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ABSTRACT

Spacecraft flexible appendages may experience thermally induced vibrations (TIV) under sudden heating loads,
which in consequence will be unable to complete their intended missions. Isogeometric analysis (IGA) utilizes,
in an isoparametric concept, the same high order and high continuity non-uniform rational B-splines (NURBS)
to represent both the geometry and the physical field of the structure. Compared to the traditional Lagrange
polynomial based finite element method where only C0-continuity across elements can be achieved, IGA is
geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli (EB) beam elements,
therefore, does not need extra rotational degrees-of-freedom. In this paper, we present a thermally induced vibra-
tion analysis framework based on the isogeometric method where thermal and structural behaviors are coupled.
We fully exploited the higher order, higher continuous and geometric exactness of the NURBS basis with both
benchmarks and sophisticated problems. In particular, we studied the thermally induced vibrations of the Hubble
Space Telescope (HST) solar panel where main factors influencing thermal flutters are studied, and where possible
improvements of the analytical reference methods are discussed. Additionally, thermally induced vibrations of the
thin-walled lenticular tubes are studied and two new configurations of the tube are proposed to effectively suppress
the thermally induced vibrations. Numerical examples of both benchmarks and sophisticated problems confirm
the accuracy and efficiency of the isogeometric analysis framework for thermally induced vibration analysis of
space structures.
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coupling

1 Introduction

Spacecraft in orbit periodically moves in and out of earth’s dark and sunny regions. The
temperature field of the spacecraft changes rapidly at the day-night or night-day transitions due to
the combined effects of the solar heat flux, the earth-emitted heat flux and the earth albedo heat
flux [1]. Flexible appendages, commonly used in spacecraft, are known to have low stiffness and
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low frequencies, therefore, they are prone to vibrate even under small excitation forces. The typical
excitation load in the flexible appendages is the time-dependent bending moments generated by the
temperature gradients within the structure. Since the temperature field and the displacement field
are coupled, thermally induced vibrations may happen. This phenomenon needs special attention
especially for the flexible space structures, since unstable oscillation or thermal flutter may occur
under certain conditions [2] which will degrade the flight quality of the spacecraft and affect its
normal operations. A famous example in history is the Hubble Space Telescope (HST) launched in
1990 and it was suffered from the spherical aberration and a pointing “jitter” due to the thermally
induced vibrations [3,4]. The Hubble Space Telescope solar arrays were then replaced by the US
space shuttle “Endeavour” in 1993.

Analytical study of the thermally induced vibrations of a simply supported rectangular beam
was first investigated by Boley in 1956 [5], and then extended to the structures with more complex
shapes, such as plates and shells [6–8], etc. In [5], a dimensionless parameter B was proposed
to determine the maximum deflection of the beam. This parameter is directly proportional to
the beam’s natural frequency and the characteristic thermal response time, hence simplifies the
analytical expressions. In addition, it is worth to mention that, in Thornton et al. [8] developed
an analytical approach for determining the thermal-structural response of a flexible solar array
and established the stability criterion to judge whether thermal flutter occurs. For experimental
studies, torsional thermal flutter of booms with open cross section was observed and compared
to the theoretical results in [9]. Then, Rimrott et al. [10] successfully triggered torsional thermal
flutter of beams in experiments. Recently, Su et al. [11] conducted an experimental study of the
thermally induced vibration of space boom structures and demonstrated the validity of theoretical
and numerical methods to analyze such problems.

Despite the various analytical methods proposed in the literature [5–8,12], the practical space
structures are often too complex to cope with for the analytical methods. Therefore, numerical
methods such as finite elements are developed to study the thermal-structural coupled behaviors
of the space structures. Manson [13] proposed, for the first time, a finite element model for the
thermally induced vibration analysis of beams and plates. Later on, more complex situations,
such as temperature-dependent material properties [14], composite and smart materials [15,16],
design optimizations [17,18] and large-scale space structures [19,20] are considered in the finite
element model. Recently, Liu et al. [21] developed a rigid-flexible-thermal coupling model to
study the coupling effect among attitude motion, structural behaviors and the thermal loading
of the spacecraft. Regarding different numerical methods, Shen et al. [22] developed an ANCF
(Absolute Nodal Coordinate Formulation) method to analyse the thermally induced vibrations of
flexible beams including large rotations. The ANCF method was further extended to study the
thermal shock induced dynamics of a deploying boom in [23]. We note that, for thermally induced
vibration analysis of beam structures, most of the researches are focusing on the circular cross
sections, more complex shapes such as lenticular shapes are rarely considered.

