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ABSTRACT

In the complexity and indeterminacy of decision making (DM) environments, orthopair neutrosophic number
set (ONNS) presented by Ye et al. can be described by the truth and falsity indeterminacy degrees. Then, ONNS
demonstrates its advantages in the indeterminate information expression, aggregations, and DM problems with
some indeterminate ranges. However, the existing research lacks some similarity measures between ONNSs. They
are indispensable mathematical tools and play a crucial role in DM, pattern recognition, and clustering analysis.
Thus, it is necessary to propose some similaritymeasures betweenONNSs to supplement the gap. To solve the issue,
this study firstly proposes the p-indeterminate cosine measure, p-indeterminate Dice measure, p-indeterminate
Jaccard measure of ONNSs (i.e., the three parameterized indeterminate vector similarity measures of ONNSs) in
vector space. Then, a DMmethod based on the parameterized indeterminate vector similarity measures of ONNSs
is developed to solve indeterminate multiple attribute DM problems by choosing different indeterminate degrees
of the parameter p, such as the small indeterminate degree (p= 0) or the moderate indeterminate degree (p= 0.5)
or the big indeterminate degree (p = 1). Lastly, an actual DM example on choosing a suitable logistics supplier
is provided to demonstrate the flexibility and practicability of the developed DM approach in indeterminate DM
problems. By comparison with existing relative DM methods, the superiority of this study is that the established
DMapproach indicates its flexibility and suitability depending on decisionmakers’ indeterminate degrees (decision
risks) in ONNS setting.
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1 Introduction

Since intuitionistic fuzzy sets (IFSs) [1] were proposed by Atanassov in incomplete and
uncertain situations, they have been wildly applied in various fields [2–8]. Particularly, similarity
measures play important roles in decision making (DM), pattern recognition, and clustering
analysis. For instance, various similarity measures of IFSs, such as the Dice measures and the
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cosine measures of IFSs [9–12], were proposed and used for DM problems in IFS setting. Then,
many researchers [13–17] also introduced different similarity measures of IFSs and applied them
to pattern recognitions. Also, the Jaccard and Dice measures of IFSs [18,19] were presented and
applied to clustering analyses.

It is known that IFS is depicted by both the truth membership degree and the falsity member-
ship degree. Then, it can be also denoted as an orthopair fuzzy set regarding the truth and falsity
membership degrees. There may be a situation where the sum of the truth membership degree
and falsity membership degree are more than one. To solve this issue, Yager [20,21] presented
the Pythagorean fuzzy set (PFS) as the extension of IFS. Then Wei et al. [22] introduced the
cosine similarity measure of PFSs and applied them in pattern recognition and medical diagnosis.
Nguyen et al. [23] introduced exponential similarity measures of PFSs and utilized them in pattern
recognition and DM problems. As the further extension of IFS and PFS, Yager et al. [24,25]
proposed the concept of q-rung orthopair fuzzy set (q-ROFS), which gives decision makers more
flexibility to represent the information expression range of the truth and falsity membership
degrees by choosing a suitable value of the parameter q. Then, Liu et al. [26] introduced some
cosine similarity measures and distance measures between q-ROFSs and used them for DM
problems in orthopair fuzzy setting.

