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ABSTRACT

In many civil engineering projects, Piled Raft Foundations (PRFs) are usually preferred where the incoming load
from the superstructures is very high. In geotechnical engineering practice, the settlement of soil layers is a critical
issue for the serviceability of the structures. Thus, assessment of risk associated with the structures corresponding
to the maximum allowable settlement of soils needs to be carried out in the design phase. In this study, reliability
analysis of PRF based on settlement criteria is performed using a high-performance hybrid soft computing model.
The new approach is an integration of the artificial neural network (ANN) and a recently developed meta-heuristic
algorithm called equilibrium optimizer (EO). The concept of reliability index was used to explore the feasibility of a
newly constructed hybrid model of ANN and EO (i.e., ANN-EO) against the conventional approach of calculating
the probability of failure of PRF. Experimental results show that the proposed ANN-EO attained the most accurate
prediction with R2 = 0.9914 and RMSE = 0.0518 in the testing phase, which are significantly better than those
obtained from conventional ANN, multivariate adaptive regression splines, and genetic programming, including
the ANNoptimized with particle swarm optimization developed in this study. Based on the experimental results of
different settlement values, the newly constructedANN-EO is very potential to analyze the risk associatedwith civil
engineering structures. Also, the present study would significantly contribute to the knowledge pool of reliability
studies related to piled raft systems because the works of literature on reliability analysis of piled raft systems are
relatively scarce.
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1 Introduction

Piled Raft Foundations (PRFs) have gained popularity among the engineering fraternity where
it is necessary to transmit a large amount of superstructure load to the ground [1]. If normal pile
foundations are adopted to carry a large incoming load, the depth of the piles becomes too large
and it may prove to be uneconomical [2,3]. On the other hand, if only raft foundations are used,

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2021.015885


1034 CMES, 2021, vol.128, no.3

the resultant settlements are usually too great which may impair the serviceability performance
of the structure. In such a scenario, PRF may be chosen to carry the superstructure load where
the combined presence of raft and piles will efficiently carry the incoming load and restrict the
settlement within the permissible limits. Therefore, the installation of PRF allows an increase in
the load capacity and reduction of settlements in a very economical way.

Griffith et al. [4] modeled rafts as a two-dimensional thin plate, in which the authors consid-
ered the piles a as one-dimensional rod element and soil as a vertical spring at each node. Later,
this model was modified to take into account the effects of multilayered nonhomogeneous soil [5].
Poulos [6] modeled piles as interactive springs and soil as an elastic continuum. Brzakala et al. [7]
performed the probabilistic analysis of raft foundations resting on layered subsoil. In the said
study, the author performed a numerical analysis based on the finite element method coupled with
stochastic versions of the perturbation and the Neumann expansion methods. Russo [8] modeled
the piles as a nonlinear spring on the elastic continuum. Also, the idea of Winkler spring was
successfully applied for modelling the piles as coupled spring [9]. Niandou et al. [3] developed a
numerical model of a piled raft foundation to describe how the soil-structure interaction can be
influenced by horizontal soil variability. Alkinani et al. [1] investigated the distribution of load
under piled raft foundation considering the effect of piled raft geometry, length and diameter of
piles, and other factors. Numerical analysis was employed by the authors to estimate the behavior
of piled raft systems in soils under different conditions.

In this study, the settlement of a proposed PRF which supports a cantilever retaining wall is
performed. The approach of Davis et al. [10] and Clancy et al. [11] was employed for this purpose.
Note that, in geotechnical engineering practice, failure due to the settlement of foundations plays
an important role. In general, the concept of factor of safety (FOS) is followed to estimate the
settlement of foundations, which gives an approximate solution based on the deterministic values
of basic soil parameters. Although, the FOS-based approach resulted in a conservative analysis;
however, they turn out to be uneconomical in many cases [12]. In addition, it is common to use
the obtained value of FOS for a given case, without regard to the degree of uncertainty involved
in the calculation [13]. Hence, the FOS-based approach can be considered as irrational due to
the fact that no information about geotechnical parameters (such as cohesion, angle of internal
friction, bulk density, etc.) is complete, or even close to being complete, since soils display large
variability in their properties [7].

Thus, to incorporate the uncertainties involved in solutions to geotechnical problems, careful
consideration of geotechnical parameters should be ensured [7,13]. The reliability analysis (RA)
seems to be a very useful numerical tool for this purpose. In general, RA provides a means
of evaluating the effects of variability as well as uncertainties involved in geotechnical parame-
ters [12]. It is pertinent to mention that, assessing the risk associated with the structures using
reliability theory would require more data, time, and effort; however, following the concept of
standard deviation and coefficient of variation [13], it is possible to make a useful evaluation of
reliability. In this approach, the geotechnical parameters are treated as a random variable and the
variation of these parameters are studied for the response of the concerned geotechnical structure.
On the other hand, to lessen the time of performing the repeated task, soft computing techniques
with their competence in non-linear modelling can be employed as an alternate tool based on
the existing results of the problem under consideration [12,14,15]. Kumar et al. [12] used extreme
learning machine (ELM) and multivariate adaptive regression splines (MARS) to perform RA of
pile foundation. Kumar et al. [15] performed RA of the settlement of pile group using relevance
vector machine (RVM), generalized regression neural network (GRNN), genetic programming
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(GP), and adaptive-network-based fuzzy inference system (ANFIS). Kumar et al. [16] performed
RA of pile foundation using minimax probability machine regression (MPMR), group method
of data handling (GMDH), ANFIS, and emotional neural network (ENN). Kumar et al. [17]
used RVM, MARS, and MPMR to determine the reliability index of cantilever retaining wall,
Kumar et al. [18] used GP and MPMR for performing RA of circular footing, Roy et al. [19] used
different soft computing techniques for shallow foundation reliability in geotechnical engineering.

In the field of engineering and sciences, the application of ANN has been highlighted by many
researchers [20–24]. The greatest advantage of ANNs over other modeling techniques is the ability
to model complex nonlinear processes without presuming a functional relationship between the
input and output variables. However, ANN does present several limitations, such as its black-box
nature, trapping into local minima, and overfitting related issues, etc. [25,26]. In addition, due to
the weakness in finding the accurate global minimum, it may achieve undesirable results [24,27],
especially in the validation phase. Therefore, to overcome these issues, several meta-heuristic
optimization algorithms (OAs), such as particle swarm optimization (PSO), genetic algorithm
(GA), grey wolf optimizer (GWO), imperialist competitive algorithm (ICA), artificial bee colony
(ABC), biogeography-based optimization (BBO), salp swarm algorithm (SSA), gravitational search
algorithm (GSA), etc., have been employed by the researchers, and hybrid models of ANN and
OAs have been developed. Based on the powerful global search capabilities of these OAs, the
learning parameters of ANN are optimized to enhance its performance prediction. In the past
decade, several hybrid models such as ANN-PSO, ANN-GA, ANN-GWO, ANN-ICA, ANN-
ABC, ANN-BBO, and so on, have been used extensively to solve nonlinear and complicated
engineering problems [23,24,28–48].

