0.75, 0.85> /r15, {0.6/T̂5, 0.4/T̂7, 0.2/T̂8}
)
,(

< 0.85, 0.95, 0.96> /r16, {0.3/T̂4, 0.5/T̂5, 0.7/T̂6}
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Step 4:

From Tabs. 5–8, we can construct R(�D
A) as

R(�D
A)=

⎧⎨
⎩
0.0325/T̂1, 0.1412/T̂2, 0.1968/T̂3, 0.1052/T̂4,

0.2112/T̂5, 0.1675/T̂6, 0.2158/T̂7, 0.0867/T̂8

⎫⎬
⎭
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The graphical representation of this decision system is presented in Fig. 1.

Step 5:

Since maximum of ζ�D
A
(T̂i) is 0.2158 so the tablet T̂7 is selected.

Table 5: Membership values T D
A (T̂i)

T̂i T D
A (T̂i) T̂i T D

A (T̂i)

T̂1 0.0413 T̂5 0.2456
T̂2 0.1700 T̂6 0.2034
T̂3 0.2006 T̂7 0.1945
T̂4 0.1331 T̂8 0.1055

Table 6: Indeterminacy values ID
A(T̂i)

T̂i ID
A(T̂i) T̂i ID

A(T̂i)

T̂1 0.0500 T̂5 0.2856
T̂2 0.1650 T̂6 0.2474
T̂3 0.2381 T̂7 0.1628
T̂4 0.1644 T̂8 0.0685

Table 7: Non-membership values FD
A(T̂i)

T̂i FD
A(T̂i) T̂i FD

A(T̂i)

T̂1 0.0588 T̂5 0.3200
T̂2 0.1938 T̂6 0.2833
T̂3 0.2419 T̂7 0.1415
T̂4 0.1923 T̂8 0.0873

Table 8: Reduced fuzzy membership ζ�D
A
(T̂i)

T̂i ζ�D
A
(T̂i) T̂i ζ�D

A
(T̂i)

T̂1 0.0325 T̂5 0.2112
T̂2 0.1412 T̂6 0.1675
T̂3 0.1968 T̂7 0.2158
T̂4 0.1052 T̂8 0.0867



CMES, 2021, vol.128, no.2 755

Figure 1: Neutrosophic decision system on npfhs-set

4 Neutrosophic Parameterized Intuitionistic Fuzzy Hypersoft Set (npifhs-set) with Application

In this section, npifhs-set theory is developed and decision making based application is
presented.

Definition 4.1. Let Y = {Y1, Y2, Y3, . . . , Yn} be a collection of disjoint attribute-valued sets
corresponding to n distinct attributes α1, α2, α3, . . . , αn, respectively. A npifhs-set �B over X is
defined as

�B = {(<LB(g),MB(g), NB(g) > /g, ψB(g)) : g ∈G, ψA(g) ∈ IF(X)}
where

(i) IF(U) is a collection of all intuitionistic fuzzy sets over X

(ii) G=Y1×Y2×Y3× . . .×Yn
(iii) B is a neutrosophic set over G with LB,MB, NB : G → I as membership function,

indeterminacy function and nonmembership function of npifhs-set.
(iv) ψB(g) is a fuzzy set for all g ∈G with ψB : G→ IF(X) and is called approximate function

of npifhs-set.

Note that collection of all npifhs-sets is represented by �NPIFHS(X).

Definition 4.2. Let �B ∈ �NPIFHS(X). If ψB(g) = ∅, LB(g) = 0,MB(g) = 1, NB(g) = 1 for all
g ∈ G, then �B is called B-empty npifhs-set, denoted by �
B . If B = ∅, then B-empty npifhs-set
is called an empty npifhs-set, denoted by �
.

Definition 4.3. Let �B ∈ �NPIFHS(X). If ψB(g) = X, LB(g) = 1,MB(g) = 0, NB(g) = 0 for all
g ∈ G, then �B is called B-universal npifhs-set, denoted by �B̃. If B = G, then the B-universal
npifhs-set is called universal npifhs-set, denoted by �

G̃
.

Example 4.1. Consider X= {u1, u2, u3, u4, u5} and Y = {Y1, Y2, Y3} with

Y1 = {ŷ11, ŷ12}, Y2 = {ŷ21, ŷ22}, Y3 = {ŷ31}, then

G=Y1×Y2×Y3

G= {(
ŷ11, ŷ21, ŷ31

)
,
(
ŷ11, ŷ22, ŷ31

)
,
(
ŷ12, ŷ21, ŷ31

)
,
(
ŷ12, ŷ22, ŷ31

)}= {g1, g2, g3, g4}.
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Case 1.

If B1 = {< 0.2, 0.3, 0.4> /g2,< 0, 1, 1> /g3,< 1, 0, 0> /g4} and

ψB1(g2)= {< 0.2, 0.4> /u2,< 0.3, 0.5> /u4}, ψB1(g3)= φ, and ψB1(g4)=X, then

�B1 =
{
(< 0.2, 0.3, 0.4> /g2, {< 0.2, 0.4> /u2,< 0.3, 0.5> /u4}),
(< 0, 1, 1> /g3,φ) , (< 1, 0, 0> /g4,X)

}
.

Case 2.

If B2 = {< 0, 1, 1> /g2,< 0, 1, 1> /g3},ψB2(g2)= φ and ψB2(g3)= φ, then �B2 =�
B2
.

Case 3.

If B3 = φ corresponding to all elements of G, then �B3 =�
.
Case 4.

If B4 = {< 1, 0, 0> /g1,< 1, 0, 0> /g2} ,ψB4(g1)=X, and ψB4(g2)=X, then �B4 =�B̃4
.

Case 5.

If B5 =X with respect to all elements of G, then �B5 =�G̃
.

Definition 4.4. Let �B1 , �B2 ∈�NPIFHS(X) then �B1 is an npifhs-subset of �B2, denoted by
�B1⊆̃if�B2 if

LB1(g)≤LB2(g),MB1(g)≥MB2(g),NB1(g)≥NB2(g) and ψB1(g)⊆if ψB2(g) for all g ∈G.

Definition 4.5. Let �B1,�B2 ∈ �NPIFHS(X) then, �B1 and �B2 are npifhs-equal, represented
as �B1 = �B2, if and only if LB1(g) = LB2(g),MB1(g) =MB2(g),NB1(g) = NB2(g) and ψB1(g)=
ψB2(g) for all g ∈G.

Definition 4.6. Let �B ∈�NPIFHS(X) then, complement of �B (i.e., � c̃
B) is an npifhs-set given

as Pc̃B(g)= 1−LB(g),Qc̃
B(g)= 1−MB(g),Rc̃B(g)= 1−NB(g) and ψ c̃

B(g)=X \ψB(g)
Proposition 4.1. Let �B ∈�NPIFHS(X) then,

1. (� c̃
B)

c̃ =�B.
2. � c̃

φ =�G̃
.