Due to the complexity and indeterminacy of current DM environments, IFS, PFS, and
q-ROFS also indicate some limitations in describing the decision information. For instance, if
decision makers believe that their truth and falsity membership degrees contain their partial
determinacy and partial indeterminacy owing to their hesitancy, inconsistence, and indeterminacy.
In the partial certain and partial uncertain situations, IFS, PFS, and q-ROFS cannot express them.
Then, a neutrosophic number (NN) [27–29] composed of its certain term a and its uncertain
term bI can effectively express the partial certain and partial uncertain information, which is
denoted as u= a + bI for indeterminacy I ∈ [I−, I+] and a, b ∈ R (all real numbers). The NN
u= a + bI changes with the changes of I ∈ [I−, I+], which implies a changeable interval number
depending on the interval ranges of I ∈ [I−, I+]. Therefore, NN is more suitable for indeterminate
information expression and applications in indeterminate environments [30,31], which shows its
advantage. Based on the hybrid concept of both IFS and NN, Ye et al. [32] originally proposed
orthopair indeterminate sets/neutrosophic number sets (OISs/ONNSs) and their aggregation oper-
ators, then applied them to multiple attribute DM problems under indeterminate environments.
Although the indeterminate DM method introduced in [32] demonstrated its advantages in the
indeterminate information expression, aggregations and decision process, the existing research [32]
lacks a similarity measure between ONNSs, which is an essential mathematical tool and plays
a crucial role in DM, pattern recognition, and clustering analysis. Therefore, it is necessary to
propose some similarity measures between ONNSs to supplement the gap. To do so, we propose
the p-indeterminate cosine measure, p-indeterminate Dice measure, p-indeterminate Jaccard mea-
sure of ONNSs in vector space (the three parameterized indeterminate vector similarity measures/
p-indeterminate vector similarity measures of ONNSs). Then, we develop a DM method based
on the proposed p-indeterminate vector similarity measures of ONNSs to solve indeterminate
DM problems with the small indeterminate degree (p= 0) or the moderate indeterminate degree
(p= 0.5) or the big indeterminate degree (p= 1) specified by decision makers. However, the devel-
oped DM method not only gives decision makers much more flexibility to express the information
of the troth and falsity indeterminacy degrees by choosing the value/range of the indeterminacy
I ∈ [I−, I+], but also deals with indeterminate DM problems by choosing the indeterminate
degrees of p by the decision makers, which show its evident advantages.
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The rest of the paper is indicated below. Section 2 introduces preliminaries of IFS, NN and
ONNS. Section 3 proposes the p-indeterminate cosine measure, p-indeterminate Dice measure,
p-indeterminate Jaccard measure of ONNSs in vector space. In Section 4, a DM method based
on the p-indeterminate vector similarity measures of ONNSs is developed to solve indeterminate
DM problems with the small indeterminate degree (p= 0) or the moderate indeterminate degree
(p= 0.5) or the big indeterminate degree (p= 1) of the decision makers. In Section 5, an actual
DM example on choosing a suitable logistics supplier is provided to demonstrate the flexibility
and efficiency of the developed DM approach in indeterminate DM problems. Conclusions and
further study are contained in Section 6.

2 Preliminaries of IFS, NN and ONNSs

Since there are the indeterminacies of the truth membership degree and the falsity member-
ship degree in the real-life situations, Ye et al. [32] proposed an ONNS concept based on hybrid
concepts of IFS and NN as the generalization of the IFS concept in incomplete and indeterminate
situations.

Under incomplete and uncertain situations, an IFS D in a universe set X = {x1, x2, . . ., xn}
is defined as the following form [1]:

D= {〈xk,TD (xk) ,FD (xk)〉 | xk ∈X}
where TD(xi) ∈ [0, 1] and FD(xi) ∈ [0, 1] for xk ∈X (k= 1, 2, . . ., n) are the truth membership
degree and the falsity membership degree of the element xk to D, respectively, such that the
condition 0 ≤ TD(xk) +FD(xk) ≤ 1. Then, IFS can be also considered as an orthopair fuzzy
number, denoted by 〈TD(xk), FD(xk)〉.

In indeterminate situations, NN [27–29] is defined as u = a + bI for indeterminacy
I ∈ [I−, I+] and a, b ∈R, where a is its certain term and bI is its uncertain term. NN indicates
either a single value u= a + bI for I = I− = I+ or an interval number u= [a+ bI−, a+ bI+] for
I = [I−, I+]. Especially, there is u= a if bI = 0 (no indeterminate term) or u= bI if a= 0 (no
determinate term). Obviously, one does not doubt the superiority of NN over the unique interval
expression due to its expressional flexibility in determinate and/or indeterminate cases.

