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ABSTRACT

Anovel beamforming algorithmnamedDelayMultiply and Sum (DMAS), which excels at enhancing the resolution
and contrast of ultrasonic image, has recently been proposed. However, there are nested loops in this algorithm, so
the calculation complexity is higher compared to the Delay and Sum (DAS) beamformer which is widely used in
industry. Thus, we proposed a simple vector-based method to lower its complexity. The key point is to transform
the nested loops into several vector operations, which can be efficiently implemented on many parallel platforms,
such as Graphics Processing Units (GPUs), and multi-core Central Processing Units (CPUs). Consequently, we
considered to implement this algorithm on such a platform. In order to maximize the use of computing power, we
use the GPUs andmulti-core CPUs in mixture. The platform used in our test is a low cost Personal Computer (PC),
where a GPU and a multi-core CPU are installed. The results show that the hybrid use of a CPU and a GPU can
get a significant performance improvement in comparison with using a GPU or using a multi-core CPU alone. The
performance of the hybrid system is increased by about 47%–63% compared to a single GPU. When 32 elements
are used in receiving, the fame rate basically can reach 30 fps. In the best case, the frame rate can be increased to
40 fps.

KEYWORDS

Beamforming; delay multiply and sum; graphics processing unit; multi-core central processing unit

1 Introduction

A Filtered Delay Multiply and Sum (F-DMAS) beamforming algorithm for ultrasound
B-mode medical imaging has recently been proposed by Matrone et al. [1]. F-DMAS is based
on the DMAS algorithm which was proposed by Lim et al. [2]. The DMAS algorithm exploits
the signal correlation to enhance the image quality [1]. Compared to the traditional Delay and
Sum (DAS), DMAS can better improve the resolution and contrast [1]. Since then, this algorithm
has attracted the attention of many researchers. Park et al. [3] proposed a DMAS-based synthetic
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aperture focusing method in photoacoustic microscopy. Moreover, they also introduced a method
to reduce the sign, absolute and square root operations in DMAS algorithm [3]. The Multi-Line
Transmission (MLT) is an efficient way to increase the frame rate, however it may cause the cross-
talk artifact due to simultaneous transmission of multiple beams. Matrone et al. [4] demonstrated
that adopting DMAS beamforming can efficiently suppress the artifact in MLT images. In Plane-
Wave Imaging (PWI), the DMAS, rather than the DAS, can also be applied to enhance the image
quality [5]. It is due to the advantages and widely application of DMAS that implementing this
algorithm is meaningful.