Definition 4.7. Let �B1,�B2 ∈ �NPIFHS(X) then, union of �B1 and �B2, denoted by
�B1∪̃if �B2 , is an npifhs-set defined by

(i) LB1∪̃B2
(g)=max{LB1(x),LB2(g)},

(ii) MB1∪̃B2
(g)=min{MB1(x),MB2(g)},

(iii) NB1∪̃B2
(g)=min{NB1(x),NB2(g)},

(iv) ψB1∪̃B2
(g)=ψB1(g)∪̃ifψB2(g), for all g ∈G.
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Definition 4.8. Let �B1,�B2 ∈ �NPIFHS(X) then intersection of �B1 and �B2, denoted by
�B1∩̃if�B2, is an npifhs-set defined by

(i) LB1∩̃B2
(g)=min{LB1(x), LB2(g)},

(ii) MB1∩̃B2
(g)=max{MB1(x),MB2(g)},

(iii) NB1∩̃B2
(g)=max{NB1(x), NB2(g)},

(iv) ψB1∩̃B2
(g)=ψB1(g)∩̃ifψB2(g), for all g ∈ G.

Remark 4.1. Let �B ∈ �NPIFHS(X). If �B 
=if �G̃
, then �B ∪̃if � c̃

B 
=if �G̃
and �B ∩̃if

� c̃
B 
=if �


Proposition 4.2. Let �B1,�B2 ∈�NPIFHS(X) then following D. Morgan laws are valid:

1. (�B1 ∪̃if �B2)
c̃ =� c̃

B1
∩̃if � c̃

B2
.

2. (�B1 ∩̃if �B2)
c̃ =� c̃

B1
∪̃if � c̃

B2
.

Proof. For all g ∈ G,

(1). Since (LB1∪̃B2
)c̃(g)= 1−LB1∪̃B2

(g)

= 1−max{LB1(g),LB2(g)}
=min{1−LB1(g), 1−LB2(g)}
=min{Pc̃B1

(g),Pc̃B2
(g)}

=Pc̃B1∩̃B2
(g)

also

(MB1∪̃B2
)c̃(g)= 1−MB1∪̃B2

(g)

= 1−min{MB1(g),MB2(g)}
=max{1−MB1(g), 1−MB2(g)}
=max{Qc̃

B1
(g),Qc̃

B2
(g)}

=Qc̃
B1∩̃B2

(g)

and

(NB1∪̃B2
)c̃(g)= 1−NB1∪̃B2

(g)

= 1−min{NB1(g),NB2(g)}
=max{1−NB1(g), 1−NB2(g)}
=max{Rc̃B1

(g),Rc̃B2
(g)}

=Rc̃B1∩̃B2
(g)
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and

(ψB1∪̃B2
)c̃(g)=X \if ψB1∪̃B2

(g)

=X \if (ψB1(g)∪̃ifψB2(g))

= (X \if ψB1(g))∩̃if (X \if ψB2(g))

=ψ c̃
B1
(g) ∩̃if ψ c̃

B2
(g)

=ψ c̃
B1 ∩̃B2

(g).

similarly (2) can be proved easily.

Proposition 4.3. Let �B1,�B2,�B3 ∈�NPIFHS(X) then

1. �B1 ∪̃if (�B2 ∩̃if �B3)= (�B1 ∪̃if �B2) ∩̃if (�B1 ∪̃if �B3).

2. �B1 ∩̃if (�B2 ∪̃if �B3)= (�B1 ∩̃if �B2) ∪̃if (�B1 ∩̃if �B3).

Proof. For all g ∈G,

(1). Since LB1∪̃(B2∩̃B3)
(g)=max{LB1(g),LB2∩̃B3

(g)}
=max{LB1(g),min{LB2(g),LB3(g)}}
=min{max{LB1(g),LB2(g)},max{LB1(g),LB3(g)}}
=min{LB1∪̃B2

(g),LB1∪̃B3
(g)}

=L(B1∪̃B2)∩̃(B1∪̃B3)
(g)

and

MB1∪̃(B2∩̃B3)
(g)=min{MB1(g),MB2∩̃B3

(g)}
=min{MB1(g),max{MB2(g),MB3(g)}}
=max{min{MB1(g),MB2(g)},min{MB1(g),MB3(g)}}
=max{MB1∪̃B2

(g),MB1∪̃B3
(g)}

=M(B1∪̃B2)∩̃(B1∪̃B3)
(g)

and

NB1∪̃(B2∩̃B3)
(g)=min{NB1(g),NB2∩̃B3

(g)}
=min{NB1(g),max{NB2(g),NB3(g)}}
=max{min{NB1(g),NB2(g)},min{NB1(g),NB3(g)}}
=max{NB1∪̃B2

(g),NB1∪̃B3
(g)}

=N(B1∪̃B2)∩̃(B1∪̃B3)
(g)
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and

ψB1∪̃(B2∩̃B3)
(g)=ψB1(g)∪̃ifψB2∩̃B3

(g)

=ψB1(g)∪̃if (ψB2(g)∩̃ifψB3(g))

= (ψB1(g)∪̃ifψB2(g))∩̃if (ψB1(g)∪̃ifψB3(g))

=ψB1∪̃B2
(g)∩̃ifψB1ŨB3

(g)

=ψ(B1∪̃B2)∩̃(B1∪̃B3)
(g)

In the same way, (2) can be proved.

Definition 4.9. Let �B1,�B2 ∈ �NPIFHS(X) then OR-operation of �B1 and �B2 , denoted by

�B1�̃�B2, is an npifhs-set defined by

(i) LB1�̃B2
(g1,g2)=max{LB1(g1),LB2(g2)},

(ii) MB1�̃B2
(g1,g2)=min{MB1(g1),MB2(g2)},

(iii) NB1�̃B2
(g1,g2)=min{NB1(g1),NB2(g2)},

(iv) ψB1�̃B2
(g1,g2)=ψB1(g1)∪ψB2(g2), for all (g1,g2) ∈B1×B2.

Definition 4.10. Let �B1,�B2 ∈ �NPIFHS(X) then AND-operation of �B1 and �B2, denoted

by �B1�̃�B2, is an npifhs-set defined by

(i) LB1�̃B2
(g1,g2)=min{LB1(g1),LB2(g2)},

(ii) MB1�̃B2
(g1,g2)=max{MB1(g1),MB2(g2)},

(iii) NB1�̃B2
(g1,g2)=max{NB1(g1),NB2(g2)},

(iv) ψB1�̃B2
(g1,g2)=ψB1(g1)∩ψB2(g2), for all (g1,g2) ∈B1×B2.