In the present study, to perform the RA of a proposed PRF, a recently developed meta-
heuristic OA called equilibrium optimizer (EO) has been used to optimize the learning parameters
of ANN, and a hybrid model, i.e., ANN-EO is constructed. The reason behind the development
of the ANN-EO model was to enhance the performance of the classical ANN algorithm. On the
other hand, EO is a simple and efficient meta-heuristic OA, inspired by physics-based ‘control
volume mass balance’ models. The authors of EO [49], suggested that EO is a significantly better
algorithm and shows very competitive results compared to other well-established meta-heuristic
OA, such as PSO, GA, GWO, SSA, and GSA. Elsheikh et al. [50] used EO to augment the
prediction capability of random vector functional link network for predicting kerf quality indices
during CO2 laser cutting of polymethylmethacrylate, Foong et al. [51] used EO and vortex search
algorithm for optimizing a multi-layer perceptron neural network to estimate the factor of safety
of a single-layer soil slope, and Agnihotri et al. [52] used EO to solve economic dispatch problem
having valve point effect, real power constraint, transmission line losses, ramp rate limits and
prohibited zones of operation. Successful application of EO in different engineering disciplines
can be found in the literature.

Taking these into consideration, EO was employed in the present study to enhance the
performance of classical back-propagation ANN by optimizing the learning parameters of ANN.
Furthermore, the outcome of the proposed ANN-EO model was compared with the other bench-
mark methods of classical back propagation ANN, GP, and MARS, including the PSO optimize
ANN (ANN-PSO), another hybrid model proposed in this study. Subsequently, to perform the
RA of PRF, an explicit relationship was considered, which gives the actual response of the
structure as well as the implicit relationship between the input and output variables. However,
prior to performing RA, the settlement of the proposed PRF was calculated. Subsequently, the
reliability index (β) and probability of failure (POF) were calculated at different assumed values
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of permissible settlement. To investigate the POF at different settlement values, a settlement range
between 75 and 100 mm was considered and analyzed. In the present study, RA of a proposed
retaining wall supported on piles is carried out. The wall supported on piles was modelled as
per the theory of piled-raft foundation [53]. For this purpose, soil samples were collected during
the geotechnical investigation process of the proposed conduction site of PRF located near the
Harohar River, Lakhisarai, Bihar (India). 7 boreholes of 15 m each were dug and soil samples
with the diameter of 38 mm were collected by the method of SPT. Necessary soil tests were
carried out and the information related to geotechnical parameters was extracted and used in the
present study to train and verify the proposed ANN-EO and ANN-PSO models.

The remainder of this study is organized as follows: Section 2 reviews the theoretical details
of piled raft analysis, reliability analysis, and the details of employed soft computing models and
meta-heuristic OAs. Section 3 describes the study site and the descriptive statistics of geotechnical
parameters, while Section 4 presents the analysis of the proposed PRF. The next section, i.e.,
Section 5 reports the data processing and analysis, which is followed by the results, discussion,
and conclusion in Sections 6–8, respectively.

2 Methodology

The following sub-sections describe the theoretical background of piled raft analysis. In this
study, the PRF is designed following the earlier devised methods of Daviset al. [10] and Clancy
et al. [11]. The methodology of RA is also discussed in the following sub-section.

2.1 Piled Raft Analysis
Davis et al. [10] and Clancy et al. [11] used several influencing factors to determine the set-

tlement of the PRS which includes: correction factor for foundation flexibility; correction factors
for Gibson soil profiles; displacement influence factor; and the correction factors for foundation
embedment. Based on the type of foundation to be installed, the values of different corrections
factors can be calculated as follows.

a) Correction factor for foundation flexibility: In reality, no structure is either fully rigid or fully
flexible. Therefore, a correction factor (IF ) is introduced to consider the effect of the foundation
rigidity which can be expressed as:

IF ≈ π

4
+ 1

4.6+ 10KF
(1)

where KF is the foundation flexibility factor given by:

KF ≈ (Efdn/EsAV)(t/a)3 (2)

where a is the equivalent radius of the foundation; Efdn is the modulus of elasticity of foundation
material; EsAV represents equivalent modulus of elasticity of soil located beneath the foundation
base; and t represents the thickness of the foundation. A foundation with different rigidity
conditions, the values of KF are given by:

• For a perfectly rigid foundation, KF > 10.
• Foundation with intermediate flexibility, 0.01 ≤KF ≤ 10.
• For a perfectly flexible foundation, KF < 0.01.
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b) Correction factor for Gibson soil profiles: A soil whose modulus of elasticity (ES) increases
linearly w.r.t. the depth is termed as Gibson soil. The behavior of Gibson soil can be expressed
as follows:

ES =E0+ kEz (3)

where E0 is the modulus of elasticity of soil below the foundation and kE is the rate of increase
of modulus of elasticity with depth is known as correction factors for Gibson soils.

c) Displacement influence factor: The expression for calculating displacement influence factor is
given by:

IG ≈ 1

1+ 0.6βG−0.8 (4)

where βG is termed as normalized Gibson modulus ratio whose value generally lies in the range
of 0.01 to 100. The expression for calculating βG is given by:

βG =E0/(kE .d) (5)

d) Correction factor for foundation embedment: The correction factor for embedment of founda-
tion base (IE) suggested by Burland [54] is the function of the proportion of embedment depth
(zE) to the foundation diameter (d) and Poisson’s ratio (ν) of the supporting soil medium, is given
by:

IE ≈ 1− 1
3.5 exp(1.22ν − 0.4)[(d/zE)+ 1.6]

(6)

Considering all the correction factors, the final expression for calculating the settlement at the
center of shallow spread footings and mat foundations can be given as:

ρcenter = qdIFIGIE(1− ν2)

E0
(7)

where IF , IG and IE are the corresponding correction factor given in Eqs. (1), (4), and (6),
respectively. In addition to the correction factors, the stiffness of raft foundation and stiffness of
pile group can be calculated as follows:

i. Stiffness of raft foundation

The ratio of the load and its corresponding settlement at the center of the raft is known as
the stiffness of the raft foundation and is denoted by Kr. The expression of which is given by:

Kr= Load on raft
Settlement at the center of raft

= Pr
ρcenter

= (π/2)draftG0

IGIFIE(1− νsoil)
(8)

where draft is the equivalent raft diameter.

ii. Stiffness of pile group

To determine the stiffness of the pile group, the stiffness of the single pile should be deter-
mined first. Using the concept of group efficiency of piles proposed by Fleming et al. [55], the
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stiffness of the combined piled group can be estimated. The single pile head response is given by
the formula suggested by Randolph et al. [53] using the linear load transfer function, given by:

Pt
Glr0wt

=
4η

(1−ν)ξ
+ρ 2π

ζ
tanhμl

μl
l
r0

1+ 1
πλ

4η
(1−ν)ξ

tanμl
μl

l
r0

(9)

where Pt and wt are the total load and displacement at the top of the pile, respectively; G is
the value of modulus of shear at a depth of z; l and r0 are the length and radius of the pile,
respectively. Some other parameters useful for modeling PRS are given below:

• For Under-reamed pile: η = rb
r0
; for end-bearing pile: ξ = Gl

Gb
; herein, the subscript b refers

to any parameter at or below the base of the pile.

• ρ is a heterogeneity factor for soil modulus which is expressed as: ρ = Gavg
Gl

.

• The soil-pile stiffness ratio λ is expressed as: λ= Ep
Gl
.

• ζ is the ratio of maximum radius of influence (rm) and radius of pile (r0), given by: ζ =
ln(rm/r0).

• Maximum radius of influence (rm) can be calculated using the following expressions:

rm = [0.25+ ξ {2.5ρ(1− ν)− 0.25}] l for ξ �= 1 (10)

and, in case of friction pile, it is given by:

rm = 2.5ρ (1− ν) l when ξ = 1 (11)

• The effect of compressibility of pile (μl) is given by: μl=√
2/ζλ(l/r0).