In many medical ultrasound systems, the beamformer is usually implemented by means of
a hardware solution, such as Application Specific Integrated Circuit (ASIC) [6], and Field Pro-
grammable Gate Array (FPGA) [7,8]. Although the FPGA can provide fast I/O, it is hard to
program compared to GPUs, and the development on GPUs is also more flexible [9]. Moreover,
with the advent of Compute Unified Device Architecture (CUDA), it is simpler to write programs
for NVIDIA (Santa Clara, CA, USA) GPUs [10]. CUDA is a mature compute architecture,
which provides a lot of supports for programmers to speed up their developments on NVIDIA
GPUs [11]. Therefore, some beamforming algorithms have been implemented on GPUs [12–19].
As a first step, Romero et al. [12] applied CUDA-based GPU to accelerating beamforming in
Synthetic Aperture Focusing Technique (SAFT) imaging. Although the ways of transmitting in
Plane Wave Imaging (PWI) and Synthetic Aperture Imageing (SAI) are different, they receive the
signals in a like manner. The two methods both make all elements active to constantly receive
signals, and temporarily store the data in the memory for subsequent processing. Hence, some
researchers employed GPUs to implement SAI and PWI [13–15]. The Minimum Variance (MV),
which can efficiently improve image quality, is another well-known beamforming algorithm, but
its computational complexity is relatively high. Thus, some scholars leveraged the compute power
of GPUs to implement the MV beamformer [16,17]. The Short-Lag Spatial Coherence (SLSC)
algorithm, which can reduce the clutter and performs well under a noisy environment, was also
implemented on the GPU by Hyun et al. [18]. Moreover, there is an open source project of GPU-
based beamformer [19]. In addition to using GPUs to implement beamformers, it can also be used
to accomplish other tasks in an ultrasound imaging system [20–23]. Moreover, the application of
Artificial Intelligence (AI) technology in ultrasound imaging is now a research hotspot [24–26].
As we all know, the GPUs are also widely used in AI. From these studies, it can be seen that
the GPU technology is becoming more and more popular in ultrasound imaging. However, the
aforementioned researches only focused on the application of GPUs. With the popularity of
multi-core CPUs, designing parallel processing programs on such a platform is also an option.
Hansen et al. [27] designed a beamformation toolbox on a standard Personal Computer (PC)
with a multi-core CPU. Kjeldsen et al. [28] also discussed how to exploit a multi-core CPU to
implement the Synthetic Aperture Sequential Beamforming (SASB). Apart from beamformers, Lok
et al. [29] used the multi-core CPUs architecture in ultrafast microvessel imaging. Consequently,
the application of multi-core CPUs in ultrasound imaging should be considered. As with CUDA
in GPU programming, OpenMP, which is designed for shared-memory systems, can also facilitate
the parallel programming on a multi-core CPU [30]. OpenMP, which is a collection of compiler
directives and library routines, provides some Application Program Interfaces (APIs) for parallel
programming in C, C++ and Fortran [31]. In OpenMP, many tasks can be completed in parallel
with only one directive. OpenMP is not just a library, it also modifies the compiler. Therefore,
compiler support is necessary when we program with OpenMP.
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In this paper, we proposed a method to reduce the complexity of the DMAS algorithm
from O

(
N2) to O(N). Our approach has similar performance to the method introduced in [8].

The original DMAS formula consists of two loops, so the computation complexity is high. We
transform the loops into some vector operations, which are quite suitable for parallel processing.
Consequently, it is feasible to implement this algorithm on some parallel computation platforms
(e.g., multi-core CPUs, GPUs). Some researchers used the FPGA and Digital Signal Processor
(DSP) to accomplish this work [8]. However, as described earlier, FPGAs lack flexibility compared
to GPUs. Thus, we consider using GPUs and CPUs to implement this algorithm. On a tradi-
tional CPU-GPU heterogeneous system, GPUs and CPUs are in charge of parallel computing
and logical control, respectively. The parallel processing capability of CPUs is not fully utilized
accordingly. Since multi-core CPUs can also be used in parallel computing, the hybrid application
of multi-core CPUs and GPUs should theoretically be a better solution. So et al. [32] discussed
the GPU and CPU used in ultrasound imaging and drew a collusion that hybrid systems, e.g.,
CPUs-GPUs, were better than GPUs alone. Therefore, a cheap PC where a multi-core CPU and
a GPU are installed is used in our work. On this platform, we compared the performance among
the hybrid CPU-GPU, the multi-core CPU and the standalone GPU. The results show that the
hybrid use of CPU and GPU improves the performance by about 47%–63% compared with a
single GPU. There are two advantages of using a hybrid system in our case. First, the computation
power of the CPU can be efficiently utilized. Second, the data transfer between the CPU and GPU
is alleviated, because part of the data is beamformed on the CPU. In a nutshell, the principal
work is to lower the computation complexity of DMAS and implement this algorithm on a low
cost platform.

The rest of this paper is organized as follows. In Section 2, the proposed method is intro-
duced. The implementation of the algorithm is depicted in Section 3. The results of experiments
are shown in Section 4. In the last section, the limitations of our method are discussed, and a
conclusion of our work is also presented.

2 Method

The DMAS beamforming algorithm can be expressed as [1]:

ŝij (t)= sign
(
si (t) sj (t)

) ·√∣∣si (t) sj (t)∣∣, (1)

y∗DMAS (t)=
N−1∑
i=1

N∑
j=i+1

ŝij (t) , (2)

where si is the delayed signal received by ith element, N is the number of elements used to receive
signals. There is a group of nested loops in Eq. (2), so the computational complexity of this
algorithm is high. The Eq. (2) only exhibits how to reconstruct one point. An image usually
consists of hundreds of thousands of points, so it is conceivable that reconstructing an image
must undergo massive computation.