Isogeometric analysis (IGA) [24] is an emerging computational approach aiming at bridging
the gap between computer-aided design (CAD) and computer-aided engineering (CAE). Compared
to the classical finite element method which uses C0-continuous Lagrange polynomials as basis
functions, IGA employs the non-uniform rational B-spline (NURBS) basis functions to represent
both the geometry and physical fields which allows for an exact geometric description and provides
higher order and higher continuity basis functions for analysis. Due to its superior properties,
IGA has been applied to a wide range of areas [25–32], especially in the field of thin-walled
structures, e.g., in the modeling of Euler–Bernoulli beam elements [33–35] and Kirchhoff–Love
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shell elements [36–41] where at least C1-continuity of the basis are needed. For isogeometric
thermal analysis, the steady state and transient heat transfer analysis of solids are investigated
in [42,43] where superior convergence rates of IGA are achieved. For isogeometric structural
dynamic analysis, different aspects have been investigated, e.g., the free vibration problems [44–46]
and the nonlinear dynamics of structures [34,47], etc.

In this paper, thermally induced vibrations of beam-like structures in the framework of
isogeometric analysis are investigated for the first time, where the higher order, higher continuous
and geometrically exact properties of the isogeometric analysis are fully exploited. The coupling
between thermal and structural responses are implemented to capture thermal flutter behaviors
of the beam-like structures. In particular, a Hubble Space Telescope solar array assembled from
three main parts are studied and the main factors influencing thermal flutters are investigated
in detail. We also compared IGA results with the analytical reference solutions and discussed
the possible improvements of the analytical methods. Additionally, we studied the thermally
induced vibration responses of thin-walled lenticular tubes with different cross section shapes,
which are widely used as supporting frames of solar sail due to its highly accurate and repeatable
deployment properties [48]. Based on these studies, we propose two new configurations of the
lenticular tube, where thermally induced vibrations can be significantly suppressed. We note that,
with isogeometric analysis, various cross section shapes can be modeled exactly.

The paper is organized as follows: in Section 2 we provide a brief summary of the NURBS
basis functions and NURBS geometries. In Section 3 we describe in detail the basic equations
governing the thermal and structural behaviors of beam structures and the corresponding iso-
geometric discretization. In Section 4, we test our method with several numerical examples to
reveal the method’s capabilities. Finally, we summarize the main aspects and findings and draw
conclusions in Section 5.

2 NURBS Basis and Geometries

In this section, we first summarize the basic properties of the B-spline and NURBS basis in
a brief manner, we then introduce the constructions of the NURBS geometries and its derivatives
which are frequently used in this paper.

A NURBS curve of order p is defined as [49]:

C (u)=
n∑
i=1

Ri,p (u)Bi (1)

where Ri,p (u) are the NURBS basis functions with the parametric coordinates u, where Bi =
(xi, yi, zi) are the control points of the NURBS curve in Cartesian coordinates, and where n is
the total number of control points. The NURBS basis function Ri,p (u) can be represented as:

Ri,p (u)= Ni,p (u)ωi∑n
î=1

Nî,p (u)ωî
(2)

where ωi is the weights of the i-th control points, and where Ni,p (u) is the i-th B-spline basis
function of order p. The B-spline bases are defined through a non-decreasing knot vector:

Ξ= {u1, u2, . . . , un+p+1
}
, with ui ≤ ui+1 (i= 1, 2, . . . , n+ p) (3)

where ui (i= 1, . . . , n+ p+ 1) is the i-th knot value. The knot vector Ξ is said to be open when
the first and the last knots are repeating p+ 1 times.
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Based on a given knot vector Ξ, the B-spline basis functions can be obtained through the
following Cox-de-Boor recursion formula [50]:

Ni,0 (u)=
{
1 if ui ≤ u< ui+1

0 otherwise
(4)

Ni,p (u)= u− ui
ui+p− ui

Ni,p−1 (u)+ ui+p+1− u

ui+p+1− ui+1
Ni+1,p−1 (u) (5)

Fig. 1 shows an example of cubic B-spline bases with the knot vector defined as Ξ =
{0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4}. It can be found that, for open knot vectors, the B-spline basis
functions are interpolatory at both ends of the knot vector, while at the internal knots with
multiplicity of k, the B-spline basis are Cp−k-continuous. For example, in Fig. 1, the B-spline
bases are C2, C1 and C0 continuous at the internal knots u = 1, 2, 3, respectively. This unique
property allows for a direct operation on the inter-element continuity of the NURBS basis, while
for the traditional Lagrange polynomials, only C0-continuity across elements can be obtained.

Figure 1: 1D cubic B-spline shape functions Ni, 3 (u) = (i= 1, . . . , 10) across an open knot vector
of four knot-span-elements

A NURBS surface can be constructed based on the tensor product of one-dimensional
geometries as:

S (u, v)=
n∑
i=1

m∑
j=1

Rpqij (u, v)Bij (6)

where Rpqij (u, v) are the two-dimensional NURBS basis of order p and q in the u and v parametric

directions, respectively. They are defined as:

Rpqij (u, v)= Ni,p (u)Mj,q (v)ωij∑n
î=1

∑m
ĵ=1

Nî,p (u)Mĵ,q (v)ωîĵ
(7)

where Ni,p (u) and Mj,q (v) are the one-dimensional B-spline basis, where ωij are the weights
associated to the (i, j)-th NURBS basis.