• The proportion of load reaching the pile base is given by:

Pb
Pt

=
4η

(1−ν)ξ
1

coshμl
4η

(1−ν)ξ
+ρ 2π

ζ
tanμl

μl
l
r0

(12)

• From the equations stated above, the single pile stiffness is evaluated as follows:

Pt
wt

= k1 =Glr0

4η
(1−ν)ξ

+ρ 2π
ζ

tanhμl
μl

l
r0

1+ 1
πλ

4η
(1−ν)ξ

tanhμl
μl

l
r0

(13)

Due to interaction effects, the stiffness of each pile in a group is reduced in comparison to a
single pile. This may be quantified using efficiency factor η as given below:

η ≈ n−e (14)

where n represents the number of piles in the pile group. The group stiffness (kp) is expressed as:

kp ≈ n1−ek1 (15)

where n is the total number of piles in a pile group; k1 is the stiffness of a single pile; e is the
exponent correction factor which generally lies in the range of 0.3 to 0.5 for primarily friction
piles, rising to 0.6 or higher for end-bearing piles. For friction piles, Randolph et al. [53] and
proposed a set of design charts which is generally used to obtain the values of e. The exponent
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term is expressed in terms of a base value e1 as a function of the slenderness ratio
(
l
d

)
of the pile

and four characteristics factors c1, c2, c3 and c4 [55]. The characteristic factors are the functions

of stiffness ratio
(
Ep
G1

)
, spacing ratio

( s
d

)
, homogeneity factor (ρ) and Poisson’s ratio (ν). The

term e is expressed as follows:

e= e1(l/d)× c1(Ep/G)× c2(s/d)× c3(ρ)× c4(ν) (16)

iii. Interaction factors

Interaction factor α, which is used to consider the effect of adjacent piles in the pile group. It
is expressed as the ratio of additional settlement contributed by the adjacent piles to the settlement
caused due to a single pile. A pile with a circular cap of radius rc (refer Fig. 1a), the expression
for interaction factor can be given by [54]:

αrp= 1−
ln(

rc
r0

)

ζ
(17)

where rc represents the average radius of pile cap; r0 is the radius of pile; and ζ = ln rmr0 . Herein,

the term rm can be calculated using the following expression:

rm = [0.25+ ξ{2.5ρ(1− νs)− 0.25}]l (18)

where ξ = Gl
Gb
; ρ = Gavg

Gl
; νs = Poisson’s ratio of soil; and l = pile length. The expression given

in Eq. (17) may also be used for larger pile groups. Esl = equivalent modulus of elasticity of
soil at the level of pile tip; Esb is the equivalent modulus of elasticity of soil at bearing stratum
below pile tip; and EsAV is the average equivalent modulus of elasticity of soil along pile shaft.
The graphical representation of modulus of elasticity with respect to depth for a simplified pile
cap unit is shown in Fig. 1b. Poulos et al. [56] proposed a relationship for calculating combined
piled-raft stiffness Kpr as follows:

Kpr=
Kp+Kr(1− 2αcp)

(1−αcp
2Kr/Kp)

(19)

where Kp is the stiffness of the pile group; Kr is the stiffness of raft; and αcp is the raft-pile
interaction factor.

(a) (b)

Figure 1: (a) Pile profile and (b) representation of modulus of elasticity of a simplified piled raft
unit
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The raft stiffness can be calculated using the formula given by Mayne et al. [57]. Also, single
pile stiffness is calculated from the elastic theory and then multiplied by a group stiffness efficiency
factor, which is estimated approximately from elastic solutions as discussed before. The proportion
of the total applied load carried by the raft is:

χ = Pr

Pt Kr(1−αrp)

Kp+Kr(1−αcp)

(20)

where Pr = Load carried by the raft; Pt = Total applied load. Therefore, the total load is shared
between the raft and the pile group in proportion to weightage factors χ and (1 −χ ), respectively.
If P1 be the total incoming load on the PRF and Pup be the pile group capacity, then the total
applied load P1 at which the pile capacity reached is expressed in Eq. (21) as per [10]:

P1 =
Pup
1−χ

(21)

The individual pile capacity for the present work is determined as per IS 2911 (Part 1: Section
2): 2010. The group capacity Pup is later obtained by multiplying the individual pile capacity with
the total number of piles present in the pile group.

2.2 Calculation of Settlement
Davis et al. [10] proposed a simplified load versus settlement curve to estimate the settlement

of PRF (refer Fig. 2), the first part of this curve (from point O to point A) is used when the
total applied load (P1) is less than the load at which pile group capacity (Pup) is reached, i.e.,
P1 <Pup; Up to this point (point A) both pile and raft remain elastic. In this case, the settlement
of raft can be expressed as the ratio of total externally applied load to the stiffness of PRF, given
by:

for P1 < Pup, Spr=
Pup
Krp

(22)

On the other hand, when the total applied load (P1) exceeds the pile group capacity, i.e.,
P1 >Pup; the settlement of PRF can be calculated using the expression given below:

for P1 > Pup, Spr= P1

Krp
+ P−P1

Kr
(23)

2.3 Reliability Analysis (RA)
The reliability of a geotechnical structure is its ability to fulfill its design objectives for a given

period under certain loading conditions. In other words, it is the probability that the structure
does not reach the specified limit state for a specified period. For carrying out RA, it is necessary
to define relationships between a set of input and output variables. Explicit relationship for RA
was obtained from the analytical formulation given by Davis et al. [10] and Clancy et al. [11].
In the present work, the reliability of the PRF was performed based on serviceability limit state
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criterion; and the method adopted for RA is the First Order Reliability Method (FORM). A brief
description of the said method is described below.

Figure 2: Load settlement curve for a simple PRF [10]

FORM is based upon the first few terms of Taylor’s series expansion [58]. This method is
useful for estimating the mean value and variance of the performance function. FORM is often
referred to as the first-order second-order method (FOSM).

Let the demand (expected loadings) of an engineering system is DL and the capacity (available
resistance) is CR. Note that, generally, the values of both CR and DL are uncertain. The associated
variables have mean or expected values, variances and covariance. The margin of safety of the
system is expressed as a limit state function often known as performance function (CR,DL) .
Hence, the failure surface equation can be described as follows:

M =CR−DL = 0. (24)

This limit state function divides a region between the safe and unsafe condition. The
probability of failure may be expressed as:

pf =P[(CR−DL)≤ 0] (25)

Using the above equations, the reliability index, β can be calculated using the expression given
below:

β = μC −μD√
(σc

2+ σD
2)

(26)

where μC and μD are the mean of capacity and demand, respectively; σC and σD are the
corresponding standard deviations of capacity and demand. The probability of failure is given by;

pf = 1−φ

[
μC −μD√
(σc

2+ σD
2)

]
(27)
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where φ(..) is the cumulative distribution function for the standard normal variate. More details of
this technique can be found in the literature [14,15,59–62]. A process diagram of RA is presented
in presented in Fig. 3, in which both actual and computational process of calculating POF are
presented.

Figure 3: A process diagram of RA through FORM and computational modelling

2.4 Theoretical Background of the Employed Algorithms
In this sub-section, short descriptions of different soft computing techniques are presented.

Begin with presenting the methodologies of ANN, GP, and MARS used in this study, which is
followed by discussing the working principle of EO and PSO. Finally, the hybridization process
of ANN-based hybrid models, i.e., ANN-EO and ANN-PSO are presented.