The pairwise signals can be shown in a matrix as

S=

⎡
⎢⎢⎣
√|s1s1| · · · √|s1sN |
...

. . .
...

√|sNs1| · · · √|sNsN |

⎤
⎥⎥⎦ , (3)
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where the sign of each signal is omitted for the sake of brevity. The upper and lowercase boldface
are used to denote matrix and vector respectively throughout this paper. S is a symmetric matrix
where the summation of the upper triangular part, which is actually the y∗DMAS, is the same as
the lower part.

Thus, the y∗DMAS can be written as

y∗DMAS =
sum (S)−∑N

i=1
√
sisi

2
, (4)

where the function sum, which will be used throughout this paper, is to add all items in a matrix
or a vector.

Let’s expand the sum (S) to

sum (S)= sign (s1)
√
|s1|

(
N∑
i=1

sign (si)
√
|si|
)
+ sign (s2)

√
|s2|

(
N∑
i=1

sign (si)
√
|si|
)
+ . . .

+ sign (sN)
√
|sN |

(
N∑
i=1

sign (si)
√
|si|
)
. (5)

Substituting Eq. (5) into the numerator of Eq. (4) results in

sum (S)–
N∑
i=1

√
sisi = sign (s1)

√
|s1|

(
N∑
i=1

sign (si)
√
|si|
)
+ sign (s2)

√
|s2|

(
N∑
i=1

sign (si)
√
|si|
)
+ . . .

+ sign (sN)
√
|sN |

(
N∑
i=1

sign (si)
√
|si|
)
−

N∑
i=1

√
sisi, (6)

The Eq. (6) is rewritten as

sum (S)−
N∑
i=1

√
sisi = sign (s1)

√
|s1|

(
N∑
i=1

sign (si)
√
|si| − sign (s1)

√
|s1|

)

+ sign (s2)
√
|s2|

(
N∑
i=1

sign (si)
√
|si| − sign (s2)

√
|s2|
)
+ . . .

+ sign (sN)
√
|sN |

(
N∑
i=1

sign (si)
√
|si| − sign (sN)

√
|sN |

)
. (7)

Let s= (s1, s2, . . . , sN), then the square root of s is ŝ= (ŝ1, ŝ2, . . . , ŝN) where ŝi = sign(si)
√|si|.

The summation
∑N

i=1 sign (si)
√|si| can be replaced with

(
ŝ
)
, so we can get
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sum (S)−
N∑
i=1

√
sisi = sign (s1)

√
|s1|

(
sum

(
ŝ
)− sign (s1)

√
|s1|

)

+ sign (s2)
√
|s2|

(
sum

(
ŝ
)− sign (s2)

√
|s2|
)
+ . . .

+ sign (sN)
√
|sN |

(
sum

(
ŝ
)− sign (sN)

√
|sN |

)
, (8)

where sum
(
ŝ
)− sign (si)

√|si| is shown as a black block in Fig. 1. The right side of Eq. (8) can

be simplified as ŝ. ∗ (sum
(
ŝ
)− ŝ), where .∗ means element-wise multiplication. Substituting it into

Eq. (4) results in the final DMAS beamformer output

y∗DMAS (t)= sum
(
ŝ. ∗ (sum (ŝ)− ŝ

))
2

, (9)

where ŝ. ∗ (sum (ŝ)− ŝ
)
is shown as a red block in Fig. 1. Eq. (9) is a mathematical expression of

the new approach we proposed, and it virtually contains some element-wise multiplications, which
is suitable for parallel processing. The schematic diagram of our proposed method is depicted in
Fig. 1, where we assume that three elements are used to receive signals, and si is the post-delay
signal received by each element.