Regarding the hybrid concept of IFS and NN, Ye et al. [32] defined ONNS to express the
orthopair indeterminate information composed of both truth indeterminate degrees and falsity
indeterminate degrees.

Definition 2.1 [32]. Let X = {x1, x2, . . ., xn} be a fixed universe set. An ONNS O is defined
as the following form:

O= {〈xk, T̃O(xk, I), F̃O(xk, I)
〉∣∣xk ∈X}

where T̃O (xk, I) = ak + bkI ⊆ [0, 1] and F̃O (xk, I) = ck + dkI ⊆ [0, 1] for xk ∈ X (k = 1,
2, . . ., n) and I ∈ [I−, I+] are the truth indeterminate degree and the falsity indetermi-
nate degree of the element xk to O, respectively, such that the condition 0 ≤ sup T̃O (xk, I) +
sup F̃O (xk, I) ≤ 1. Then its intuitionistic indeterminate index is Ũ (xk, I) = 1 − T̃O (xk, I) −
F̃O (xk, I)=

[
1− (ak+ bkI+ + ck+ dkI+

)
, 1− (ak+ bkI− + ck+ dkI−

)]⊆ [0, 1].

For convenient representation, the component 〈xk, T̃O (xk, I) , F̃O (xk, I)〉 in the ONNS O for
xk ∈X (k= 1, 2, . . ., n) and I ∈ [I−, I+] is denoted simply by 〈T̃k (I) , F̃k (I)〉 = 〈ak+bkI , ck+dkI〉,
which is called the orthopair NN (ONN).
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Obviously, the ONNS O is reduced to the IFS or interval-valued IFS as a special case of
the ONNS O corresponding to some specified single value or interval value of I ∈ [I−, I+]. In
fact, ONNS can be considered as an IFS (orthopair fuzzy set) family or an interval-valued IFS
(orthopair interval-valued fuzzy set) family depending on a group of single values or interval
values of I ∈ [I−, I+].

Set o1 = 〈T̃1 (I) , F̃1 (I)〉 = 〈a1 + b1I , c1 + d1I〉 and o2 = 〈T̃2 (I) , F̃2 (I)〉 = 〈a2 + b2I , c2 + d2I〉 for
I ∈ [I−, I+] as two ONNs. Then, there exist the following relations [32]:

(1) o1 ⊆ o2 ⇐⇒ T̃1 (I)⊆ T̃2 (I), F̃1 (I)⊇ F̃2 (I);

(2) o1 = o2 ⇐⇒ o1 ⊆ o2 and o2 ⊆ o1;

(3) (o1)C = 〈F̃1 (I) , T̃1 (I)〉 (Complement of o1);

(4) o1⊕ o2 =
〈[ inf T̃1(I)+ inf T̃2(I)− inf T̃1(I) inf T̃2(I),
sup T̃1(I)+ sup T̃2(I)− sup T̃1(I) sup T̃2(I)],
[ inf F̃1(I) inf F̃2(I), sup F̃1(I) sup F̃2(I)]

〉
;

(5) o1⊗ o2 =
〈[ inf T̃1(I) inf T̃2(I), sup T̃1(I) sup T̃2(I)],
[ inf F̃1(I)+ inf F̃2(I)− inf F̃1(I) inf F̃2(I),
sup F̃1(I)+ sup F̃2(I)− sup F̃1(I) sup F̃2(I)]

〉
;

(6) αo1 = 〈[1− (1− inf T̃1(I))α, 1− (1− sup T̃1(I))α], [(inf F̃1(I))α, (sup F̃1(I))α]〉 for α > 0;

(7) oα
1 = 〈[(inf T̃1(I))α, (sup T̃1(I))α], [1− (1− inf F̃1(I))α, 1− (1− sup F̃1(I))α]〉 for α > 0.