2.4.1 Artificial Neural Network (ANN)
ANN is a bio-inspired computing model made up of hundreds of individual units (artificial

neurons) attached to coefficients (weights) that establish the neural structure. A structure of ANN
consists of an input layer, hidden layer, and output layer with one or more neurons in each layer.
As they play a role in information processing, they are also called processing elements (PEs). Each
PE has its output, weighted inputs, and transfer function. PE is basically an equation that strikes a
balance between inputs and outputs. Since connection weights denote the system memory, ANNs
are also referred to as connectionist models. ANN has become a popular mathematical instru-
ment for various purposes, including function approximation and pattern recognition. Successful
application of this ML algorithm can be found in the literature [22–24,26,27].

2.4.2 Genetic Programming (GP)
GP is a symbolic optimization technique that creates computer programs based on the prin-

ciple of Darwinian natural selection [63–65]. It is an extension of genetic algorithms (GA). The
method was originally proposed by Koza [66], which mimics the biological evolution of living
organisms. In GP, initially, a random population of individuals is created to achieve high diversity.
Note that, the creation of initial populations is a blind random search. Once the initial population
is created, GP evaluates individuals, selects them for reproduction, and generates new individuals
by mutation, crossover, and reproduction; and finally, it creates new generations in all iterations.

In GP, the evolutionary process (a combination of crossover, mutation, and reproduction)
continues by evaluating the fitness of the new population and starts a new round of evolutionary
process in the next iteration. The best program that appeared in any generation, the best-so-far
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solution, defines the output of the GP algorithm. Successful implementation of this regression
technique can be found in the analysis of slope stability, liquefaction susceptibility, compressive
strength of concrete, including other areas of civil engineering [63–65,67–75].

2.4.3 Multivariate Adaptive Regression Splines (MARS)
MARS, introduced by Friedman [76] is a non-parametric regression technique that is capable

of modelling non-linear relationships between the independent and dependent variables. It uses
series of piecewise linear segments having different gradients known as splines. Splines are the
flexible linear lines that are linked with knots. MARS simplifies complex multivariate datasets to
relatively simple and linear additive models. It uses recursive partitioning and spline fitting to
handle both quantitative and categorical predictors.

In the first phase, i.e., forward phase, it selects only one input variable and placed the knots at
random positions within the range of each predictor to define a pair of Basis functions (BFs). BFs
is nothing but a spline. In each step, the knot and its corresponding pair of BFs are fitted to yield
the maximum reduction in sum-of-squares residual error by adding new BFs until the minimum
threshold value is reached. However, the addition of BFs yields a complex and over-fitted model
which shows poor performance for the new dataset.

In order to improve the performance of the over-fitted model, MARS starts pruning of least
performing BFs in the subsequent phase, i.e., deletion of BFs takes place in the phase. Generally,
MARS removes one BF at a time and assesses the model based on the generalized-cross-validation
(GCV) criterion [72,77]. This process continues until the lack-of-fit criterion is minimum. Finally,
produced the optimum model with the optimum number of BFs.

2.4.4 Equilibrium Optimizer (EO)
EO is a recently developed meta-heuristic optimization algorithm [49], resourced from physics-

based dynamic mass balance theory. It typically characterizes the interaction of search agents
according to governing rules rooted in physical processes. The working principle of EO is similar
to the other metaheuristics algorithms where the search operation is performed using a set of
candidate solutions. During the search, the candidate solutions update their concentration with
respect to the best solution obtained till that point, to finally arrive at the equilibrium state, which
provides the optimal result. These candidate solutions are called concentration vectors (CVs) given
by:

Ci =Cmin+ rand× (
Cmax−Cmin) , i= 1, 2, . . . ,N (28)

where Ci is the ith CVs; Cmaxand Cmin are the upper and lower bound vectors; the function/term
rand indicates random numbers between 0 and 1 (uniformly distributed); and N is the number of
particles. In each iteration, particles are evaluated based on their fitness function and sorted to
determine the equilibrium candidates. The mathematical expression used to update the CVs can
be given by:

Ct+1
i =Ct

EQ+
(
Ct
i −Ct

EQ

)
×Fti +

(
1−Fti

)× Gt
i

λtiV
t
i

(29)

where Ct
EQ is the equilibrium concentration; Ct

i and Ct+1
i are the CVs in t and t+ 1 iterations,

respectively; the term
(
Ct
i −Ct

EQ

)
× Fti is responsible for global search in the exploration stage,
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and the final term
(
1−Fti

) × Gti
λtiV

t
i
is responsible for the exploitation operation. It also extracts

useful information from the explored search area. The randomly selected CVs, i.e., Ct
EQ, from the

equilibrium pool can be constructed as follows:

Ct
EQ =

{
Ct
EQ1

,Ct
EQ2

,Ct
EQ3

,Ct
EQ4

}
(30)

where Ct
EQ1

,Ct
EQ2

,Ct
EQ3

, and Ct
EQ4

, are the first four best CVs considered as approximated equi-

librium states. In EO, the exponential term Fti given in Eq. (31), which controls the exploration
and exploitation operation during the search.

Fti = exp
(
(T −T0) λti

)
(31)

T =
(
1− t

tmax

)a2×t/tmax
(32)

T0 =T + 1
λti

× ln
(
−a1sign(r− 0.5)(1− eλT)

)
(33)

where t and tmax denote the current iteration and the maximum number of iterations, respectively;
a1 is the exploration controlling parameter; r is a random number uniformly distributed between 0
and 1. The values of a1 and a2 are fixed to 2 and 1, respectively; the term sign(r−0.5) is used to
decide the direction of exploration and exploitation operation. Substituting the term of Eqs. (32)
and (33) in Eq. (31), the final expression of Fti can be given by:

Fti = a1× sign(r− 0.5)(e−λtiT − 1) (34)

The iteration rate Gt
i contributes in exploiting the search space during the process of search,

which are given by:

Gt
i =Gt

0× exp
(
(T −T0)× λti

)
(35)

Gt
0 = pti ×

(
Ct
EQ−λtiC

t
i

)
(36)

pti =
{
0.5 r1r2 ≥ gtp
0 otherwise

(37)

where pti denotes the iteration rate; gtp is the iteration probability; and r1 and r2 are the two
random numbers, which are uniformly distributed between 0 and 1.

2.4.5 Particle Swarm Optimization (PSO)
PSO is a population-based meta-heuristic algorithm introduced by Kennedy et al. [78] as a

member of the swarm-based community. The PSO algorithm has mainly been inspired by fish
schools or bird flocks, whose main purpose is to find globally optimal solutions in a multidimen-
sional space. It starts with the initialization of particle positions and random velocities. To find
the best position in the multidimensional space, each particle then attempts to update its position
based on its velocity, as well as the personal best position (best position reached by a single
particle) and global best position (best position reached by individual particles). The position of
each particle is updated based on its personal best position and the direction of the global best
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position. Meanwhile, particle velocity is updated according to the difference between its personal
and global best positions. The particles then use a combination of exploration and exploitation
to converge around the optimal solution. The velocity and position of a particle in each iteration
is given by:

Vt+1
i =ωVt

i + c1r
t
1

(
Pt
i −Xt

i

)+ c2r
t
2(P

t
g −Xt

i) (38)

Xt+1
i =Xt

i +Vt+1
i (39)

where P, V , g, and i stand for position, velocity, global, and personal, respectively; r1 and r2 are
two random numbers in the range [0, 1]; c1 and c1 are the acceleration parameters demonstrating
a particle’s confidence level against its personal position and global position; and ω is the inertia
weight. The decreasing trend of inertia weight over time is shown below:

ωt =ωmax− ωmax−ωmin

tmax
t (40)

where ωmin and ωmax denote primary inertia weight and final inertia weight, respectively; tmax
is the maximum number of iterations. PSO is quite similar to GA, except that in the former,
particles support each other, and in the latter, they compete with each other. PSO is distinguished
from other optimization methods by its large particle number, enabling us to find globally optimal
solutions.