Figure 1: Schematic diagram of the method which we proposed to simplify the calculation of
DMAS

3 Implementation

Eq. (9) illustrates how to construct one point, however, there are thousands of points on one
scan line. The efficient way is to reconstruct one line, instead of one point, at a time. As shown
in Eq. (9), a point is reconstructed using a vector, so one line can be synthesized using a matrix.
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Notice that this matrix is totally different from the matrix S which we talked in Section 2. In
order to distinguish from S, this matrix is denoted by X:

X=

⎡
⎢⎢⎣
x1, 2 . . . x1,N
...

. . .
...

xN, 1 · · · xN,N

⎤
⎥⎥⎦ , (10)

where xi, j is the post-delay signal received by jth element and is used to reconstruct ith point on

one scan line. The square root of X is denoted by X̂:

X̂=

⎡
⎢⎢⎣
x̂1, 2 . . . x̂1,N
...

. . .
...

x̂N, 1 · · · x̂N,N

⎤
⎥⎥⎦ , (11)

where x̂i, j = sign(xi, j) ·
√|xi, j|. Let x̂i = (x̂i, 1, x̂i, 2, . . . , x̂i,N), the matrix X̂ can also be written as

X̂=

⎛
⎜⎜⎝
x̂1
...

x̂N

⎞
⎟⎟⎠ where the x̂i is a row vector. Thus, the final result can be mathematically written

as

yDMAS−Line=

⎛
⎜⎜⎝
sum(x̂1. ∗ (sum

(
x̂1
)− x̂1))/2

...

sum(x̂N . ∗ (sum
(
x̂N
)− x̂N))/2

⎞
⎟⎟⎠ , (12)

which shows how to reconstruct one scan line. An ultrasonic image is normally reconstructed by
hundreds of such lines. As can be seen from the previous derivation, the entire calculation is not
complicated if the parallel processing is adopted. The major steps are illustrated in Fig. 2, and
the explanation is presented below in detail.

Step 1. Copy received signals (actually a dataset) from host memory to device memory. This
dataset is exhibited in a matrix X in Fig. 2 so that its layout can be clearly shown.

Step 2. Execute the sign, absolute and square root operations on each item in X, and then
store the results in a matrix X̂. In this step, we assigned one thread to one item, and the threads
assigned to each row consist of one block. The threads in one block should be multiples of 32
due to hardware efficiency [33], thus it is better to restrict the items in each row to multiples of
32. This means it is best to follow this rule while choosing the receiving elements.

Step 3. Add all the items in each row in the matrix X̂ and store the result in a variable vi
where i stands for ith row. After that, each item in ith row is simultaneously subtracted by vi, and
the results are correspondingly stored in a matrix T.

ti, j = vi− x̂i, j (13)
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Step 4. This step can be simply viewed as the element-wise multiplication between the matrix
X̂ and the matrix T, and then the results are stored in a matrix Z.

zi, j = ti, j · x̂i, j (14)

Step 5. Summate each row in the matrix Z and divide it by 2. The results are stored in a
vector y.

yi =
∑N

j=1 zi, j
2

(15)

From the point of view of CUDA programming, the whole process consists of several kernels.
A kernel, which principally processes the massive data in parallel, is a specific function. Although
a kernel is executed by the GPU, it is launched by the CPU. In our case, a function referred to
as beamforming_gpu executed by the CPU is responsible for controlling the kernels.

Figure 2: Schematic diagram of the DMAS algorithm implemented on GPU using CUDA

Figs. 3 and 4 illustrate the flowchart of reconstructing one point and one line, respectively.
The variable si in Fig. 3 is the signal received by the ith element. The process of reconstructing
one line, for which we design a function referred to as bf_line, is executed on one CPU core.
Several lines can be reconstructed at the same time on a multi-core CPU. It can be seen from
Figs. 3 and 4 that, unlike the data-parallelism [27] on GPUs, the data processing on one CPU core
is serial. However, if we look at the process of beamforming all lines, there is some difference.
This bf_line is simultaneously executed on all cores, and the only difference on each core is the
data processed by this function.