The derivatives of a NURBS curve can be simply obtained by the following relations:

C(k) (u)=
n∑
i=1

R(k)
i,p (u)Bi (8)
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where the superscript (k) denote the k-th derivatives w.r.t. the parametric coordinate u. Based on
Eq. (8), one can easily get the tangent vector of a NURBS curve by taking its first derivatives
C(1) (u). The above rule also applies to the NURBS surfaces and solids.

3 Isogeometric Thermally Induced Vibration Analysis of Beam Structures

In this section, we first present the fundamental equations governing the thermal behaviors
of beams and its isogeometric discretization in 3.1. We then introduce the basic equations for
structural analysis of the beam structures based on the isogeometric analysis in 3.2. Lastly, a
coupled scheme between thermal and structural responses are presented in 3.3.

3.1 Isogeometric Thermal Analysis of Beam Structures
We consider a thin-walled tube exposed to the solar heat flux S0, as shown in Fig. 2, where

ϕ is the solar incident angle, where S = S0 cosϕ represents solar heat flux perpendicular to the
tube axis. Various cross-sectional shapes can be assigned to the tube, e.g., circular, rectangular or
lenticular shapes. Here h is the thickness of the tube. We assume that the tube is very thin such
that the temperature gradient along the wall thickness can be ignored. Other adopted assumptions
are: no heat conduction along the length of the tube; the heat convection is neglected due to the
high vacuum space environment; the radiation heat transfer on the inner wall of the tube is not
included.

Figure 2: Thin-walled tube subjected to solar heat flux with different cross section shapes

Since the heat conduction along the beam axis is neglected, the problem considered here is
simplified to a 2D plane problem where only the cross section is studied. Consider a differential
element ds in the cross section of the tube under thermal equilibrium, cf. Fig. 3a, where s is the
arc-length coordinate along the line of centroids of the cross-section. Here we denote the curve
connected by the points located at the middle of the tube’s wall as line of centroids, which is in
contrast to its traditional definition along the beam axis. In Fig. 3a, qs is the absorbed heat flux,
qσ is the thermal radiation from the outer wall of the tube to space, and qin and qout are the heat
fluxes conducted into and out of the tube element, respectively. The heat balance equation of the
differential element can be formulated as:

∂T
∂t

− ks
ρc

∂2T
∂s2

+ σε

ρch
T4− αs

ρch
qs = 0 (9)
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(a) (b)

Figure 3: Heat conduction in the cross section of the tube: (a) problem set up, (b) line of incident
for a general B-spline curve

where ks is the thermal conductivity along the arc length direction, where ε and αs are the emis-
sivity and absorptivity of the tube’s surface, respectively, where σ is Stefan–Boltzmann constant,
c is the specific heat, where ρ is the density of the tube. As we mentioned before, Eq. (9) can be
applied to arbitrary cross sections of thin-walled tube. For annular shapes, cf. Fig. 2, the absorbed
heat flux is expressed as qs = Sδ (θ) cos (θ), where δ (θ) is a function of θ determining which side
of the tube is under radiation and can be written as:

δ (θ)=
{
1, −π/2< θ < π/2

0, π/2< θ < 3π/2
(10)

For general cross-sectional shapes, where the line of centroids of the cross section is repre-
sented by a B-spline curve C (u), cf. Fig. 3b, the absorbed heat flux qs is written as:

qs= Sδ (θ) cos (θ1)= Sδ (θ) sin (θ2)= Sδ (θ) sin< S, C(1) (u) > (11)

where C(1) (u) is the first derivative of the B-spline curve w.r.t. the parametric coordinate u and
can be obtained from Eq. (8).

Applying the method of weighted residuals (MWR) and integrating Eq. (9) by parts, we
obtained a weak form of the governing equation:∫
A

ρc
∂T
∂t
T̃dA+

∫
A
ks

∂T
∂s

∂T̃
∂s

dA=
∫
A

(αs

h
qs− σε

h
T4
)
T̃dA (12)

where A is the cross-sectional area of the thin-walled tube, where T̃ is the test function, and where
we assume the tube is under adiabatic boundary conditions.

Following the concept of isogeometric analysis, the geometry and the temperature field are
discretized with the same NURBS basis functions:

T =T (s, t)=
n∑
i=1

Ni,pTi =NTT (13)

T̃ = T̃ (s, t)=
n∑
i=1

Ni,pT̃i =NT T̃ (14)
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where Ti denote the temperature unknowns of control points, where N and T are the vectors
collecting all the basis functions and unknowns, respectively.