2.4.6 Hybridization of ANN-Based Meta-Heuristic Models
In engineering applications, many studies have been performed to enhance the performance

of traditional ML algorithms by implementing meta-heuristic OAs, such as PSO, GA, etc. Due to
the weakness of traditional ML algorithms, such as ANN, in finding the exact global minimum,
ANN may produce undesirable results [24,27]. In addition, ANN is more likely to be caught up
in local minima. Therefore, implementing meta-heuristic OAs can solve the problem by optimizing
the learning parameters (weights and biases) based on error criteria.

In this study, two meta-heuristic OAs, namely EO and PSO are used to optimize the
weights and biases of conventional ANN. The learning parameters of ANN include input to
hidden weights, hidden biases, hidden to output weights, and output biases. A model with i
input(s), h hidden neuron(s) and o output(s), the total number of weights and biases will be
i × h + h + h × o + o. The methodical development of the ANN coupled EO (ANN-EO) and
ANN coupled PSO (ANN-PSO) can be described as follows: a) selection of hyper-parameters
(number of hidden neurons and activation function) of ANN; b) random generation of weight
and biases; c) selection of different parameters of meta-heuristic OAs, such as maximum number
of iteration, population/particle size, upper and lower bounds, etc.; d) training of ANN through
OAs; e) generation of optimized values of weight and biases; f) check error criteria and maximum
number of iteration; and g) selection of optimal values of optimized weight and biases based on
minimum error criteria. Finally, the optimized learning parameters were used to predict the new
dataset, i.e., the testing dataset. Note that, although the procedure for developing the ANN-EO
and ANN-PSO are the same; however, the values of optimized weight and biases are different
for the said models. A flow chart showing the steps of ANN-based hybrid modeling is shown in
Fig. 4.



1046 CMES, 2021, vol.128, no.3

Figure 4: Flow chart showing the steps in developing ANN-based hybrid models

2.4.7 Performance Evaluation
To assess the performance of the developed models, six widely used performance indices,

namely determination coefficient (R2), Willmott’s Index of agreement (WI), Legates & McCabe’s
Index (LMI), root mean square error (RMSE), mean absolute error (MAE), and weighted mean
absolute error (WMAPE) were determined and assessed in detail. The details of these indices can
be found in the literature [16,79–86]; however, for convenience, the mathematical expressions are
given below. In addition, for a perfect predictive model, the ideal values of these indices are given
in Tab. 1.

R2 =
∑n

i=1(yi− ymean)2−
∑n

i=1(yi− ŷi)2∑n
i=1(yi− ymean)2

(41)

WI = 1−
[ ∑n

i=1(yi− ŷi)2∑n
i=1

{∣∣ŷi− ymean
∣∣+ |yi− ymean|

}2
]

(42)

LMI = 1−
[ ∑n

i=1 |yi− ŷi|∑n
i=1 |yi− ymean|

]
(43)

RMSE =
√√√√1
n

n∑
i=1

(yi− ŷi)2 (44)

MAE = 1
n

n∑
i=1

∣∣(ŷi− yi
)∣∣ (45)
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WMAPE =
∑n

i=1

∣∣∣yi−ŷiyi

∣∣∣× yi∑n
i=1 yi

(46)

where yi represents the measured value; ŷi represents the predicted value; ymean is the mean of the
measured variables; and n is the total number of observations under consideration. Among these
indices, R2, WI, and LMI measure the linear regression relationship between the measured and
predicted variable, whereas RMSE, MAE, and WMAPE determine the error associated with the
prediction models.

Table 1: Ideal values of different performance indices

Particulars Performance parameters

Parameter R2 WI LMI RMSE MAE WMAPE
Ideal value 1 1 1 0 0 0

3 Description of the Study Site and Collected Dataset

The site under consideration is located near the Harohar River (lat. 25◦ 12′49.5′′ N, long.
86◦ 04′13.9′′ E) was selected as the study area. A 2.5 m wide approach road was planned to be
built towards a bridge over the river Harohar. Since the proposed level of the approach road
was higher than the existing ground level aligning with the river; the soil was dumped to raise
the existing ground level up to the level of the approach road. But, after filling of soil material,
bearing capacity failure was observed for the existing ground level. Later, a cantilever retaining
wall was proposed to be constructed at the site in order to support the soil standing up to the
level of the approach road. The details of the cantilever retaining wall are shown in Fig. 5. It
is observed that the underlying soil has poor properties in terms of cohesion (C) and angle of
internal friction (φ). Therefore, to safeguard against possible failure of the structure due to poor
soil properties, the base slab was planned to be supported on piles extending up to a depth of
15 m or at least where the sand layer was found. In the present work, the base slab along with
piles are modeled as per the theory of PRF proposed by Clancy et al. [11], and the resulting
settlement of the whole system was calculated accordingly.

To obtain information about the sub-soil conditions, 7 boreholes of 15 m each were dug and
soil samples with a diameter of 38 mm were collected by the method of SPT. The soil samples
were collected at an interval of 1.5 m depth. After the geotechnical investigation, necessary soil
tests were carried out and the information extracted from the tests include C, φ, and bulk
density of soil (γ ). These soil parameters along with Young‘s modulus of soil (Esoil), Young’s
modulus of pile material (Econc), Poisson ratio of soil (νsoil), Poisson ratio of pile material (νconc),
and adhesion factor of pile and soil (α) were considered for the settlement calculation of PRF.
These parameters are the most influencing factors and hence were used as input parameters to
estimate the settlement of PRF. Tab. 2 represents the minimum and maximum values of the input
parameters obtained from soil investigation reports.
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(a)

(b)

(c) (d)

Figure 5: Schematic details of the proposed PRS: (a) Cantilever retaining wall with pile arrange-
ment; (b) top view of PRS; and (c, d) sectional view of PRS
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Table 2: Details of soil properties and pile material

Input parameters Unit Min. value Max. value

C Cohesion kN/m2 21.02 29.93
φ Angle of internal friction ◦ 27.33 35.89
γ Bulk density of soil kN/m3 14.02 16.99
Esoil Young’s modulus of soil N/mm2 9.20 75.41
Econc Young’s modulus of pile material N/mm2 20022 29969
νsoil Poisson ratio of soil – 0.25 0.40
νconc Poisson ratio of pile material – 0.20 0.35
α Adhesion factor of pile and soil – 0.70 0.99

4 Analysis of Proposed PRF

In this section, the analysis of the proposed PRF, which is supposed to carry the load from
a cantilever retaining wall is presented. Fig. 5 shows the details of PRF, including the details of
each pile and sub-soil properties. As can be seen, the proposed PRF consists of 26 piles, a 1 m
thick raft, and an 8.5 m high cantilever retaining wall with a 5 m wide base. All piles are 15 m
long and 0.6 m in diameter. The spacing between the piles is 2.4 m in both directions. The overall
height of the retaining wall including the raft is 9.5 m. The width of the stem of the retaining
wall at the top is 0.30 m, and it increased to 0.6 m at the base giving a clearance of 2.2 m on
each side of the raft. The cantilever retaining wall was designed to construct the approach road
as shown in Fig. 5c.