The architecture of our program is depicted in Fig. 5. In order to reconstruct one ultrasonic
image, we need to beamform hundreds of scan lines. In our case, part of lines are beamformed
on the GPU, the others are beamfomed on the CPU. In Fig. 5, the function beamforming_gpu
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controls the beamformation on the GPU, beamforming_cpu is correspondingly in charge of the
same tasks on the CPU. We designate the thread0 to run beamforming_gpu and the other
threads to run beamforming_cpu which actually calls the function bf_line. In order to maintain
the balance between CPU cores, the number of lines reconstructed on each core should be as
consistent as possible. We exploit the stream to concurrently execute kernel and data copy [33].
Here, the function cudaMemcpyAsync should be used to copy data from host (CPU) to device
(GPU), and the memory allocated at host side should be page-locked [33]. In this way, the data
copy can be overlapped with the kernel execution. In our case, the timeline of beamforming on
the GPU [34] is exhibited in the red box in Fig. 5. The pseudo code of beamforming on a GPU
is shown below:

void beamforming_gpu (){

. . .

//create two streams

for(int i = 0; i < 2; ++i){

cudaStreamCreate(&stream[i]);

}

//data copy and kernel launch

for(int i = 0; i < beamline_num; i += 2){

cudaMemcpyAsync(dst1, src1, size,

cudaMemcpyHostToDevice, stream[0]);

cudaMemcpyAsync(dst2, src2, size,

cudaMemcpyHostToDevice, stream[1]);

bf_one_line <<< block_num, thread_num_per_blcok, 0, stream[0] > > > ();

bf_one_line <<< block_num, thread_num_per_blcok, 0, stream[1] > > > ();

. . .

}

//synchronize two streams

cudaStreamSynchronize(stream[0]);

cudaStreamSynchronize(stream[1]);

. . .

}

where the function bf_one_line, which is in charge of reconstructing on scan line, is a kernel in
CUDA. The whole process is implemented in a function beamforming, and the parallel execution
is controlled by an OpenMP directive shown as below:

#pragma omp parallel num_threads(count)

beamforming();

where the parallel directive creates a team of threads whose number is specified by the num_threads
clause through the argument count. When we program with OpenMP, the number of threads may
be limited by some systems [30]. In our case, we found that setting it to 6 was more efficient. In
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OpenMP, thanks to an implicit barrier which guarantees all threads in one team wait for each
other to return [30], we do not need to explicitly synchronize the threads.

Figure 3: The flowchart of reconstructing one point on a CPU

Figure 4: The flowchart of reconstructing one line on a CPU
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Figure 5: Architecture of the program

4 Results

To evaluate the impact of GPUs and CPUs on the performance of our program, we run it
on a PC where a NVIDIA GTX 1050Ti GPU and a Core i7 8700K CPU (Intel, Santa Clara,
CA, USA) are installed. The prices of the GPU and CPU are about $130 and $430, respectively.
The price of the entire PC is about $1250. The specifications for the GPU [35] and CPU [36] are
shown in Tab. 1 so that the performance can be appropriately estimated. For fair evaluation, the
GPU and CPU both run on the base clock. The Visual Studio 2013 (Microsoft, Redmond, WA,
USA) is used to build the program. The processing times shown in Tabs. 3–5 are approximate.

Table 1: Specifications for NVIDIA GTX1050Ti and Intel Core i7 8700K

GPU(GTX1050Ti) CPU(Core i7 8700K)

CUDA cores 768 Number of cores 6
Base clock (MHz) 1290 Base clock (MHz) 3700
Memory size 4 GB Memory size 16 GB
Memory interface GDDR5 Memory type DDR4

4.1 Simulation
A software tool Field II [37,38] is used to model a 38.4 mm linear array with 128 elements

(element width = 0.28 mm, pitch = 0.3 mm, kerf = 0.02 mm, height = 5 mm) and synthesize
a phantom. The elevation focus of this array is set to 30 mm. Two cycles of Hanning weighted
sinusoidal pulse with 6.5 MHz center frequency are modeled as the excitation pulse. In addition,
the sample frequency is set to be 120 MHz.