Proposition 4.4. Let �B1,�B2,�B3 ∈�NPIFHS(X) then

1. �B1�̃�
 =�
.
2. (�B1�̃�B2)�̃�B3 =�B1�̃ (�B2�̃�B3).

3. (�B1�̃�B2)�̃�B3 =�B1�̃ (�B2�̃�B3).

4.1 Neutrosophic Decision Set of npifhs-Set
Here an algorithm is presented with the help of characterization of neutrosophic decision set

on npifhs-set which based on decision making technique and is explained with example.

Definition 4.11. Let �B ∈ �NPIFHS(X) then a neutrosophic decision set of �B (i.e., �D
B ) is

represented as

�D
B =

{
< T D

B (u),ID
B (u),FD

B (u) > /u : u ∈ X
}
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where T D
B ,ID

B ,FD
B : X→ I and

T D
B (u)=

1
|X|

∑
v∈S(B)

TB(v)�ψB(v)(u)

ID
B (u)=

1
|X|

∑
v∈S(B)

IB(v)�ψB(v)(u)

FD
B (u)=

1
|X|

∑
v∈S(B)

FB(v)�ψB(v)(u)

where | • | denotes set cardinality with

�ψB(v)(u)=
{|TψB(u)−FψB(u)|; u ∈�ψB(v)

0; u /∈�ψB(v)

Definition 4.12. If �B ∈�NPIFHS(X) with neutrosophic decision set �D
B then reduced fuzzy set

of �D
B is a fuzzy set represented as

R(�D
B )=

{
ζ�D

B
(u)/u : u ∈X

}
where ζ�D

B
: X→ I with ζ�D

B
(u)= T D

B (u)+ID
B (u)−FD

B (u)

4.2 Proposed Algorithm

Once �D
B has been established, it may be indispensable to select the best single substitute from

the options. Therefore, decision can be set up with the help of following algorithm:

Step 1 Determine B = {< TB(g),IB(g),FB(g) > /g : TB(g),IB(g),FB(g)∈ I,g ∈G},
Step 2 Find ψB(g)
Step 3 Construct �B over X,

Step 4 Compute �D
B ,

Step 5 Choose the maximum of ζ�D
B
(u).

Example 4.2. Suppose that Mrs. Andrew wants to buy a washing machine from mar-
ket. There are eight kinds of washing machines (options) which form the set of discourse
X = {Ŵ1,Ŵ2,Ŵ3,Ŵ4,Ŵ5,Ŵ6,Ŵ7,Ŵ8}. The best selection may be evaluated by observing the
attributes i.e., b1 = Company, b2 = Power in Watts, b3 = Voltage, b4 = Capacity in kg, and b5
= Color. The attribute-valued sets corresponding to these attributes are:

B1 = {b11 =National,b12=Hier}
B2 = {b21 = 400,b22= 500}
B3 = {b31 = 220,b32= 240}
B4 = {b41 = 7,b42 = 10}
B5 = {b51 =White}
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then Q=B1×B2×B3×B4×B5

Q= {q1,q2,q3,q4, . . . ,q16} where each qi, i= 1, 2, . . . , 16, is a 5-tuples element.

Step 1:

From Tabs. 9–11, we can construct B as

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< 0.1, 0.2, 0.3> /q1,< 0.2, 0.3, 0.4> /q2,

< 0.3, 0.4, 0.5> /q3,< 0.4, 0.5, 0.6> /q4,

< 0.5, 0.6, 0.7> /q5,< 0.6, 0.7, 0.8> /q6,

< 0.7, 0.8, 0.9> /q7,< 0.8, 0.9, 0.1> /q8,

< 0.9, 0.1, 0.2> /q9,< 0.16, 0.27, 0.37> /q10,

< 0.25, 0.35, 0.45> /q11,< 0.45, 0.55, 0.65> /q12,

< 0.35, 0.45, 0.55> /q13,< 0.75, 0.85, 0.95> /q14,

< 0.65, 0.75, 0.85> /q15,< 0.85, 0.95, 0.96> /q16

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Table 9: Degrees of membership TB(qi)

TB(qi) Degree TB(qi) Degree

TB(q1) 0.1 TB(q9) 0.9
TB(q2) 0.2 TB(q10) 0.16
TB(q3) 0.3 TB(q11) 0.25
TB(q4) 0.4 TB(q12) 0.45
TB(q5) 0.5 TB(q13) 0.35
TB(q6) 0.6 TB(q14) 0.75
TB(q7) 0.7 TB(q15) 0.65
TB(q8) 0.8 TB(q16) 0.85

Table 10: Degrees of indeterminacy IB(qi)

IB(qi) Degree IB(qi) Degree

IB(q1) 0.2 IB(q9) 0.1
IB(q2) 0.3 IB(q10) 0.27
IB(q3) 0.4 IB(q11) 0.35
IB(q4) 0.5 IB(q12) 0.55
IB(q5) 0.6 IB(q13) 0.45
IB(q6) 0.7 IB(q14) 0.85
IB(q7) 0.8 IB(q15) 0.75
IB(q8) 0.9 IB(q16) 0.95
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Table 11: Degrees of non-membership FB(qi)

FB(qi) Degree FB(qi) Degree

FB(q1) 0.3 FB(q9) 0.2
FB(q2) 0.4 FB(q10) 0.37
FB(q3) 0.5 FB(q11) 0.45
FB(q4) 0.6 FB(q12) 0.65
FB(q5) 0.7 FB(q13) 0.55
FB(q6) 0.8 FB(q14) 0.95
FB(q7) 0.9 FB(q15) 0.85
FB(q8) 0.1 FB(q16) 0.96

Step 2:

Tab. 12 presents ψB(qi) corresponding to each element of G.