Substitute Eqs. (13)–(14) into (12) and after math manipulations, we obtain the transient heat
transfer equation:

C
dT
dt

+KT=Rq+Rσ (15)

where K and C are the conductance and capacitance matrices and can be written, respectively, as:

K=
∫
A
ks

(
∂N
∂s

)T
∂N
∂s

dA (16)

C=
∫
A

ρcNTNdA (17)

where ∂N/∂s can be further expressed as:

∂N
∂s

= ∂N
∂u

∂u
∂s

(18)

In Eq. (15), Rq and Rσ are the load vectors arising from specified surface heating and surface
radiation, respectively, and can be written as:

Rq=
∫
A

αs

h
qsNTdA (19)

Rσ =−
∫
A

σε

h
T4NTdA (20)

Eq. (15) is a nonlinear transient heat conduction problem due to the nonlinear term Eq. (20).
Here we combine the implicit one-parameter θ̃ time integration scheme and the Newton-Raphson
method to solve Eq. (15) iteratively. Here we use θ̃ instead of θ to represent the time integration
parameter. The time integration scheme can be formulated as [51]:

KTt+�t =Rt+�t (21)

where the subscript denotes the time step, where �t is the time step increment, and where K and
Rt+�t are formulated, respectively, as:

K= θ̃K+ 1
�t

C (22)

Rt+�t =
[
− (1− θ̃

)
K+ 1

�t
C
]
Tt+

(
1− θ̃

)
Rt+ θ̃Rt+�t (23)

where Rt is the load vector at time t:

Rt =
(
Rq+Rσ

) |t (24)
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During each time step, the Newton-Raphson method was adopted to solve the nonlinear
equations [49]

Jm�Tm+1 =−Fm (25)

Tm+1 =Tm+�Tm+1 (26)

where the superscript m is the index of iteration, where J is the Jacobian matrix and F is a
residual load vector which are represented as:

Jm =K+�Rm (27)

Fm =KTm−R
m

(28)

where �R is the contribution from the temperature-dependent heat load vector, as:

�Rm = 4
∫
A

σε

h

(
Tm)3NTNdA (29)

Eqs. (25) and (26) are computed iteratively until the residual F reaches the predefined
tolerance.

3.2 Isogeometric Structural Analysis of Beams
The Euler–Bernoulli beam model is used in this paper to study the structural behaviors of

the thin-walled tube. The governing equation of the beam is written as:

EI
∂4w
∂z4

+ ∂2MT

∂z2
+ρA

∂2w
∂t2

= 0 (30)

where w is the beam’s deflection, where E and I are the modulus of elasticity and the area moment
of inertia, respectively, and where MT is the thermal moment, defined as:

MT =
∫
A
EαT�TydA (31)

where αT is the coefficient of thermal expansion, where �T is the temperature gradient of the
beam’s cross section which can be obtained as:

�T =T (s, t)−Tave (t)=T (s, t)−
∫ Ls
0 T (s, t)ds

Ls
(32)

where Tave (t) is the average temperature of the cross section at time t, and where Ls is the length
of the line of centroids of the cross section. Taking an annular cross section for example, the
inner and outer radius of the cross section are R1 and R2, respectively, then the length of line of
centroids is π (R1+R2).

Applying the method of weighted residuals (MWR) and integrating Eq. (30) by parts twice
yields the weak form of the governing equation:∫ L

0
EI

∂2w
∂z2

∂2w̃
∂z2

dz+
∫ L

0
MT

∂2w̃
∂z2

dz+
∫ L

0
ρA

∂2w
∂t2

w̃dz= 0 (33)

where L is the length of the thin-walled tube, where w̃ is the test function of the displacement
field.
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Similar to the isogeometric thermal analysis, the displacement field of the beam is discretized
with the same NURBS basis as the geometry:

w=w (z, t)=
n∑
i=1

Ni,pwi =NTw (34)

w̃= w̃ (z, t)=
n∑
i=1

Ni,pw̃i =NT w̃ (35)

where wi is the displacement unknowns at the i-th control point, and where w is the vector
collecting all the displacement unknowns.

Substitute Eqs. (34), (35) into (33) results in the discretized form of governing Eq. (33):

M
d2w
dt2

+Ksw= FT (36)

where Ks and M are the stiffness matrix and consistent mass matrix, respectively, they are defined
as:

Ks =
∫ L

0
EI

(
d2N
dz2

)T
d2N
dz2

dz (37)

M=
∫ L

0
ρANTNdz (38)

where FT in Eq. (36) is the equivalent nodal load vector induced by the thermal moment MT :

FT =−
∫ L

0
MT

(
d2N
dz2

)T
dz (39)

Eq. (36) can be solved iteratively by the Newmark algorithm [51]. In the following numerical
examples, the parameters of the Newmark algorithm are selected as: α = 0.25, β = 0.5, which
ensure an unconditionally stable algorithm.

3.3 Thermal Structural Coupling
The temperature and displacement fields of the beam are coupled with each other. The beam

will deform under thermal moments while, at the same time, this deformation will change the
incident angle of the sun which has direct influence on the temperature field of the beam. Here
we modified the heat load vector Rq in Eq. (19) to take into account the coupling effect:

Rq=
∫
A

αsS0 cos (ϕ − ∂w/∂z)
h

δ (θ) cos (θ1)NTdA (40)

where ∂w/∂z is the slope of the beam. In isogeometric analysis, ∂w/∂z is expressed as:

∂w
∂z

= ∂
(
NTw

)
∂z

= ∂NT

∂z
w= ∂NT

∂u
∂u
∂z

w (41)

Fig. 4 illustrates the change of incident angle induced by the thermal-mechanical coupling. In
this paper, the sequential coupling method are used to compute the thermally induced vibrations
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of beam structures where, in a single time step, we first compute the temperature field of the
beam, we then apply the obtained thermal moment for vibration analysis. In all the numerical
examples, we adopt a time step equals to 0.1 s.