The synthesized phantom, where 200000 scatterers are randomly distributed in a 40× 10×
65 mm3 volume, consists of four point targets and four anechoic cysts whose radius is 3 mm.
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The points and cysts are located at the depth of 20, 30, 40 and 50 mm, respectively. The number
of transmit elements is 32, and the transmission focal depth is 30 mm. There are 128 scan lines,
and the numbers of receiving elements are 32 and 64, respectively. In the case of the mixture of
the GPU and CPU, 80 lines are reconstructed on the GPU, and 48 lines are synthesized on the
multi-core CPU.

The reconstructed images are shown in Fig. 6, where we can see that the Fig. 6b has high
quality. The points in Fig. 6a are larger than those in Fig. 6b, which means a wider main lobe
when 32 elements are used to receive signals. Compared to Fig. 6b, the cysts in Fig. 6a are also
more blurred. It can be seen from Fig. 7, which shows the lateral cross sections at different depth,
that the main lobe is narrower and side lobe is lower when 64 elements are used to receive signals.
This is also consistent with what we observed in Fig. 6. In order to quantitatively measure the
contrast, the Contrast Ratio (CR) is evaluated by [39]

CR = 20 log10

(
µcyst

µbck

)
, (16)

where the µcyst and µbck are the mean intensities (before log-compression) of the cyst (red box
in Fig. 6a) and background (white box in Fig. 6a), respectively. The corresponding CR values at
different depths are shown in Tab. 2, which also indicates that adopting wider receiving aperture
can get better value, but the frame rate will decrease.

Figure 6: Reconstructed simulated image using (a) 32 elements and (b) 64 elements to receive
signals. All images are shown in a dynamic range of 60 dB

The performance comparison is shown in Tab. 3. We can observe that the GPU and the multi-
core CPU have similar performance on the system. However, if the GPU and the CPU are used
in mixture, the performance is significantly improved. Compared to a single GPU or CPU, the
frame rate is increased by about 47%–48%.
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Figure 7: Lateral cross sections at the depth of (a) 20 mm, (b) 30 mm, (c) 40 mm and (d) 50 mm

Table 2: CR (dB) at different depths

Depth (mm)
Elements

32 64

20 −25.34 −28.15
30 −23.42 −25.36
40 −25.42 −27.25
50 −27.04 −30.25

Table 3: Performance comparison in reconstructing simulated images

Elements
GPU CPU Hybrid CPU-GPU

Total time
(ms)

Frame rate
(fps)

Total time
(ms)

Frame rate
(fps)

Total time
(ms)

Frame rate
(fps)

32 37 27 38 26 25 40
64 67 15 72 14 45 22
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4.2 Phantom Experiment
To estimate the performance of our proposed method on the experimental data, we used

a medical ultrasound machine iNSIGHT 37C (Saset, Chengdu, China) to get the RF data by
scanning a Multi-purpose Multi-tissue ultrasound phantom (Model 040GSE. CIRS INC., Nor-
folk,Virginia, 23513, USA). The center frequency and sample rate are 10 and 40 MHz, respectively.
The number of scan lines in this experiment is 216, and there are 2560 points on each line. When
we simultaneously run the beamformer on the GPU and CPU, 130 scan lines are reconstructed
on the GPU, and 86 scan lines are synthesized on the CPU.

Fig. 8 displays the reconstructed phantom images. Compared to Fig. 8a, the quality of
Fig. 8b is better. The CR values are calculated by using Eq. (16), and the µcyst and µbck are
the mean intensities of the target (black box in Fig. 8a) and background (red box in Fig. 8a),
respectively. When 64 elements are used to receive signals the CR value is 11.02 dB, and the
corresponding value is 9.40 dB when 32 elements are used to receive signals. Tab. 4 illustrates
the performance comparison. The frame rate of the hybrid solution is increased by about 50% in
comparison with a single GPU.

Figure 8: Reconstructed phantom images using (a) 32 elements and (b) 64 elements to receive
signals. All images are shown in a dynamic range of 60 dB

Table 4: Performance comparison in reconstructing phantom images

Elements
GPU CPU Hybrid CPU-GPU

Total time
(ms)

Frame rate
(fps)

Total time
(ms)

Frame rate
(fps)

Total time
(ms)

Frame rate
(fps)

32 57 18 57 18 37 27
64 98 10 103 10 65 15
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4.3 In Vivo
The in vivo data was acquired also by using the medical ultrasound machine iNSIGHT 37C.