Table 12: Approximate functions ψB(qi)

qi ψB(qi) qi ψB(qi)

q1 {< 0.2, 0.1> /Ŵ1,< 0.3, 0.2> /Ŵ2} q9 {< 0.4, 0.3> /Ŵ2,< 0.6, 0.4> /Ŵ7,< 0.5, 0.4> /Ŵ8}
q2 {< 0.1, 0.2> /Ŵ1,< 0.5, 0.4> /Ŵ2,< 0.1, 0.4> /Ŵ3} q10 {< 0.2, 0.1> /Ŵ6,< 0.6, 0.4> /Ŵ7,< 0.4, 0.3> /Ŵ8}
q3 {< 0.4, 0.3> /Ŵ2,< 0.5, 0.4> /Ŵ3,< 0.6, 0.3> /Ŵ4} q11 {< 0.5, 0.4> /Ŵ2,< 0.6, 0.3> /Ŵ4,< 0.7, 0.2> /Ŵ6}
q4 {< 0.6, 0.2> /Ŵ4,< 0.7, 0.3> /Ŵ5,< 0.8, 0.1> /Ŵ6} q12 {< 0.7, 0.2> /Ŵ2,< 0.8, 0.1> /Ŵ3,< 0.9, 0.1> /Ŵ6}
q5 {< 0.2, 0.1> /Ŵ6,< 0.1, 0.2> /Ŵ7,< 0.4, 0.3> /Ŵ8} q13 {< 0.2, 0.1> /Ŵ3,< 0.4, 0.3> /Ŵ5,< 0.6, 0.1> /Ŵ7}
q6 {< 0.4, 0.2> /Ŵ2,< 0.3, 0.4> /Ŵ3,< 0.4, 0.5> /Ŵ4} q14 {< 0.2, 0.5> /Ŵ1,< 0.5, 0.4> /Ŵ3,< 0.6, 0.2> /Ŵ5}
q7 {< 0.2, 0.3> /Ŵ1,< 0.3, 0.4> /Ŵ3,< 0.4, 0.3> /Ŵ5} q15 {< 0.6, 0.3> /Ŵ5,< 0.4, 0.3> /Ŵ7,< 0.2, 0.4> /Ŵ8}
q8 {< 0.1, 0.4> /Ŵ2,< 0.3, 0.5> /Ŵ3,< 0.5, 0.4> /Ŵ7} q16 {< 0.3, 0.6> /Ŵ4,< 0.5, 0.4> /Ŵ5,< 0.7, 0.1> /Ŵ6}

Step 3: With the help of Step 1 and Step 2, we can construct �B as performed in step of
Section 3.

Step 4:

From Tabs. 13–16, we can construct R(�D
B ) as

R(�D
B )=

⎧⎨
⎩
0.0331/Ŵ1, 0.1100/Ŵ2, 0.1019/Ŵ3, 0.0659/Ŵ4,

0.0855/Ŵ5, 0.1394/Ŵ6, 0.0690/Ŵ7, 0.0296/Ŵ8

⎫⎬
⎭

Table 13: Membership values T D
B (Ŵi)

Ŵi T D
B (Ŵi) Ŵi T D

B (Ŵi)

Ŵ1 0.0406 Ŵ5 0.1006
Ŵ2 0.0950 Ŵ6 0.1676
Ŵ3 0.1006 Ŵ7 0.0728
Ŵ4 0.0800 Ŵ8 0.0358
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Table 14: Indeterminacy values ID
B (Ŵi)

Ŵi ID
B (Ŵi) Ŵi ID

B (Ŵi)

Ŵ1 0.0481 Ŵ5 0.1169
Ŵ2 0.1025 Ŵ6 0.2028
Ŵ3 0.1219 Ŵ7 0.0655
Ŵ4 0.0975 Ŵ8 0.0309

Table 15: Non-membership values FD
B (Ŵi)

Ŵi FD
B (Ŵi) Ŵi FD

B (Ŵi)

Ŵ1 0.0556 Ŵ5 0.1320
Ŵ2 0.0875 Ŵ6 0.2310
Ŵ3 0.1206 Ŵ7 0.0693
Ŵ4 0.1116 Ŵ8 0.0371

Table 16: Reduced fuzzy membership ζ�D
B
(Ŵi)

Ŵi ζ�D
B
(Ŵi) Ŵi ζ�D

B
(Ŵi)

Ŵ1 0.0331 Ŵ5 0.0855
Ŵ2 0.1100 Ŵ6 0.1394
Ŵ3 0.1019 Ŵ7 0.0690
Ŵ4 0.0659 Ŵ8 0.0296

The graphical representation of this decision system is presented in Fig. 2.

Figure 2: Neutrosophic decision system on npifhs-set
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Step 5:

Since maximum of ζ�D
B
(Ŵi) is 0.5313 so the washing machine Ŵ3 is selected.

5 Neutrosophic Parameterized Neutrosophic Hypersoft Set (npnhs-Set) with Application

In this section, neutrosophic parameterized hypersoft set is conceptualized and some of its
fundamentals are discussed.

Definition 5.1. Let Z = {Z1, Z2, Z3, . . . ,Zn} be a collection of disjoint attribute-valued sets
corresponding to n distinct attributes α1, α2, α3, . . . , αn, respectively. A npnhs-set �D over X is
defined as

�D = {(<AD(g), BD(g), CD(g) > /g, ψD(g)) : g ∈ G, ψD(g)∈N(X)}
where

(i) N(X) is a collection of all neutrosophic sets over X

(i) G=Z1 ×Z2×Z3× . . .×Zn
(ii) D is a neutrosophic set over G with AD, BD, CD : G → I as membership function,

indeterminacy function and nonmembership function of npnhs-set.
(iii) ψD(g) is a neutrosophic set for all g ∈ G with ψD : G →N(X) and is called approximate

function of npnhs-set.

Note that collection of all npnhs-sets is represented by �NPNHS(X).

Definition 5.2. Let �D ∈ �NPNHS(X). If ψD(g) = ∅, AD(g) = 0, BD(g) = 1, CD(g) = 1 for all
g ∈G, then �D is called D-empty npnhs-set, denoted by �
D . If D =∅, then D-empty npnhs-set
is called an empty npnhs-set, denoted by �
.

Definition 5.3. Let �D ∈ �NPNHS(X). If ψD(g)= X, AD(g) = 1, BD(g)= 0, CD(g)= 0 for all
g ∈ G, then �D is called D-universal npnhs-set, denoted by �D̃. If D = G, then the D-universal
npnhs-set is called universal npnhs-set, denoted by �

G̃
.

Example 5.1. Consider X= {u1, u2, u3, u4, u5} and Z = {Z1, Z2, Z3} with Z1 = {ẑ11, ẑ12}, Z2 =
{ẑ21, ẑ22},Z3 = {ẑ31}, then
G=Z1 ×Z2×Z3

G= {(
ẑ11, ẑ21, ẑ31

)
,
(
ẑ11, ẑ22, ẑ31

)
,
(
ẑ12, ẑ21, ẑ31

)
,
(
ẑ12, ẑ22, ẑ31

)}= {g1,g2,g3,g4}.
Case 1.

If D1 = {< 0.2, 0.3, 0.4> /g2,< 0, 1, 1> /g3,< 1, 0, 0> /g4} and

ψD1(g2)= {< 0.2, 0.4, 0.6> /u2,< 0.3, 0.5, 0.7> /u4}, ψD1(g3)=∅, and ψD1(g4)=X, then

�D1 =
{
(< 0.2, 0.3, 0.4> /g2, {< 0.2, 0.4, 0.6> /u2, 0.3, 0.5, 0.7> /u4}),
(< 0, 1, 1> /g3,∅) , (< 1, 0, 0> /g4,X)

}
.