Different soil properties, such as C, φ, and γ , including the standard penetration test (SPT)
value, i.e., N value were collected from the project site. Seven boreholes were dug to carry out the
soil investigation work. Based on the bore-log and soil test report, it was observed that the first
12 m soils were clayey in nature and below 12 m depth, it was mainly sandy soil. The soil which
was dumped to raise the level of the existing ground level to the level of the approach road was
mainly sandy soil with γ = 18 kN/m3 and φ = 30◦.

In the first step, the incoming load and the moment on the PRF were calculated. The
retaining wall is shown in Fig. 5c, was analyzed for the total height of the backfill material with
soil properties γ = 18 kN/m3, φ = 30◦, and νs = 0.50. Using the expressions (19), (22) and (23)
given in the methodology section, the stiffness of the pile group and its corresponding settlement
were calculated as 1.805 MN/mm and 66.08 mm, respectively.

In the subsequent step, RA of PRF was performed considering the most important influenc-
ing parameters, i.e., C, φ, γ , Esoil, Econc, νsoil, νconc, and α. The parameters C, φ, γ , and Esoil
considered in the analysis are Cavg (average cohesion for the 12 m clay layer), φavg (average angle
of internal friction for the 3 m sand layer), φb (angle of internal friction at the pile bottom),
γavg (average bulk density of soil for the layer under consideration), ES0 (Young’s modulus of
soil at the pile top), ESm (Young’s modulus of soil at the mid-depth) and ESb (Young’s modulus
of soil at the pile bottom). To perform the RA, 80 random datasets were generated considering
the maximum and minimum values of soil properties (refer Tab. 2), obtained from the soil test
reports, and the settlement of PRS was calculated for each dataset. Subsequently, β and POF of
PRF were calculated. Descriptive statistics and scatter density plots of the variables are shown in
Tab. 3 and Fig. 6, respectively.
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It is pertinent to mention here that, the aforementioned parameters (C, φ, γ , Esoil, Econc, νsoil,
νconc, and α) are mainly cohesion, angle of internal friction, bulk density, young’s modulus, and
Poisson ratio of soil along with Poisson ratio of pile material, and are important properties of
soil and pile materials. These parameters were used to calculate the settlement of PRF. Therefore,
these parameters are responsible for pile settlement and are considered in the present analysis as
the input parameters.

Table 3: Descriptive statistics of the input and output variables

Parameters Unit Min. Avg. Max. Stnd. error Stnd. Dev. Kurtosis Skewness

γavg kN/m3 14.02 15.59 16.99 0.1 0.9 −1.26 −0.07
ES0 N/mm2 9.2 17.6 25.1 0.62 5.59 −1.43 −0.19
ESm N/mm2 18.4 35.2 50.2 1.25 11.17 −1.43 −0.19
ESb N/mm2 54.97 63.12 75.41 0.59 5.27 −0.48 0.49
Econc N/mm2 20022 25403 29969 326 2913 −1.23 −0.18
Cavg kN/m2 21.02 25.46 29.93 0.31 2.73 −1.29 −0.01
φavg

◦ 28.04 32.22 35.89 0.25 2.21 −1.11 −0.12
φb

◦ 27.33 31.47 35.69 0.29 2.55 −1.25 0.15
α – 0.7 0.85 0.99 0.01 0.09 −1.21 −0.13
νsoil – 0.25 0.34 0.4 0 0.04 −1.1 −0.36
νconc – 0.2 0.28 0.35 0 0.04 −1.37 −0.11
Settlement mm 41.79 57.54 76.28 1.01 9.02 −0.8 0.42

5 Data Processing and Analysis

The most crucial step for any type of problem in the field of soft computing techniques, such
as ANN techniques, is considered to be the normalization of data. This is a pre-processing phase.
In the present study, 80% of the total dataset, i.e., the training dataset was used to construct the
models, while the balance 20% dataset (testing dataset) was used to validate the developed models.
Before the training and testing bifurcation, the total dataset was normalized in the range of 0 to
1 using the expression given by:

xnorm = xi−xmin
xmax−xmin

(47)

where xi is the ith instance of the dataset under consideration, xnorm is the normalized values of
xi, xmin and xmax represent the minimum and maximum values of xi.
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Figure 6: (a–l)—Scatter density plot between input and output variables (V1 to V11 represent
input variable from 1 to 11)
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6 Results

6.1 Configuration of Developed Models
To determine the structure of the proposed ANN-based hybrid models, it is necessary to select

the optimum number of hidden neurons for developing robust models. In the present study, the
number of hidden neurons varying from 1 to 15 was examined for conventional ANN. In addition,
the log-sigmoid and tan-sigmoid were used as the activation function. Following the trial-and-
error approach, the most appropriate number of hidden neurons was obtained as 10 and the
tan-sigmoid activation function was more appropriate for ANN-EO and ANN-PSO models. The
EO and PSO optimized ANN includes 11 neurons in the input layer, 10 neurons in the hidden
layer, and 1 neuron in the output layer (a structure of hybrid ANN model is presented in Fig. 7).
The configuration of the proposed hybrid models including the details of population/particle size,
the maximum number of iterations, upper and lower bounds, etc., are indicated in Tab. 4 along
with the convergence behavior in Fig. 8.

Figure 7: A structure of the developed hybrid ANN model

Table 4: Details of parametric configuration of ANN and ANN-based hybrid models

Parameters ANN ANN-EO ANN-PSO

Input neurons 10 10 10
Hidden neurons 10 10 10
No. of hidden layer 1 1 1
Population/particle size, – 50 50
Maximum number of iterations 1000 1000 1000
Upper and lower bounds – +1, −1 +1, −1
Inertia weights (wmax, wmin) – – 0.9, 0.4
Acceleration coefficient (c1, c2) – 1, 2 –
No. of learning parameters 196 196 196
Exploration parameter (a1) – – 2
Exploitation parameter (a2) – – 1
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Figure 8: Convergence behavior of ANN-EO and ANN-PSO models

Opposite to the ANN-based models, the parameters of GP and MARS were also designed
following the trial-and-error approach. Note that, for constructing an optimum model, the param-
eters of GP and MARS should be selected suitably. In GP, the parameters are population
size, generation number, tournament size, elite fraction, tree depth, number of genes, mutation
probability, crossover probability, reproduction probability, etc., while in MARS, number of BFs,
GCV per knot, self-interaction, pruning, and aging factor are the most important parameters. It
may also be noted that inappropriate values of such parameters increase the complexity of the
prediction model, which in turn exhibits poor performance. Tabs. 5 and 6 list the details of GP
and MARS parameters obtained through a trial-and-error approach. The following sub-section
describes the outcomes of the developed ANN-based models including the GP and MARS in
estimating the settlement of PRF, followed by the results of RA and POF.