The number of scan lines is also 216, and there are 2048 points on each line. During the
beamforming process, 130 lines are reconstructed on the GPU, and 86 lines are synthesized on
the CPU. This is the same as the phantom experiment.

The reconstructed images of superficial tissue are displayed in Fig. 9. The image quality of
Fig. 9b is higher than that of Fig. 9a, because more number of elements are used to receive
signals. The performance comparison is illustrated in Tab. 5, where we can see that adopting the
hybrid CPU-GPU gets a significant improvement in performance, and the frame rate is improved
by about 58%–63% in comparison with using a GPU alone. The frame rate is about 30 fps, when
32 elements are used to receive signals. It means that this approach may be applied to ultrasound
diagnosis of superficial organ.

Figure 9: Reconstructed in vivo images using (a) 32 elements and (b) 64 elements to receive signals.
All images are shown in a dynamic range of 60 dB

Table 5: Performance comparison in reconstructing in vivo images

Elements
GPU CPU Hybrid CPU-GPU

Total time
(ms)

Frame rate
(fps)

Total time
(ms)

Frame rate
(fps)

Total time
(ms)

Frame rate
(fps)

32 53 19 44 23 32 31
64 86 12 83 12 54 19

5 Discussion and Conclusion

The beamformer is one of the most critical components in an ultrasound imaging system.
Among many algorithms, the DMAS excels at improving the image resolution and contrast. Thus,
we tried to make this algorithm closer to practical application. We will summarize our work from
two aspects.
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The first purpose of this work is to lower the computational complexity of DMAS beamform-
ing algorithm, and make it closer to practical application. The DMAS is based on the correlation
operation [40], which is widely used in image processing. However, due to a group of nested loops
in DMAS, the computational complexity is O

(
N2). Without reducing the complexity, it is hard

to implement this algorithm on a real time system. Thus, we transformed the loop into some
vector operations to lower the complexity. In our method, the computational complexity is O (N),
because there are not any nested loops. Even without the support of parallel computation, our
proposed method is also faster than the original algorithm. However, our proposed method and
the other one introduced in [8] have similar performance.

The second objective is to implement the DMAS algorithm. As mentioned earlier, GPU-
based beamforming technology is becoming more and more common. Therefore, our study is
also based on GPUs. However, we combine a GPU with a multi-core CPU to accomplish this
task rather than using a GPU alone. In this way, the computation power of multi-core CPU
has also been utilized. We exploited streams to make the kernel execution overlap with the data
transfer in the GPU programming. In addition, performance of page-locked memory used in the
stream is also higher than the standard pageable memory [34]. Based on these two points, the
time consumed by data copying can be efficiently decreased. On the other hand, as part of the
computation is executed by the CPU, the work that the GPU needs to accomplish is consequently
reduced. Moreover, there is an interesting thing in our tests. The multi-core CPU can get similar
performance with the GPU in each comparison. However, the price of the CPU is more than
3 times that of the GPU. If a GPU of the same price is used, its computing power will be
much higher than that of the CPU. In massive data processing, the GPU is the protagonist,
while the CPU is the supporting role. Therefore, the performance of the GPU is considered as
the benchmark. The results show that our proposed method can get significant improvement. On
the test platform, the performance of the strategy of mixing a GPU and a multi-core CPU is
increased by about 47%–63% compared to using a GPU alone.

In our test, we respectively used 32 elements and 64 elements to receive the signals. Because
the amount of data to be processed in these two cases is not the same, the frame rate is different.
The typical frame rate is about 30–40 fps in ultrasound B-mode imaging [5]. In our tests, when
32 elements are used to receive signals, the frame rate can basically meet this requirement. If the
aperture is widened (which means 64 elements are used), the frame rate drops. However, the image
quality will be better. Therefore, the best result is that the frame rate can be guaranteed even
when the amount of data is large. This is also a problem that we need to address in our follow-up
work. In addition, we will try to test its performance on other platforms without increasing the
cost, and continuously optimize our program.
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