Figure 4: The change of solar incident angle in coupled thermal-structural analysis

4 Numerical Examples

In this section, we present a number of numerical examples to demonstrate the reliability,
accuracy and robustness of the proposed method. We start with a simply supported rectangular
beam benchmark example, cf. 4.1 to verify the accuracy of the proposed method. We then
consider a more realistic example, a solar array of Hubble Space Telescope (HST) to study the
influential factors of the thermal flutter phenomenon in 4.2. We compare our IGA results with the
reference solutions which is less accurate due to the approximations introduced in the reference
model. In the last example, we studied the influence of the cross-section shapes on the thermally
induced vibrations of the thin-walled tube. Particularly, we proposed a new type of thin-walled
lenticular tube in 4.3, where thermally induced vibrations can be effectively suppressed.

4.1 Thermal Vibration of a Simply Supported Rectangular Beam
In this example, a simply supported rectangular beam subject to a constant heat flux Q

on the top surface (y = h/2) is studied. The geometry descriptions and boundary conditions of
the beam are shown in Fig. 5. The bottom surface (y = −h/2) of the beam is adiabatic. We
adopt two separate discretization of the beam for thermal and structural analysis to take into
account the difference between the two governing equations, namely the first order and the second
order Partial Differential Equations (PDEs). For thermal analysis, the beam is discretized with 4
elements with order of basis p = 2, while for structural analysis, 8 elements with order of basis
p= 3 is used.

Figure 5: Simply supported rectangular beam under surface heat flux
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The analytical solution of the beam is given by Boley [5] as:

V =
[(

ξ2− ξ
)

/2
]
mT +

∞∑
n=1,3,5

sinnπξ

n3π3

[
π2

8B2n2
sinn2π2B2τ

−
∞∑

j=1,3,5

e−j2π2τ + (j/nB)2 sinn2π2B2τ − cosn2π2B2τ

j4+ n4B4

⎤⎦ (42)

where ξ ∈ [0, 1] is the normalized coordinates in the length direction, where mT is the non-
dimensional thermal moment, which is defined as:

mT = π4kMT

192EIQαT
(43)

where k is the thermal conductivity of the beam.

The non-dimensional time τ and parameter B in Eq. (42) are defined, respectively, as:

τ = κt
h2

(44)

B= h
L
√

κ

(
EI
ρA

) 1
4

(45)

where κ = k/ (ρc) is the thermal diffusivity. The parameter B defined in Eq. (45) is non-
dimensional and represents the thermal and mechanical properties of the material. In this example,
we set B= 1.

Fig. 6 shows a comparison between the mid-span displacements of the IGA model and the
analytical model where the displacement of IGA model is normalized as:

V = π4kw
192QαTL2 (46)

Figure 6: Time histories of the non-dimensional deflection at z=L/2 for B= 1
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It can be found that IGA results are in good agreement with the analytical results even with
a very coarse mesh. The good performance of IGA model reveals the superior approximation
properties of the high continuous NURBS basis functions which is in contrast to the traditional
finite elements.

4.2 A Solar Array of Hubble Space Telescope (HST)
In this example, thermally induced vibrations of the Hubble Space Telescope (HST) solar

arrays [8] are investigated. The solar array model consists of two booms, a solar blanket and a
spreader bar as shown in Fig. 7. The material properties of the boom model are given in Tab. 1.
Besides, the mass of the spreader bar is Ms = 1.734 kg and the mass density of the blanket is
σsb= 1.589 kg/m2.

Figure 7: Hubble space telescope solar array model

Table 1: Model data of hubble space telescope solar array

αs ε αt
1/K

S0
W/m2

σ

W/m2 ·K4
c
J/kg ·K

ρ

kg/m3
k
W/m ·K

E
GPa

0.5 0.13 1.692E−5 1.350E+3 5.670E−8 5.020E+2 7.010E+3 1.661E+1 1.930E+2

We first studied the thermal behaviors of the boom. The cross section of the boom is a
thin-walled annulus with the wall thickness h = 2.35 × 10−4 m. Due to symmetry, only one
half of the annulus is modeled, cf. Fig. 7. The initial temperature of the boom is set to be
T0 = 290 K. For isogeometric thermal analysis, 18 quadratic 1D NURBS elements presented in
3.1 are used, where the exact geometry descriptions of IGA are fully exploited. For comparisons,
ABAQUS solutions [52] obtained with 4-node linear heat transfer quadrilateral element DC2D4
are presented, where 1 element and 80 elements are used in the thickness and circumferential
directions, respectively. The time histories of the temperature fields of the boom at the locations
θ = 0◦ and θ = 180

◦
are shown in Fig. 8. In addition, the distributions of the temperature fields

around the half circle at different times are shown in Fig. 9. It can be observed from Figs. 8
and 9 that, IGA results agree very well with the ABAQUS reference solutions. The convergence
properties of the IGA and ABAQUS models are studied in Tab. 2. It can be found that, IGA
results converge faster than ABAQUS results, where only 20 elements are need to reach the
converged solutions. While for ABAQUS model, 80 elements are need to reach the converged
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solutions. This observation confirms the superior properties of isogeometric analysis especially for
curved geometries.