Case 2.

If D2 = {< 0, 1, 1> /g2,< 0, 1, 1> /g3},ψD2(g2)=∅ and ψD2(g3)=∅, then �D2 =�
D2
.

Case 3.

If D3 =∅ corresponding to all elements of G, then �D3 =�
.
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Case 4.

If D4 = {< 1, 0, 0> /g1,< 1, 0, 0> /g2} ,ψD4(g1)=X, and ψD4(g2)=X, then �D4 =�D̃4
.

Case 5.

If D5 =X with respect to all elements of G, then �D5 =�G̃
.

Definition 5.4. Let �D1 , �D2 ∈�NPNHS(X) then �D1 is an npnhs-subset of �D2 , denoted by
�D1⊆̃�D2 if AD1(g) ≤ AD2(g),BD1(g) ≥ BD2(g),CD1(g) ≥ CD2(g) and ψD1(g) ⊆n ψD2(g) for all
g ∈ G.

Proposition 5.1. Let �D1 , �D2 , �D3 ∈�NPNHS(X) then

1. �D1⊆̃�G̃
.

2. �
⊆̃�D1 .
3. �D1⊆̃�D1 .
4. if �D1⊆̃�D2 and �D2⊆̃�D3 then �D1⊆̃�D3 .

Definition 5.5. Let �D1 ,�D2 ∈ �NPNHS(X) then, �D1 and �D2 are npnhs-equal, represented
as �D1 =�D2 , if and only if AD1(g)=AD2(g),BD1(g)=BD2(g),CD1(g)=CD2(g) and ψD1(g)=n
ψD2(g) for all g ∈G.

Proposition 5.2. Let �D1 ,�D2,�D3 ∈�NPNHS(X) then,

1. if �D1 =�D2 and �D2 =�D3 then �D1 =�D3 .
2. if �D1⊆̃�D2 and �D2⊆̃�D1 ⇔�D1 =�D2 .

Definition 5.6. Let �D ∈�NPNHS(X) then, complement of �D (i.e., � c̃
D) is a npnhs-set given

as Pc̃D(g)= 1−AD(g),Qc̃
D(g)= 1−BD(g),Rc̃D(g)= 1−CD(g) and ψ c̃

D(g)=X \n ψD(g).
Proposition 5.3. Let �D ∈�NPNHS(X) then,

1. (� c̃
D)

c̃ =�D.

2. � c̃
φ =�G̃

.

Definition 5.7. Let �D1 ,�D2 ∈ �NPNHS(X) then, union of �D1 and �D2 , denoted by
�D1∪̃�D2 , is an npnhs-set defined by

(i) AD1∪̃D2
(g)=max{AD1(x),AD2(g)},

(ii) BD1∪̃D2
(g)=min{BD1(x),BD2(g)},

(iii) CD1∪̃D2
(g)=min{CD1(x),CD2(g)},

(iv) ψD1∪̃D2
(g)=ψD1(g)∪n ψD2(g), for all g ∈ G.

Proposition 5.4. Let �D1 ,�D2,�D3 ∈�NPNHS(X) then,

1. �D1∪̃�D1 =�D1 ,
2. �D1∪̃�
 =�D1 ,
3. �D1∪̃�G̃

=�
G̃
,

4. �D1∪̃�D2 =�D2∪̃�D1 ,
5. (�D1∪̃�D2) ∪̃�D3 =�D1∪̃ (�D2 ∪̃�D3).
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Definition 5.8. Let �D1 ,�D2 ∈ �NPNHS(X) then intersection of �D1 and �D2 , denoted by
�D1∩̃�D2 , is an npnhs-set defined by

(i) AD1∩̃D2
(g)=min{AD1(x),AD2(g)},

(ii) BD1∩̃D2
(g)=max{BD1(x),BD2(g)},

(iii) CD1∩̃D2
(g)=max{CD1(x),CD2(g)},

(iv) ψD1∩̃D2
(g)=ψD1(g)∩n ψD2(g), for all g ∈G.

Proposition 5.5. Let �D1 ,�D2,�D3 ∈�NPNHS(X) then

1. �D1∩̃�D1 =�D1 .
2. �D1∩̃�
 =�
.
3. �D1∩̃�G̃

=�D̃1
.

4. �D1∩̃�D2 =�D2∩̃�D1 .
5. (�D1 ∩̃�D2)∩̃��D3

=�D1∩̃ (�D2∩̃��D3
).

Note: It is pertinent to mention here that Propositions 5.1, 5.2, 5.4 and 5.5 are also valid for
elements of �NPFHS(X) and �NPIFHS(X).

Remark 5.1. Let �D ∈�NPNHS(X). If �D 
=�
G̃
, then �D ∪̃� c̃

D 
=�
G̃

and �D ∩̃� c̃
D 
=�


Proposition 5.6. Let �D1 ,�D2 ∈�NPNHS(X) then following D. Morgan laws are valid:

1. (�D1 ∪̃�D2)
c̃ =� c̃

D1
∩̃� c̃

D2
.

2. (�D1 ∩̃�D2)
c̃ =� c̃

D1
∪̃� c̃

D2
.

Proof. For all g ∈G,

(1). Since (AD1∪̃D2
)c̃(g)= 1−AD1∪̃D2

(g)

= 1−max{AD1(g),AD2(g)}
=min{1−AD1(g), 1−AD2(g)}
=min{Pc̃D1

(g),Pc̃D2
(g)}

=Pc̃D1∩̃D2
(g)

also

(BD1∪̃D2
)c̃(g)= 1−BD1∪̃D2

(g)

= 1−min{BD1(g),BD2(g)}
=max{1−BD1(g), 1−BD2(g)}
=max{Qc̃

D1
(g),Qc̃

D2
(g)}

=Qc̃
D1∩̃D2

(g)
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and

(CD1∪̃D2
)c̃(g)= 1−CD1∪̃D2

(g)

= 1−min{CD1(g),CD2(g)}
=max{1−CD1(g), 1−CD2(g)}
=max{Rc̃D1

(g),Rc̃D2
(g)}

=Rc̃D1∩̃D2
(g)

and

(ψD1∪̃D2
)c̃(g)=X \n ψD1∪̃D2

(g)

=X \n (ψD1(g)∪n ψD2(g))

= (X \n ψD1(g))∩n (X \n ψD2(g))

=ψ c̃
D1
(g) ∩̃nψ c̃

D2
(g)

=ψ c̃
D1 ∩̃D2

(g).

similarly (2) can be proved easily.