Table 5: Configuration of GP model

Parameters Values

Population size 400
Maximum number of generations 150
Tournament size 25
Elite fraction 0.95
Maximum tree depth 4
Maximum no. of genes 6
Mutation probability 0.05
Crossover 0.85
Direct reproduction 0.10
Ephemeral random constants −10 to +10
Function set ×, +, −, tanh, sin, cos, exp
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Table 6: Configuration of MARS model

Parameters Values

GCV penalty per knot (C) 0
Cubic modelling 0 (No)
Self-interactions 1 (No)
Maximum interactions 1
Threshold 1e−04
Prune 1
Artificial ageing factor 0
No. of BFs in the final model 9

6.2 Outcomes of the Developed Models
The prediction outcomes of the developed models in predicting the settlement of PRF are

presented in Figs. 9 and 10 for the training dataset, and Figs. 11 and 12 for the testing dataset.
Herein, the model performance when it was used to predict the settlement of PRF is reported
first. It is noted that model performance with the training dataset was employed to express the
goodness of fit of the developed models through the performance parameters, details of which
are presented in Tab. 7. Based on the experimental results with the R2 and RMSE criteria, it can
be seen the R2 values of the developed models lies in the range of 0.9563 to 0.9911 (training
stage), while the values of RMSE lies in the range of 0.245 to 0.0542 (training stage). These
results clearly demonstrate that the developed models obtained higher prediction performance in
estimating the settlement of PRF. In addition, the values of MAE and WI in the training stage
were obtained in the range of 0.201 to 0.0381 and 0.9887 to 9978, respectively, which also satisfies
higher prediction accuracy. Tab. 7 also represents the outcomes of the developed models for the
testing and total dataset. As can be seen, the values of R2 are higher than 0.90 in the training,
testing, and total phases, which indicates that the developed models obtained a good fit to the
actual dataset. Among the developed models, the proposed ANN-EO and ANN-PSO models
attainted higher prediction accuracy with R2 = 0.9911 and R2 = 0.9885 in the training stage, and,
R2 = 0.9614 and R2 = 0.9156 in the testing stage. Overall, the GP and MARS attained the lowest
prediction accuracy with R2 = 0.9564 and R2 = 0.9518, respectively.

Figure 9: Actual vs. predicted settlement values for the training dataset
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Figure 10: (a–e)—Illustrations of actual and predicted values for the training dataset

Figure 11: Actual vs. predicted settlement values for the testing dataset

The final GP and MARS models are presented in Eqs. (48) and (49), respectively. The GP
expression given in Eq. (48) is a combination of 6 genes and a bias term, while the MARS
model consists of 9 BFs. The details of BFs are presented in Tab. 8. It may be noted that,
although the said models unable to attain the highest prediction accuracy; however, considering
the experimental results (R2, RMSE, and MAE criteria), the developed predictive expressions can
readily be used to predict the settlement of PRF. The overall performance of the proposed ANN-
EO model was also assessed through rank analysis [79–81], the results of which are presented in
Tab. 9. As can be seen, the proposed ANN-EO model attained the highest total rank of 30 and
outperformed the other models by far. The MARS and GP are the worst-performing models in
this case.

Spr=34.49× {
1.796− 0.2522ES0− 0.1277Cavg− 0.2522φavg− 0.1187α− 0.2616exp(tanh(ESb))

− 0.5311tanh(ESm+φb)− 0.1081x8(γavg+φb)− 0.2522γavg }+ 41.79 (48)
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Spr=34.49×{0.40504− 0.43935 ∗BF1+ 0.83879 ∗BF2− 0.35491 ∗BF3+ 0.40329 ∗BF4
+ 0.13526 ∗BF5− 0.82209 ∗BF6− 2.2363 ∗BF7+ 0.32392 ∗BF8+ 0.22664 ∗BF9 }+ 41.79

(49)
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Figure 12: (a–e)—Illustrations of actual and predicted values for the testing dataset

Table 7: Details of performance indices for the training, testing and total dataset

Dataset Models R2 WI LMI RMSE MAE WMAPE

Training ANN 0.9789 0.9946 0.8852 0.0377 0.0248 0.0524
ANN-EO 0.9911 0.9978 0.9070 0.0245 0.0201 0.0441
ANN-PSO 0.9885 0.9971 0.9054 0.0278 0.0205 0.0450
GP 0.9624 0.9903 0.8241 0.0503 0.0381 0.0837
MARS 0.9563 0.9887 0.8084 0.0542 0.0415 0.0899

Testing ANN 0.9147 0.9771 0.7357 0.0793 0.0592 0.1249
ANN-EO 0.9614 0.9901 0.8144 0.0518 0.0416 0.0877
ANN-PSO 0.9156 0.9777 0.7042 0.0766 0.0663 0.1398
GP 0.9381 0.9805 0.7512 0.0686 0.0558 0.1176
MARS 0.9376 0.9818 0.7396 0.0677 0.0584 0.1231

(Continued)
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Table 7 (continued)

Dataset Models R2 WI LMI RMSE MAE WMAPE

Total ANN 0.9649 0.9910 0.8549 0.0489 0.0317 0.0675
ANN-EO 0.9850 0.9962 0.8883 0.0319 0.0244 0.0532
ANN-PSO 0.9735 0.9933 0.8644 0.0423 0.0296 0.0647
GP 0.9564 0.9885 0.8096 0.0544 0.0416 0.0907
MARS 0.9518 0.9874 0.7948 0.0572 0.0448 0.0968

Table 8: Details of BFs of the developed MARS models

BFs Expression BFs Expression

BF1 max (0, ES0− 0.29588) BF6 max (0, φavg− 0.43788) × max (0, γavg− 0.28913)
BF2 max (0, 0.29588−E0) BF7 max (0, φavg− 0.43788) × max (0, 0.28913− γavg)
BF3 max (0, φb− 0.46236) BF8 max (0, 0.62845−ESb)
BF4 max (0, 0.46236−φb) BF9 max (0, 0.81353− γavg)
BF5 max (0, 0.60454−α)

Table 9: Results of rank analysis for overall comparison

Models R2 WI LMI RMSE MAE WMAPE Total rank

ANN 3 3 3 3 3 3 18
ANN-EO 5 5 5 5 5 5 30
ANN-PSO 4 4 4 4 4 4 24
GP 2 2 2 2 2 2 16
MARS 1 1 1 1 1 1 8

Tab. 10 reports the values of β of all the developed models, separately for training and testing
datasets. Herein, the β of PRF was calculated at different settlement values ranges between 75
and 100 mm. As per IS 1904:1986, permissible settlement of shallow foundations such as raft
without pile should be restricted to 75 mm for sandy soil and that of 100 mm for clayey soil. For
the present problem, the proposed PRF consists of 26 piles, which are 15 m long and installed in
a clayey and sandy medium. Specifically, the first 12 m soils are clayey in nature while below 12
m depth sandy soils are present. Therefore, the values of β were calculated to estimate the POF
of the proposed PRF at different values of settlement ranging from 75 to 100 mm. The following
steps were followed to determine the β:

(a) Determination of mean settlement value (μD) of the observations under consideration. For
this study, training and testing observations.

(b) Determination of standard deviation of settlement values (σD).
(c) Determination of mean and standard deviation of permissible settlement value, i.e., μC

and σC. For the present scenario, the permissible settlement represents the capacity (CR)
of the proposed PRF.