Figure 8: Time histories of the temperature T at two locations: θ = 0
◦
, θ = 180

◦

Figure 9: The distributions of the temperature fields along the circumference of the cross section
at different times

Table 2: Comparisons of maximum and minimum temperatures of the tube at the time t = 2000 s

Method Number of elements

10 20 40 80 320

IGA(p = 2) 421.738
402.349

422.397
403.023

422.401
403.026

422.401
403.027

–
–

IGA(p = 3) 422.600
403.211

422.418
403.022

422.373
403.008

422.373
403.008

–
–

ABAQUS 417.803
400.643

421.550
402.352

422.328
402.834

422.522
402.953

422.583
402.990
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Based on the above temperature fields, the time histories of the thermal moment can be
obtained from Eq. (31) which are shown in Fig. 10. For comparisons, reference solutions taken
from Thornton et al. [8] are also shown in Fig. 10. It can be found that, the IGA results
predict slightly higher thermal moment compared to the reference solutions (blue curves). This is
mainly due to the assumptions adopted in the analytical thermal analysis model given in [8]. The
temperature field T (θ , t) in [8] is approximated as the sum of an average temperature T (t) and a
perturbation temperature Tm (t) cos θ :

T (θ , t)=T (t)+Tm (t) cos θ (47)

where the amplitude of the perturbation temperature is assumed to be small in comparison to the
average temperature, that is:

Tm/T < 1 (48)

In addition, the incident heat flux distribution is expanded as a Fourier series neglecting higher
order terms as:

δ cos θ = (1/π)+ 1
2
cos θ (49)

Based on the above assumptions, the governing Eq. (9) can be decoupled into two ordinary
differential equations:

dT
dt

+ σε

ρch
T
4 = 1

π

αsS0
ρch

(50)

dTm
dt

+
(

k
ρcR2 +

4σε

ρch
T
3
)
Tm = 1

2
αsS0
ρch

(51)

The average temperature in steady-state can be obtained from Eq. (50) at the radiation
equilibrium, that is:

Tss=
(
1
π

αsS0
σε

) 1
4

(52)

When solving for Tm from Eq. (51) a further assumption of T =Tss is adopted in [8], which
simplifies Eq. (51) to a linear differential equation. We think the assumptions adopted in [21]
plays an important role for the differences observed in Fig. 10. As mentioned by Thornton [53],
the analytical solutions of thermal moment show great differences compared to the finite element
solutions especially for lower values of parameter k/

(
ρcR2). Therefore, a different assumption of

T = T0 is tested for this problem where the results show slightly difference to the assumption of
T = Tss and agree quite well with the IGA results, cf. Fig. 10. The above observation indicates
that the assumption of T is crucial for the analytical method and has to be well defined for
specific problems.
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Figure 10: Time histories of the thermal moment

To proceed the thermally induced vibration analysis, a one-dimensional solar array model is
adopted in this example, where the boom and the blanket are coupled at the tip, and where the
spreader bar is simplified as a mass point at the tip, cf. Fig. 11. In the HST solar array model, the
booms are pre-stressed to maintain the shape of the blanket, therefore, we modify the governing
equations of the beam in Eq. (30) by adding an additional term P∂2w/∂z2 as:

EI
∂4w
∂z4

+ ∂2MT

∂z2
+ρA

∂2w
∂t2

+P
∂2w
∂z2

= 0 (53)

where P is the boom axial compressive force.

Figure 11: Illustration of the coupled 1D HST solar array model

The governing equations of the solar blanket is formulated as:

Fz
∂2wsb
∂z2

= σsb
∂2wsb
∂t2

(54)

where wsb is the deflection of the solar blanket, and where Fz is the tension of the solar blanket
which can be written as Fz =P/b′.

The governing equations of the spreader bar is presented as:

2Vy (L, t)+
∫ b′

−b′
Fz

∂wsb
∂z

(L, t)dx+Ms
d2ws
dt2

= 0 (55)
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where ws is the deflection of the spread bar, and where Vy is the shear force of boom defined as:

Vy=−EI ∂3wb
∂z3

−P
∂wb
∂z

− ∂MT

∂z
(56)

For isogeometric vibration analysis, both the boom and the solar blanket are discretized with
8 cubic elements, which are the same as numerical Example 1, since the major different between
Examples 1 and 2 is thermal analysis. The discretized form of the governing equations of the
HST solar array reads:

Msa
∂2wsa
∂t2

+ 2ςω0Msa
∂wsa
∂t

+Ksawsa= Fsa (57)

where ς and ω0 are the damping ratio and the first mode natural frequency, respectively, where
Msa and Ksa are the mass and stiffness matrices of the coupled system, respectively, where Fsa and
wsa are the external force and displacement unknown vectors of the coupled system, respectively.