Proposition 5.7. Let �D1 ,�D2,�D3 ∈�NPNHS(X) then

1. �D1 ∪̃ (�D2 ∩̃�D3)= (�D1 ∪̃�D2) ∩̃ (�D1 ∪̃�D3).
2. �D1 ∩̃ (�D2 ∪̃�D3)= (�D1 ∩̃�D2) ∪̃ (�D1 ∩̃�D3).

Proof. For all g ∈ G,

(1). Since AD1∪̃(D2∩̃D3)
(g)=max{AD1(g),AD2∩̃D3

(g)}
=max{AD1(g),min{AD2(g),AD3(g)}}
=min{max{AD1(g),AD2(g)},max{AD1(g),AD3(g)}}
=min{AD1∪̃D2

(g),AD1∪̃D3
(g)}

=A(D1∪̃D2)∩̃(D1∪̃D3)
(g)

and

BD1∪̃(D2∩̃D3)
(g)=min{BD1(g),BD2∩̃D3

(g)}
=min{BD1(g),max{BD2(g),BD3(g)}}
=max{min{BD1(g),BD2(g)},min{BD1(g),BD3(g)}}
=max{BD1∪̃D2

(g),BD1∪̃D3
(g)}

=B(D1∪̃D2)∩̃(D1∪̃D3)
(g)
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and

CD1∪̃(D2∩̃D3)
(g)=min{CD1(g),CD2∩̃D3

(g)}
=min{CD1(g),max{CD2(g),CD3(g)}}
=max{min{CD1(g),CD2(g)},min{CD1(g),CD3(g)}}
=max{CD1∪̃D2

(g),CD1∪̃D3
(g)}

=C(D1∪̃D2)∩̃(D1∪̃D3)
(g)

and

ψD1∪̃n(D2∪̃nD3)
(g)=ψD1(g)∪n ψD2∩̃nD3

(g)

=ψD1(g)∪n (ψD2(g)∩n ψD3(g))

= (ψD1(g)∪n ψD2(g))∩n (ψD1(g)∪n ψD3(g))

=ψD1∪̃D2
(g)∩n ψD1∪̃D3

(g)

=ψ(D1∪̃D2)∩̃(D1∪̃D3)
(g)

In the same way, (2) can be proved.

Definition 5.9. Let �D1 ,�D2 ∈ �NPNHS(X) then OR-operation of �D1 and �D2 , denoted by
�D1⊕̃�D2 , is an npnhs-set defined by

(i) AD1⊕̃D2
(g1,g2)=max{AD1(g1),AD2(g2)},

(ii) BD1⊕̃D2
(g1,g2)=min{BD1(g1),BD2(g2)},

(iii) CD1⊕̃D2
(g1,g2)=min{CD1(g1),CD2(g2)},

(iv) ψD1⊕̃D2
(g1,g2)=ψD1(g1)∪ψD2(g2), for all (g1,g2) ∈D1×D2.

Definition 5.10. Let �D1 ,�D2 ∈ �NPNHS(X) then AND-operation of �D1 and �D2 , denoted
by �D1⊗̃�D2 , is an npnhs-set defined by

(i) AD1⊗̃D2
(g1,g2)=min{AD1(g1),AD2(g2)},

(ii) BD1⊗̃D2
(g1,g2)=max{BD1(g1),BD2(g2)},

(iii) CD1⊗̃D2
(g1,g2)=max{CD1(g1),CD2(g2)},

(iv) ψD1⊗̃D2
(g1,g2)=ψD1(g1)∩ψD2(g2), for all (g1,g2) ∈D1×D2.

Proposition 5.8. Let �D1 ,�D2,�D3 ∈�NPNHS(X) then

1. �D1⊗̃�
 =�
.
2. (�D1⊗̃�D2)⊗̃�D3 =�D1⊗̃ (�D2⊗̃�D3).
3. (�D1⊕̃�D2)⊕̃�D3 =�D1⊕̃ (�D2⊕̃�D3).

5.1 Neutrosophic Decision Set of npnhs-Set
Here an algorithm is presented with the help of characterization of neutrosophic decision set

on npnhs-set which based on decision making technique and is explained with example.

Definition 5.11. Let �D ∈ �NPNHS(X) then a neutrosophic decision set of �D (i.e., �D
D) is

represented as

�D
D =

{
< T D

D (u),ID
D(u),FD

D(u) > /u : u ∈X

}
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where T D
D ,ID

D,FD
D : X→ I and

T D
D (u)=

1
|X|

∑
v∈S(D)

TD(v)�ψD(v)(u)

ID
D(u)=

1
|X|

∑
v∈S(D)

ID(v)�ψD(v)(u)

FD
D(u)=

1
|X|

∑
v∈S(D)

FD(v)�ψD(v)(u)

where | • | denotes set cardinality with

�ψD(v)(u)=
{|TψD(u)+ IψD (u)−FψD (u)|; u ∈�ψD(v)

0; u /∈�ψD(v)

Definition 5.12. If �D ∈�NPNHS(X) with neutrosophic decision set �D
D then reduced fuzzy set

of �D
D is a fuzzy set represented as

R(�D
D)=

{
ζ�D

D
(u)/u : u ∈X

}
where ζ�D

D
: X→ I with ζ�D

D
(u)= T D

D (u)+ID
D(u)−FD

D(u).

5.2 Proposed Algorithm

Once �D
D has been established, it may be indispensable to select the best single substitute from

the options. Therefore, decision can be set up with the help of following algorithm:

Step 1 Determine D = {< TD(g),ID(g),FD(g) > /g : TD(g),ID(g),FD(g)∈ I,g ∈G},
Step 2 Find ψD(g)
Step 3 Construct �D over X,

Step 4 Compute �D
D,

Step 5 Choose the maximum of ζ�D
D
(u).