Set ok = 〈T̃k(I), F̃k(I)〉 = 〈ak + bkI , ck + dkI〉 for I ∈ [I−, I+] (k = 1, 2, . . ., n) as a group of
ONNs. Then, Ye et al. [32] proposed the ONN weighted arithmetic averaging (ONNWAA) and
ONN weighted geometric averaging (ONNWGA) operators:

ONNWAA (o1,o2, . . . ,on)=
n∑

k=1

αkok =
〈
1−

n∏
k=1

(1− ak− bkI)
αk ,

n∏
k=1

(ck+ dkI)
αk

〉
(1)

ONNWGA (o1,o2, . . . ,on)=
n∏

k=1

oαk
k =

〈
n∏

k=1

(ak+ bkI)
αk , 1−

n∏
k=1

(1− ck− dkI)
αk

〉
(2)

where αk ∈ [0, 1] (k= 1, 2, . . ., n) is the weight of ok for
∑n

k=1 αk = 1.

For any ONN ok = 〈T̃k (I) , F̃k (I)〉 = 〈ak+ bkI , ck+ dkI〉 for I ∈ [I−, I+], Ye et al. [32] defined
its score and accuracy functions with I ∈ [I−, I+], respectively, as follows:

S (ok)=
{
inf T̃k (I)− inf F̃k (I)+ sup T̃k (I)− sup F̃k (I)

}/
2

={2ak+ bk
(
I− + I+

)− [2ck+ dk
(
I− + I+

)]}/
2, S (ok) ∈ [−1, 1]

(3)

H (ok)=
{
inf T̃k (I)+ inf F̃k (I)+ sup T̃k (I)+ sup F̃k (I)

}/
2

={[2ak+ bk
(
I− + I+

)]+ [2ck+ dk
(
I− + I+

)]}/
2, H (ok) ∈ [0, 1]

(4)
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Regarding the two functions S(ok) and H(ok), the ranking method of two ONNs ok =
〈T̃k (I) , F̃k (I)〉 = 〈ak+bkI , ck+dkI〉 (k= 1, 2) for I ∈ [I−, I+] is defined as the following laws [32]:

(1) o1 > o2 if S(o1) > S(o2);

(2) o1 > o2 if S(o1) = S(o2) and H(o1) > H(o2);

(3) o1 = o2 if S(o1) = S(o2) and H(o1) =H(o2).

3 New p-Indeterminate Vector Similarity Measures of ONNSs

This section presents new p-indeterminate vector similarity measures of ONNSs in vec-
tor space, including the p-indeterminate cosine measure, p-indeterminate Dice measure, and
p-indeterminate Jaccard measure of ONNSs.

Definition 3.1. Set O1 = {o11,o12, . . . ,o1n} and O2 = {o21,o22, . . . ,o2n} as two ONNSs, where
o1k = 〈T̃1k (I) , F̃1k (I)〉 = 〈a1k+ b1kI , c1k+ d1kI〉 and o2k = 〈T̃2k (I) , F̃2k (I)〉 = 〈a2k+ b2kI , c2k+ d2kI〉
are ONNs for I ∈ [I−, I+]. Let p ∈ [0, 1] be an indeterminate parameter. Then, the p-indeterminate
vector similarity measures between ONNSs O1 and O2 with indeterminate degrees of p ∈ [0, 1]
are presented as the following p-indeterminate cosine measure, p-indeterminate Dice measure and
p-indeterminate Jaccard measure:

Cp (O1,O2)= 1
n

n∑
k=1

([
a1k+ b1kI− + b1kp

(
I+ − I−

)] [
a2k+ b2kI− + b2kp

(
I+ − I−

)]
+ [c1k+ d1kI− + d1kp

(
I+ − I−

)] [
c2k+ d2kI− + d2kp

(
I+ − I−

)]
)

⎛
⎝
√[

a1k+ b1kI− + b1kp
(
I+ − I−

)]2+ [(c1k+ d1kI− + d1kp
(
I+ − I−

)]2
×
√[

a2k+ b2kI− + b2kp
(
I+ − I−

)]2+ [a2k+ b2kI− + d2kp
(
I+ − I−

)]2
⎞
⎠

(5)