Various influential factors, e.g., coupling scheme, incident angle and damping ratios, are stud-
ied to investigate the thermally induced vibrations of the HST solar array. Fig. 12 shows the tip
displacements of the boom for the uncoupled HST model under different pre-stress P, where the
critical buckling load Pcr is equal to 48.3 N. In order to evaluate the influences of the analytical
thermal analysis on the dynamic behaviors of the solar array, two IGA models are studied,
namely the “full-IGA” model and the “semi-IGA” model. In “full-IGA” model, both thermal
and structural problems are solved using isogeometric method, while in “semi-IGA” model, only
structural problems are solved using isogeometric method, the temperature field of the boom is
computed from the analytical method of [8]. It can be found that, “semi-IGA” model agrees very
well with the analytical results [8], while “full-IGA” model predicts slightly larger displacements
than the analytical results. This discrepancy is mainly due to the approximations introduced in the
analytical model for thermal analysis which is proved to be less accurate than IGA models.

Figure 12: Thermally induced vibrations of the uncoupled HST solar array under different axial
pressures

Figs. 13 and 14 show the time histories of the boom’s tip displacement obtained from the
coupled scheme presented in 3.3, where the axial pre-stress is set to be P = 14.75 N. It can be
found that, thermal flutter of the boom is quite sensitive to the damping ratios and incident



CMES, 2021, vol.128, no.3 1023

angles. For smaller damping ratio and larger incident angle, e.g., ς = 0.0001 and θ = 80◦, thermal
flutter has been triggered, cf. Fig. 14. While for ς = 0.01 and θ = 5◦, thermal flutter can be
suppressed, cf. Fig. 13. In addition, the coupling scheme plays an important role in the thermal
flutter analysis of the HST solar array, since no such phenomenon can be observed when using the
uncoupled scheme, cf. Fig. 12. We note that, when the incident angle is small (θ = 5◦), semi-IGA
model agrees very well with the analytical model, while full-IGA model predicts slightly larger
displacements which is mainly due to the approximations introduced in the analytical model for
thermal analysis. When the incident angle increases to a larger value of θ = 80◦, the discrepancy
between full-IGA and analytical model vanishes, which might due to the smaller thermal moments
generated in the boom.

Figure 13: Stable deflection history for HST solar array from coupled isogeometric thermal-
structural analysis

Figure 14: Unstable deflection history for HST solar array from coupled isogeometric thermal-
structural analysis
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4.3 Thin-Walled Lenticular Tubes with Different Cross Sections
The lenticular tubes are widely used in solar sail and antenna structures due to its high

efficiency in folding/unfolding operations [54]. In this example, thermally induced vibrations of
thin-walled lenticular tubes with different cross sections are studied. The length, thickness and
material properties of the tube are chosen the same as the HST solar array problem presented
in Section 4.2. The typical cross sectional shapes of a lenticular tube are shown in Fig. 15a,
where β is the circular angle which controls the shape of the cross section, where Lf and Ln
are the length of the flange and non-flange part, respectively, where h is the thickness of the tube.
The thickness of the flange part is 2h and we assume a constant temperature distribution through
the thickness of the flange. Diffusive radiation condition is assumed on the outer surface of the
tube, while on the internal surface, radiation is neglected. Besides, the initial temperature of the
tube is set to be 290 K.

(a) (b)

Figure 15: Thin-walled lenticular tubes with different cross sections: (a) geometrical parameters
of the cross section, (b) coupling constraints between the flange and non-flange parts, where five
different shapes of the cross section, namely A (β = 20◦), B (β = 30◦), C (β = 45◦), D (β = 60◦)
and E (β = 80◦) are proposed

Five different cross sectional shapes are proposed with the parameter β chosen as β = 20◦,
30◦, 45◦, 60◦, 80◦, respectively, cf. Fig. 15b. The length of the non-flange part Ln is kept constant
so that the solar energy absorbed is the same for the five cross sections. Due to the symmetric
boundary conditions, only one half of the tube’s cross section is modeled, and two NURBS
patches are used in the thermal analysis of the tube, cf. Fig. 15b. We note that, the complex
shapes of the cross section can be modeled exactly using NURBS descriptions which is an
intrinsic advantage compared to the traditional finite element method. Coupling constraints need
to be applied on the interface of the flange and non-flange part to properly transfer heat fluxes,
cf., Fig. 15b. In this paper, we use penalty approach [55] to enforce the coupling constraints
T (1) = T (2), where the superscripts (·)(1) and (·)(2) denote the non-flange and the flange parts,
respectively. A moderate penalty value of 104 is chosen while not destroying the conditions of
the system matrix. For isogeometric discretization, 19 quadratic NURBS elements are used for
thermal analysis while 8 cubic NURBS elements are used for structural analysis.