Hand sanitizer is a liquid or gel mostly used to diminish infectious agents on the hands.
According to the World Health Organization (WHO), in current epidemic circumstances of
COVID-19, high-quality sanitation and physical distancing are the best ways to protect ourselves
and everyone around us from this virus. This virus spreads by touching an ailing person. We
cannot detach ourselves totally being cautious from this virus. So, high-quality sanitation can be
the ultimate blockade between us and the virus. Alcohol-based hand sanitizers are recommended
by WHO to remove the novel corona virus. Alcohol-based hand sanitizers avert the proteins of
germs including bacteria and some viruses from functioning normally. Demand of a hand sanitizer
has been increased terrifically in such serious condition of COVID-19. Therefore, it is tricky to
have good and effectual hand sanitizers in local markets. Low quality hand sanitizers have also
been introduced due to its increasing demand. The core motivation of this application is to select
an effectual sanitizer to alleviate the spread of corona virus by applying the NPNHS-set theory.
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Example 5.2. Suppose that Mr. William wants to purchase an effective hand sanitizer from the
local market. There are eight kinds of Hand Sanitizer (options) which form the set of discourse

X= {H1,H2,H3,H4,H5,H6,H7,H8}.
The best selection may be evaluated by observing the attributes i.e., k1 = Manufacturer, k2 =

Quantity of Ethanol (percentage), k3 = Quantity of Distilled Water (percentage), k4 = Quantity
of Glycerol (percentage), and k5 = Quantity of Hydrogen peroxide (percentage). The attribute-
valued sets corresponding to these attributes are:

K1 = {k11 =Procter and Gamble, k12 =Unilever}
K2 = {k21 = 75.15,k22= 80}
K3 = {k31 = 23.425,k32= 18.425}
K4 = {k41 = 1.30,k42 = 1.45}
K5 = {k51 = 0.125}
then P=K1×K2×K3×K4×K5

P= {p1,p2,p3,p4, . . . ,p16} where each pi, i= 1, 2, . . . , 16, is a 5-tuples element.

Step 1:

From Tabs. 17–19, we can construct D as

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< 0.1, 0.2, 0.3> /p1,< 0.2, 0.3, 0.4> /p2,

< 0.3, 0.4, 0.5> /p3,< 0.4, 0.5, 0.6> /p4,

< 0.5, 0.6, 0.7> /p5,< 0.6, 0.7, 0.8> /p6,

< 0.7, 0.8, 0.9> /p7,< 0.8, 0.9, 0.1> /p8,

< 0.9, 0.1, 0.2> /p9,< 0.16, 0.27, 0.37> /p10,

< 0.25, 0.35, 0.45> /p11,< 0.45, 0.55, 0.65> /p12,

< 0.35, 0.45, 0.55> /p13,< 0.75, 0.85, 0.95> /p14,

< 0.65, 0.75, 0.85> /p15,< 0.85, 0.95, 0.96> /p16

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Table 17: Degrees of membership TD(pi)

TD(pi) Degree TD(pi) Degree

TD(p1) 0.1 TD(p9) 0.9
TD(p2) 0.2 TD(p10) 0.16
TD(p3) 0.3 TD(p11) 0.25
TD(p4) 0.4 TD(p12) 0.45
TD(p5) 0.5 TD(p13) 0.35
TD(p6) 0.6 TD(p14) 0.75
TD(p7) 0.7 TD(p15) 0.65
TD(p8) 0.8 TD(p16) 0.85
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Table 18: Degrees of indeterminacy ID(pi)

ID(pi) Degree ID(pi) Degree

ID(p1) 0.2 ID(p9) 0.1
ID(p2) 0.3 ID(p10) 0.27
ID(p3) 0.4 ID(p11) 0.35
ID(p4) 0.5 ID(p12) 0.55
ID(p5) 0.6 ID(p13) 0.45
ID(p6) 0.7 ID(p14) 0.85
ID(p7) 0.8 ID(p15) 0.75
ID(p8) 0.9 ID(p16) 0.95

Table 19: Degrees of non-membership FD(pi)

FD(pi) Degree FD(pi) Degree

FD(p1) 0.3 FD(p9) 0.2
FD(p2) 0.4 FD(p10) 0.37
FD(p3) 0.5 FD(p11) 0.45
FD(p4) 0.6 FD(p12) 0.65
FD(p5) 0.7 FD(p13) 0.55
FD(p6) 0.8 FD(p14) 0.95
FD(p7) 0.9 FD(p15) 0.85
FD(p8) 0.1 FD(p16) 0.96

Step 2:

Tab. 20 presents ψD(pi) corresponding to each element of G.

Step 3:

�D can be constructed with the help of Step 1 and Step 2 same as done in Step 3 of
Section 3.

Step 4:

From Tabs. 21–24, we can construct R(�D
D) as

R(�D
D)=

{
0.0344/H1, 0.1600/H2, 0.1500/H3, 0.1289/H4,

0.1367/H5, 0.0749/H6, 0.1538/H7, 0.1006/H8

}
.

The graphical representation of this decision system is presented in Fig. 3.

Step 5:

Since maximum of ζ�D
D
(Hi) is 0.1600 so the Hand Sanitizer H2 is selected.
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Table 20: Approximate functions ψD(pi)

pi ψD(pi) pi ψD(pi)

p1 {< 0.2, 0.1, 0.2> /Ĥ1,< 0.3, 0.2, 0.1>
/Ĥ2}

p9 {< 0.4, 0.3, 0.2> /Ĥ2,< 0.6, 0.4, 0.3>
/Ĥ7,< 0.5, 0.4, 0.3> /Ĥ8}

p2 {< 0.1, 0.2, 0.1> /Ĥ1,< 0.5, 0.4, 0.3>
/Ĥ2,< 0.1, 0.4, 0.3>/Ĥ3}

p10 {< 0.2, 0.1, 0.2> /Ĥ6,< 0.6, 0.4, 0.5>
/Ĥ7,< 0.4, 0.3, 0.2> /Ĥ8}

p3 {< 0.4, 0.3, 0.1> /Ĥ2,< 0.5, 0.4, 0.3>
/Ĥ3,< 0.6, 0.3, 0.2>/Ĥ4}

p11 {< 0.5, 0.4, 0.3> /Ĥ2,< 0.6, 0.3, 0.2>
/Ĥ4,< 0.7, 0.2, 0.3> /Ĥ6}

p4 {< 0.6, 0.2, 0.3> /Ĥ4,< 0.7, 0.3, 0.4>
/Ĥ5,< 0.8, 0.1, 0.4>/Ĥ6}

p12 {< 0.7, 0.2, 0.5> /Ĥ2,< 0.8, 0.1, 0.5>
/Ĥ3,< 0.9, 0.1, 0.7> /Ĥ6}

p5 {< 0.2, 0.1, 0.1> /Ĥ6,< 0.1, 0.2, 0.1>
/Ĥ7,< 0.4, 0.3, 0.1>/Ĥ8}

p13 {< 0.2, 0.1, 0.2> /Ĥ3,< 0.4, 0.3, 0.2>
/Ĥ5,< 0.6, 0.1, 0.4> /Ĥ7}

p6 {< 0.4, 0.2, 0.3> /Ĥ2,< 0.3, 0.4, 0.3>
/Ĥ3,< 0.4, 0.5, 0.3>/Ĥ4}

p14 {< 0.2, 0.5, 0.4> /Ĥ1,< 0.5, 0.4, 0.6>
/Ĥ3,< 0.6, 0.2, 0.5> /Ĥ5}

p7 {< 0.2, 0.3, 0.4> /Ĥ1,< 0.3, 0.4, 0.4>
/Ĥ3,< 0.4, 0.3, 0.4>/Ĥ5}

p15 {< 0.6, 0.3, 0.3> /Ĥ5,< 0.4, 0.3, 0.4>
/Ĥ7,< 0.2, 0.4, 0.5> /Ĥ8}

p8 {< 0.1, 0.4, 0.3> /Ĥ2,< 0.3, 0.5, 0.6>
/Ĥ3,< 0.5, 0.4, 0.7>/Ĥ7}

p16 {< 0.3, 0.6, 0.5> /Ĥ4,< 0.5, 0.4, 0.8>
/Ĥ5,< 0.7, 0.1, 0.6> /Ĥ6}

Table 21: Membership values T D
D (Hi)