Dp (O1,O2)= 1
n

n∑
k=1

2

([
a1k+ b1kI− + b1kp

(
I+ − I−

)] [
a2k+ b2kI− + b2kp

(
I+ − I−

)]
+ [c1k+ d1kI− + d1kp

(
I+ − I−

)] [
c2k+ d2kI− + d2kp

(
I+ − I−

)]
)

⎛
⎝[a1k+ b1kI− + b1kp

(
I+ − I−

)]2+ [(c1k+ d1kI− + d1kp
(
I+ − I−

)]2+[
a2k+ b2kI− + b2kp

(
I+ − I−

)]2+ [a2k+ b2kI− + d2kp
(
I+ − I−

)]2
⎞
⎠

(6)

Jp (O1,O2)= 1
n

n∑
k=1

([
a1k+ b1kI− + b1kp

(
I+ − I−

)] [
a2k+ b2kI− + b2kp

(
I+ − I−

)]
+ [c1k+ d1kI− + d1kp

(
I+ − I−

)] [
c2k+ d2kI− + d2kp

(
I+ − I−

)]
)

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎝[a1k+ b1kI− + b1kp

(
I+ − I−

)]2+ [(c1k+ d1kI− + d1kp
(
I+ − I−

)]2+[
a2k+ b2kI− + b2kp

(
I+ − I−

)]2+ [a2k+ b2kI− + d2kp
(
I+ − I−

)]2
⎞
⎠

−
([
a1k+ b1kI− + b1kp

(
I+ − I−

)] [
a2k+ b2kI− + b2kp

(
I+ − I−

)]
+ [c1k+ d1kI− + d1kp

(
I+ − I−

)] [
c2k+ d2kI− + d2kp

(
I+ − I−

)]
)

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

Especially when p is specified as any value, the p-indeterminate cosine measure,
p-indeterminate Dice measure and p-indeterminate Jaccard measure are reduced to the cosine
measure [15], Dice measure [19] and Jaccard measure [18] of IFSs, respectively. Hence, based on
the properties of the vector similarity measures [15,18,19], the p-indeterminate cosine measure,
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p-indeterminate Dice measure and p-indeterminate Jaccard measure also obviously contain the
following properties:

(1) Cp(O1, O2) =Cp(O2, O1), Dp(O1, O2) =Dp(O2, O1) and Jp(O1, O2) = Jp(O2, O1);

(2) Cp(O1, O2) =Dp(O1, O2) = Jp(O1, O2) = 1 if O1 =O2;

(3) Cp(O1, O2), Dp(O1, O2), Jp(O1, O2) ∈ [0, 1].

When the importance of each ONN ojk (j = 1, 2; k = 1, 2, . . ., n) in O1 and O2 is
taken into account and specified by its weight αk with 0 ≤ αk ≤ 1 and

∑n
k=1 αk = 1, the

weighted p-indeterminate cosine measure, weighted p-indeterminate Dice measure, and weighted
p-indeterminate Jaccard measure of ONNSs O1 and O2 can be given, respectively, as follows:

Cwp (O1,O2)=
n∑

k=1

αk

([
a1k+ b1kI− + b1kp

(
I+ − I−

)] [
a2k+ b2kI− + b2kp

(
I+ − I−

)]
+ [c1k+ d1kI− + d1kp

(
I+ − I−

)] [
c2k+ d2kI− + d2kp

(
I+ − I−

)]
)

⎛
⎝
√[

a1k+ b1kI− + b1kp
(
I+ − I−

)]2+ [(c1k+ d1kI− + d1kp
(
I+ − I−

)]2
×
√[

a2k+ b2kI− + b2kp
(
I+ − I−

)]2+ [a2k+ b2kI− + d2kp
(
I+ − I−

)]2
⎞
⎠

(8)