Fig. 16 shows the temperature distributions along the circular direction of tubes at the time
t = 2000 s. It can be found that with the increase of β, the average temperature of the tube
decreases, however, the difference between the highest and the lowest temperatures increases
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from 10.18 K for β = 20◦ to 13.88 K for β = 80◦. Fig. 17 shows the time histories of the
thermal moments for five different cross sections, it can be found that, thermal moment increases
monotonously with the parameter β, which is in contrast to the temperature results in Fig. 16.
The main reason behind is, larger values of β increases the height of the cross section which,
in consequence, increases the thermal moment of the tube, cf. Eq. (31). We then studied the
thermally induced vibrations of the tube with different cross sections in Fig. 18, where larger
amplitudes and displacements of the tube are found for smaller values of β. This is simply
because, the tube with smaller β has lower moment of inertia which is a dominating factor for
the dynamic behaviors of the tube.

Figure 16: Temperature distributions along the circular direction of tubes for five cross sections at
t= 2000 s

Figure 17: Time histories of thermal moment with different cross sections
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Figure 18: Time histories of displacement at the tip for different cross sections

We further proposed two new configurations of the lenticular tube where ribs with a built-in
crease are added between the upper and lower part of the cross section, cf. Fig. 19. The ribs
are slightly tilted and acting as a hinge to facilitate the folding/unfolding operations. We use two
straight NURBS lines to model a rib with a built-in crease. These two lines are C0-continuous at
the connection point which is perturbed with a predefined distance, cf. Fig. 19. The parameter β is
set to be β = 60◦. For thermal analysis, 19 quadratic NURBS elements are used for the non-flange
part and each rib is discretized with four quadratic NURBS elements. The same penalty approach
is used to enforce the coupling constraints between the ribs and the non-flange part.

Figure 19: Three designs of the lenticular cross section: (I) without ribs, (II) with one rib, (III)
with two ribs
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The temperature fields of the two new cross section types together with the original design
are shown in Fig. 20. ABAQUS solutions obtained with 80 DC2D4 heat transfer elements are
presented. It can be found that IGA results agree very well with the ABAQUS reference solutions
which demonstrates the accuracy and superior properties of isogeometric analysis. Besides, the
temperature gradient of the cross section decreased significantly by adding one and two ribs.
Fig. 21 shows the thermal moments of the three designs at the steady state where a reduction of
52.2% and 71.2% of the thermal moment for one and two ribs configurations compared to the
original design can be achieved. Additionally, thermally induced vibrations of the newly designed
tubes are shown in Fig. 22. Compared to the original design, the maximum displacements of the
new designs are reduced by 51.9% and 70.8% for the one and two ribs configurations, respectively.
It is worth to mention that, we do not consider the influence of the added ribs on the moment
of inertia which results in a conservative prediction of the thermal vibrations.

Figure 20: Temperature distributions of the three designs at t = 2000 s

Figure 21: Time histories of thermal moment for the three cross sections
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Figure 22: Time histories of the displacement at the tip for the three cross sections

5 Summary and Conclusions

The flexible appendages of spacecraft are likely to suffer from thermally induced vibrations
during day-night or night-day transitions due to the suddenly changed heat load. In this paper, we
proposed an isogeometric analysis (IGA) framework for the thermally induced vibration analysis
of beam structures where the geometric exactness and higher order continuity of the NURBS
basis are fully exploited. For thermal analysis, we developed a one-dimensional curved isogeomet-
ric element including radiation heat dissipation, in particular, arbitrary shaped cross sections can
be modeled exactly using NURBS geometries. For structural dynamic analysis, the rotation-free
Euler–Bernoulli beam elements are used where the C1-continuity requirements can be naturally
fulfilled by the NURBS basis functions which is difficult for traditional Lagrange polynomial
based finite element method. In addition, we presented a sequential coupling scheme where the
thermal and structural responses are solved iteratively.

We studied the accuracy and efficiency of the proposed method with several numerical
examples including a benchmark example, a solar array of Hubble Space Telescope (HST) and
thin-walled lenticular tubes with different cross sections. Either benchmark or more sophisticated
examples show good agreements with the reference solutions. In the HST solar array example,
isogeometric thermal element converges much faster than ABAQUS reference solutions due to the
higher order, higher continuous and the geometric exactness of the NURBS basis. It is found
that, thermal flutters can be well predicted when the thermal-structural coupling is considered,
and it is very sensitive to the damping ratios and incident angle. Besides, the slight discrepancy
between the IGA and analytical results might due to the approximations of the temperature fields
introduced in the analytical methods. In the last example, the influence of cross-sectional shapes
on the thermally induced vibrations of the lenticular tube are studied where the modeling of
complex cross-sectional shapes is facilitated by the NURBS geometries. The comparisons of the
thermal results obtained with IGA and ABAQUS confirm the advantages of the proposed analysis
framework. Additionally, two new cross-sectional shapes of the lenticular tube are proposed,
numerical results reveal that thermally induced vibrations can be effectively suppressed. It can be
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concluded that, the proposed framework is suitable for the thermally induced vibration analysis
of space structures.
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