(d) Determination of β using the expression given in Eq. (26) for the training and testing
observations.
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Table 10: Values of reliability index at different settlement values

Phase At settlement (mm) Actual ANN ANN-EO ANN-PSO GP MARS

Training 75 1.95 1.98 1.96 1.97 1.99 2.00
80 2.51 2.54 2.52 2.52 2.56 2.57
85 3.06 3.10 3.08 3.08 3.12 3.13
90 3.62 3.66 3.64 3.64 3.69 3.70
95 4.17 4.22 4.20 4.20 4.26 4.27
100 4.73 4.78 4.75 4.76 4.82 4.84

Testing 75 1.81 1.72 1.80 1.82 2.06 2.00
80 2.35 2.25 2.33 2.37 2.66 2.57
85 2.88 2.77 2.87 2.91 3.26 3.15
90 3.42 3.30 3.41 3.46 3.87 3.72
95 3.96 3.82 3.94 4.01 4.47 4.30
100 4.49 4.35 4.48 4.56 5.07 4.87

Table 11: Values of POF at different settlement values

Phase At settlement (mm) Actual ANN ANN-EO ANN-PSO GP MARS

Training 75 2.53 2.41 2.48 2.46 2.32 2.28
80 0.60 0.56 0.58 0.58 0.53 0.51
85 0.11 0.10 0.10 0.10 0.09 0.09
90 0.01 0.01 0.01 0.01 0.01 0.01
95 0.00 0.00 0.00 0.00 0.00 0.00
100 0.00 0.00 0.00 0.00 0.00 0.00

Testing 75 3.52 4.23 3.62 3.44 1.96 2.28
80 0.95 1.23 0.98 0.90 0.39 0.50
85 0.20 0.28 0.21 0.18 0.05 0.08
90 0.03 0.05 0.03 0.03 0.01 0.01
95 0.00 0.01 0.00 0.00 0.00 0.00
100 0.00 0.00 0.00 0.00 0.00 0.00

Subsequently, the POF of the proposed PRF was determined using the expression given in
Eq. (27), separately for training and testing datasets, the details of which are reported in Tab. 11.
Note that, the values of POF reported herein are in percentage term. From the results presented
in Tabs. 10 and 11, it is clearly observed that the proposed ANN-EO and ANN-PSO able to
estimate the risk associated with the proposed PRF in terms of β and POF. Figs. 13–15 represent
the values of β at different settlement values for the developed models; while Figs. 16–18 represent
the details of POF of the proposed PRF. As can be seen, the values of β are closer to the actual
value for the ANN-EO (1.95 vs. 1.96 at 75 mm settlement and 4.73 vs. 4.75 at 100 mm settlement)
and ANN-PSO (1.95 vs. 1.97 at 75 mm settlement and 4.73 vs. 4.76 at 100 mm settlement) in the
training stage; while in the testing stage. 1.81 vs. 1.80 at 75 mm settlement and 4.49 vs. 4.48 at
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100 mm settlement (for ANN-EO) and 1.81 vs. 1.82 at 75 mm settlement and 4.49 vs. 4.56 at 100
mm settlement (for ANN-PSO). Also, the values of POF calculated at different settlement values
are in line with the actual values of POF.
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Figure 13: (a–e)—Settlement vs. Reliability Index plot for the training dataset (model wise)
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Figure 14: (a–e)—Settlement vs. Reliability Index plot for the testing dataset (model wise)
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Figure 16: (a–e)—Settlement vs. Probability of failure plot for the testing dataset (model wise)

7 Discussion

As mentioned earlier, the proposed PRF consists of 26 piles and all piles are 15 m long.
The top 12 m is embedded in the clayey layer while the bottom 3 m is resting in sandy soil.
The present problem, the settlement of raft foundation (without piles) was estimated as 113.68
mm, which exceeds the permissible value of 100 mm as per IS 1904–1986. Note that, if the
estimated settlement of raft foundation is greater than the permissible limit, it would be necessary
to introduce piles as a measure of settlement reducer. Therefore, to restrict the settlement within
the permissible value, a combination of raft and piles, i.e., PRF was selected as the foundation
type. For the same conditions, the revised settlement was calculted as 66.08 mm only. However, to
investigate the failure probability of the proposed PRF in a more comprehensive manner, values
of β at different permissible settlements ranging from 75 to 100 mm were determined. Based
on the calculated results, it was seen that the values of POF generated through ANN-EO and
ANN-PSO truly reflect the actual POF in both stages. No deviation was observed in the range
of 90 to 100 mm permissible settlement value. The actual values of POF were calculated between
0% and 0.01% in the training stage and that of 0% and 0.03% in the testing phase. Graphical
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plots presented in Figs. 13–18 depict the comparison of the actual and modelled values of β

and POF of the developed models, including the proposed ANN-EO and ANN-PSO. It is clearly
shown that the proposed ANN-EO reliably estimate the β and its corresponding POF of the
PRF in both stages. The same conclusion can be drawn for the other developed models where the
estimated POF are in line with the actual value in the training stage; however, the ANN, GP, and
MARS show slight deviation in the testing phase. These results clearly indicate overfitting-related
issues of the traditional soft computing techniques in predicting the desired output for the new
dataset. In the present study, the proposed ANN-EO and ANN-PSO show better results, which
in turn indicates that the incorporation of meta-heuristic algorithms improves the performance
of traditional ANN by far. Overall, the ANN-EO predicts the risk associated with the proposed
PRF in both stages, followed by ANN-PSO, ANN, GP, and MARS.
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Figure 17: (a–e)—Settlement vs. Probability of failure plot for the testing dataset (model wise)
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Figure 18: (a–b)—Settlement vs. Probability of failure plot (all models together)

8 Conclusion

This study presents a high-performance soft computing technique to perform the RA of PRF.
The proposed model is a combination of the classical ANN and EO, i.e., ANN-EO. Initially, the
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ANN-EO was employed to construct a prediction model for estimating the settlement of PRF
from a set of 11 influencing factors. Later, the ANN-EO along with other developed models
(ANN, MARS, GP, and ANN-PSO) were used to investigate the risk associated with the PRF
in terms of POF. The failure probability of PRF with cantilever retailing wall arrangement was
investigated for a set of settlement values ranging from 75 to 100 mm. This was done to investigate
the inter-relationship between the settlement and POF for the proposed PRF. The theoretical
analysis suggested that the proposed PRF attained almost negligible failure probability (in the
range of 0.01% to 0.03%) at 90 mm or more permissible settlement value. Therefore, the proposed
PRF could be considered safe against settlement failure at a designed permissible settlement value
of 90 mm.

All the proposed models demonstrate higher prediction results to the actual POF in the
training phase, while the proposed hybrid ANN-EO model attained the most desired predic-
tion value with R2 = 0.9911, RMSE = 0.0245, and MAE = 0.0201 in the training stage, and
R2 = 0.9614, RMSE = 0.0518, and MAE = 0.0416 in the testing phase. These outcomes are
significantly better than those obtained from ANN-PSO, including the traditional ANN, GP,
and MARS used to estimate the failure probability of the proposed PRF. The computational
cost of the proposed ANN-EO and ANN-PSO was recorded as 421.860941 s and 429.964295
s, respectively, using MATLAB environment with MATLAB 2015a, i7-4790 CPU @ 3.60 GHz,
8 GB RAM. The main advantages of the proposed ANN-EO model include higher prediction
accuracy, ease of implementation using the existing dataset, and high generalization capability.
The future direction of this study may include a) integration of ANN and other meta-heuristic
OAs and a detailed comparison of ANN-EO with other hybrid ANN models, b) use of deep
learning models and construction of hybrid models of deep learning models and meta-heuristic
OAs, c) selection of input parameters using feature selection techniques, d) implementation of
dimension reduction procedure and inter-quartile technique to handle noise in the dataset, and e)
reduction of computational costs using an enhanced version of OAs. In addition, implementation
of other reliability-based analyses to compare the results of FORM and the developed models in
detail. Nevertheless, the concept proposed in this study can be used to perform RA of other civil
engineering structures; however, the existing database should be prepared before the estimation
of the reliability index and its corresponding POF. Based on these facts, the proposed ANN-EO
can be used as a promising alternative to estimate the POF of PRF, including many other civil
engineering structures. As per the authors’ knowledge, the implementation of hybrid ANN models,
specifically ANN-EO for performing the reliability analysis of PRF would significantly contribute
to the knowledge pool of reliability studies related to PRF due to the fact that the literature on
reliability analysis of PRS is relatively scarce.
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