Dwp (O1,O2)=
n∑

k=1

αk

2

([
a1k+ b1kI− + b1kp

(
I+ − I−

)] [
a2k+ b2kI− + b2kp

(
I+ − I−

)]
+ [c1k+ d1kI− + d1kp

(
I+ − I−

)] [
c2k+ d2kI− + d2kp

(
I+ − I−

)]
)

⎛
⎝[a1k+ b1kI− + b1kp

(
I+ − I−

)]2+ [(c1k+ d1kI− + d1kp
(
I+ − I−

)]2
+ [a2k+ b2kI− + b2kp

(
I+ − I−

)]2+ [a2k+ b2kI− + d2kp
(
I+ − I−

)]2
⎞
⎠

(9)

Jwp (O1,O2)=
n∑

k=1

αk

([
a1k+ b1kI− + b1kp

(
I+ − I−

)] [
a2k+ b2kI− + b2kp

(
I+ − I−

)]
+ [c1k+ d1kI− + d1kp

(
I+ − I−

)] [
c2k+ d2kI− + d2kp

(
I+ − I−

)]
)

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎝[a1k+ b1kI− + b1kp

(
I+ − I−

)]2+ [(c1k+ d1kI− + d1kp
(
I+ − I−

)]2
+ [a2k+ b2kI− + b2kp

(
I+ − I−

)]2+ [a2k+ b2kI− + d2kp
(
I+ − I−

)]2
⎞
⎠

−
([
a1k+ b1kI− + b1kp

(
I+ − I−

)] [
a2k+ b2kI− + b2kp

(
I+ − I−

)]
+ [c1k+ d1kI− + d1kp

(
I+ − I−

)] [
c2k+ d2kI− + d2kp

(
I+ − I−

)]
)

⎞
⎟⎟⎟⎟⎟⎟⎠
(10)

Obviously, the weighted p-indeterminate cosine, weighted p-indeterminate Dice and weighted
p-indeterminate Jaccard measures also contain the following properties:

(1) Cwp(O1, O2) =Cwp(O2, O1), Dwp(O1, O2) =Dwp(O2, O1) and Jwp(O1, O2) = Jwp(O2, O1);

(2) Cwp(O1, O2) =Dwp(O1, O2) = Jwp(O1, O2) = 1 if O1 =O2;

(3) Cwp(O1, O2), Dwp(O1, O2), Jwp(O1, O2) ∈ [0, 1].

However, the weighted p-indeterminate cosine measure of ONNSs, the weighted
p-indeterminate Dice measure of ONNSs and the weighted p-indeterminate Jaccard measure of
ONNSs imply the cosine measure family of IFSs, the Dice measure family of IFSs, and the Jac-
card measure family of IFSs, respectively, regarding a group of p values, then the existing cosine,
Dice and Jaccard measures of IFSs [15,18,19] are the special cases of the three p-indeterminate
vector similarity measures (4)–(6) corresponding to the each value of p ∈ [0, 1]. It is obvious that
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the parameterized indeterminate vector similarity measures of ONNs with indeterminate degrees
of p ∈ [0, 1] show their measure flexibility in different indeterminate ranges of I and indeterminate
degrees of p.

4 DM Method Using the Proposed p-Indeterminate Vector Similarity Measures of ONNSs

This section develops a multiple attribute DM method with indeterminate degrees (decision
risks) of decision makers based on the proposed p-indeterminate vector similarity measures under
ONNS environment.