Hi T D
D (Hi) Hi T D

D (Hi)

H1 0.0431 H5 0.1656
H2 0.1825 H6 0.0964
H3 0.1588 H7 0.1588
H4 0.1606 H8 0.1231

Table 22: Indeterminacy values ID
D(Hi)

Hi ID
D(Hi) Hi ID

D(Hi)

H1 0.0519 H5 0.1956
H2 0.1713 H6 0.1203
H3 0.1900 H7 0.1081
H4 0.1969 H8 0.0788

Table 23: Non-membership values ID
D(Hi)

Hi FD
D(Hi) Hi FD

D(Hi)

H1 0.0606 H5 0.2245
H2 0.1938 H6 0.1418
H3 0.1988 H7 0.1131
H4 0.2286 H8 0.1013
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Table 24: Reduced fuzzy membership ζ�D
D
(Hi)

Hi ζ�D
D
(Hi) Hi ζ�D

D
(Hi)

H1 0.0344 H5 0.1367
H2 0.1600 H6 0.0749
H3 0.1500 H7 0.1538
H4 0.1289 H8 0.1006

Figure 3: Neutrosophic decision system on npnhs-set

6 Discussion

The development and stability of any society depends on its justice system and the judges,
lawyers and plaintiffs play a key role in its basic components. The lawyer prepares the writ petition
at the request of the plaintiff but when filing the case in the Court of Justice, he/she is in a state
of uncertainty for its success. This uncertain condition can be of fuzzy, intuitionistic fuzzy or even
neutrosophic. And after the case is submitted, the judge concerned writes his/her decision in the
light of the facts, but usually all facts have some kind of uncertainty. Such factual vagueness again
may be of fuzzy, intuitionistic fuzzy or neutrosophic nature. So when initial stage (submission
stage) and final stage (decisive stage) are neutrosophic valued and the process is executed with the
help of parameterized data (collections of parametric values) then we say that we are tackling
such problem with the help of neutrosophic parameterized neutrosophic hypersoft set (npnhs-
set). Since decision makers always face some sort of uncertainties and any decision taken by
ignoring uncertainty may have some extent of inclination. Indeterminacy and uncertainty are both
interconnected. In this study, it has been shown (i.e., see Fig. 4) that how results are affected when
indeterminacy is ignored or considered. Our proposed structure npnhs-set is very useful in dealing
with many decisive systems and it is the generalization of:

(i) Neutrosophic Parameterized Intuitionistic Fuzzy Hypersoft Set (npifhs-set) if indetermi-
nacy is ignored and remaining two are made interdependent within closed unit interval in
approximate function of npnhs-set,

(ii) Neutrosophic Parameterized Fuzzy Hypersoft Set (npfhs-set) if indeterminacy and falsity
are ignored and remaining be restricted within closed unit interval in approximate function
of npnhs-set,
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(iii) Neutrosophic Parameterized Hypersoft Set (nphs-set) if all uncertain components are
ignored and approximate function of npnhs-set is a subset of universe of discourse,

(iv) Neutrosophic Parameterized Neutrosophic Soft Set (npns-set) if attribute-valued sets are
replaced with only attributes in npnhs-set,

(v) Neutrosophic Parameterized Intuitionistic Fuzzy Soft Set (npifs-set) if attribute-valued sets
are replaced with only attributes and indeterminacy is ignored and remaining two are made
interdependent within closed unit interval in approximate function of npnhs-set,

(vi) Neutrosophic Parameterized Fuzzy Soft Set (npfs-set) if attribute-valued sets are replaced
with only attributes and indeterminacy, falsity are ignored and remaining be restricted
within closed unit interval in approximate function of npnhs-set,

(vii) Neutrosophic Parameterized Soft Set (nps-set) if attribute-valued sets are replaced with
only attributes and all uncertain components are ignored with approximate function of
npnhs-set as a subset of universe of discourse.

Fig. 5 presents the pictorial view of the generalization of the proposed structure.

Figure 4: Comparison of neutrosophic decision system on npfhs-set, npifhs-set and npnhs-set

Figure 5: Generalization of npnhs-set
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7 Conclusion

In this study, neutrosophic parameterized hypersoft set is conceptualized for the environments
of fuzzy set, intuitionistic fuzzy set and neutrosophic set along with some of their elementary
properties and theoretic operations. Novel algorithms are proposed for decision making and are
validated with the help of illustrative examples for appropriate purchasing of suitable products
i.e., Mobile Tablet, Washing Machines and Hand Sanitizers, from the local market. Future work
may include the extension of this work for:

• The development of algebraic structures i.e., topological spaces, vector spaces, etc.,
• The development of hybrid structures with fuzzy-like environments,
• Dealing with decision making problems with multi-criteria decision making techniques,
• Applying in medical diagnosis and optimization for agricultural yield,
• Investigating and determining similarity, distance, dissimilarity measures and entropies
between the proposed structures.
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53. Çağman,N., Deli, I. (2012).Means of FP-soft sets and their applications.Hacettepe Journal of Mathematics
and Statistics, 41(5), 615–625.

54. Broumi, S., Deli, I., Smarandache, F. (2014). Neutrosophic parametrized soft set theory and its decision
making. International Frontier Science Letters, 1, 1–10. DOI 10.18052/www.scipress.com/IFSL.1.1.

http://dx.doi.org/10.5281/zenodo.3951694
http://dx.doi.org/10.5281/zenodo.3723165
http://dx.doi.org/10.5281/zenodo.3723155
http://dx.doi.org/10.5281/zenodo.3275533
http://dx.doi.org/10.5281/zenodo.3782824
http://dx.doi.org/10.5281/zenodo.4300520
http://dx.doi.org/10.5281/zenodo.4300580
http://dx.doi.org/10.5281/zenodo.3782897
http://dx.doi.org/10.1016/j.asoc.2014.11.053
http://dx.doi.org/10.3233/IFS-162209
http://dx.doi.org/10.18052/www.scipress.com/IFSL.1.1