Regarding a multiple attribute DM problem, there is a set of alternatives L = {L1, L2, . . .,
Lm}, which is assessed by a set of attributes X = {x1, x2, . . ., xn}. Then, the weight of each xk is
specified by αk with 0 ≤ αk ≤ 1 and

∑n
k=1 αk = 1. Decision makers are required to satisfactorily

assess each alternative Lj (j = 1, 2, . . ., m) with respect to each attribute xk (k = 1, 2, . . ., n)

by the ONN ojk = 〈T̃jk (I) , F̃jk (I)〉 = 〈ajk + bjkI , cjk + djkI〉, where T̃jk (I) = ajk + bjkI ⊆ [0, 1] and

F̃jk (I) = cjk + djkI ⊆ [0, 1] for 0 ≤ sup T̃jk (I) + sup F̃jk (I) ≤ 1 and I ∈ [I−, I+] are the truth and
falsity indeterminate degrees. Thus, all ONNs can be constructed as the decision matrix of ONNs
O= (ojk)m×n.

To solve multiple attribute DM problems with ONN information, we present a multiple
attribute DM method using the weighted p-indeterminate vector similarity measures (the weighted
p-indeterminate cosine, weighted p-indeterminate Dice, weighted p-indeterminate Jaccard mea-
sures) with indeterminate degrees of p ∈ [0, 1] specified by decision makers and give the following
decision steps:

Step 1: An ideal solution/alternative O∗ = {o∗1,o∗2, . . . ,o∗n} is yielded from the decision matrix

O by the ideal ONNs o∗k =
〈
T∗
k ,F

∗
k

〉= 〈maxj
(
ajk+ bjkI+

)
,minj

(
cjk+ djkI−

)〉
(k= 1, 2, . . ., n; j= 1,

2, . . ., m) for I ∈ [I−, I+].
Step 2: By applying one of Eqs. (8)–(10) corresponding to the small indeterminate degree

(p= 0) or the moderate indeterminate degree (p= 0.5) or the big indeterminate degree (p= 1) of
the decision makers, the weighted p-indeterminate cosine measure or the weighted p-indeterminate
Dice measure or the weighted p-indeterminate Jaccard measure between Oj (j= 1, 2, . . ., m) and
O* is presented by the following formula:

Cwp
(
Oj,O∗)

=
n∑

k=1

αk

[
ajk+ bjkI− + bjkp

(
I+ − I−

)]
T∗
k +

[
cjk+ djkI− + djkp

(
I+ − I−

)]
F∗
k√[

ajk+ bjkI− + bjkp
(
I+ − I−

)]2+ [(cjk+ djkI− + djkp
(
I+ − I−

)]2√(T∗
k

)2+ (F∗
k

)2 (11)

Or

Dwp
(
Oj,O∗)

=
n∑

k=1

αk
2
([
ajk+ bjkI− + bjkp

(
I+ − I−

)]
T∗
k +

[
cjk+ djkI− + djkp

(
I+ − I−

)]
F∗
k

)
[
ajk+ bjkI− + bjkp

(
I+ − I−

)]2+ [(cjk+ djkI− + djkp
(
I+ − I−

)]2+ (T∗
k

)2+ (F∗
k

)2 (12)
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Or

Jwp
(
Oj,O∗)

=
n∑

k=1

αk

[
ajk+ bjkI− + bjkp

(
I+ − I−

)]
T∗
k +

[
cjk+ djkI− + djkp

(
I+ − I−

)]
F∗
k(([

a1k+ b1kI− + b1kp
(
I+ − I−

)]2+ [(c1k+ d1kI− + d1kp
(
I+ − I−

)]2+ (T∗
k

)2+ (F∗
k

)2)
− ([ajk+ bjkI− + bjkp

(
I+ − I−

)]
T∗
k +

[
cjk+ djkI− + djkp

(
I+ − I−

)]
F∗
k

)
)

(13)

Step 3: The alternatives are ranked and the best one is chosen corresponding to the values
of the weighted p-indeterminate vector similarity measure according to the indeterminate degree
p= 0 or p= 0.5 or p= 1 specified by the decision makers.

Step 4: End.

5 Actual DM Example

5.1 Multiple Attribute DM Problem on Choosing a Suitable Logistics Supplier
A suitable third part logistics supplier is selected to play a key role because it can improve

efficiency, market share and service quality and reduce costs in business development. In this
section, we consider a multiple attribute DM problem on choosing a suitable logistics supplier as
the third part for a manufacturing company to show the practicability and effectiveness of the
proposed DM method in ONNS setting.

Suppose that four possible logistics suppliers are chosen as a set of their alternatives L =
{L1, L2, L3, L4} for a manufacturing company, which must be evaluated by the three require-
ments/attributes: the efficiency (x1), the service quality (x2), and the cost (x3). Then, the weight
vector of the three attributes is given as α = (0.35, 0.32, 0.33). Thus, the satisfactory assessment
of each alternative Lj (j = 1, 2, 3, 4) are given over the attributes xk (k = 1, 2, 3) by decision
makers, and then the assessment information of the truth indeterminacy degree and the falsity
indeterminacy degree is expressed as the ONN ojk = 〈T̃jk (I) , F̃jk (I)〉 = 〈ajk+bjkI , cjk+djkI〉, where
T̃jk (I)= ajk+ bjkI ⊆ [0, 1], F̃jk (I)= cjk+ djkI ⊆ [0, 1], and 0≤ sup T̃jk (I)+ sup F̃jk (I)≤ 1 (j = 1, 2,
3, 4 and k= 1, 2, 3) for the indeterminacy I ∈ [0, 1]. Thus, all ONNs can be established as their
decision matrix:

O=

⎡
⎢⎢⎣
O1
O2
O3
O4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

(0.6+ 0.2I , 0.1+ 0.1I) (0.6+ 0.1I , 0.1+ 0.2I) (0.5+ 0.2I , 0.0+ 0.2I)
(0.5+ 0.1I , 0.1+ 0.1I) (0.6+ 0.1I , 0.1+ 0.2I) (0.6+ 0.2I , 0.1+ 0.1I)
(0.6+ 0.1I , 0.1+ 0.2I) (0.7+ 0.1I , 0.1+ 0.1I) (0.6+ 0.2I , 0.1+ 0.1I)
(0.7+ 0.1I , 0.1+ 0.1I) (0.6+ 0.1I , 0.1+ 0.1I) (0.5+ 0.1I , 0.1+ 0.2I)

⎤
⎥⎥⎦

Therefore, the developed DM approach is applied in the indeterminate DM problem with I ∈
[0, 1] and indicated by the following decision process:

First of all, an ideal solution/alternative O∗ = {
o∗1,o

∗
2,o

∗
3

} = {〈0.8, 0.1〉, 〈0.8, 0.1〉, 〈0.8, 0.0〉} is
obtained from the decision matrix O for I ∈ [I−, I+] = [0, 1].

Then by applying one of Eqs. (11)–(13) regarding the small indeterminate degree (p= 0) or
the moderate indeterminate degree (p= 0.5) or the big indeterminate degree (p= 1) presented by
the decision makers, the values of the weighted p-indeterminate cosine measure or the weighted
p-indeterminate Dice measure or the weighted p-indeterminate Jaccard measure between Oj (j =
1, 2, . . ., m) and O* and decision results are shown in Tab. 1.
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Table 1: Decision results regarding the p-indeterminate vector similarity measures

p p= 0 p= 0.5 p= 1

Weighted p-indeterminate
cosine measure of Eq. (11)

0.9994, 0.9943,
0.9952, 0.9761

0.9894, 0.9843,
0.9865, 0.9571

0.9722, 0.9708,
0.9741, 0.9382

Ranking order L1 > L3 > L2 > L4 L1 > L3 > L2 > L4 L1 > L3 > L2 > L4
The best alternative L1 L1 L1
Weighted p-indeterminate
Dice measure of Eq. (12)

0.9559, 0.9452,
0.9758, 0.9506

0.9792, 0.9599,
0.9811, 0.9492

0.9714, 0.9562,
0.9693, 0.9364

Ranking order L3 > L1 > L4 > L2 L3 > L1 > L2 > L4 L1 > L3 > L2 > L4
The best alternative L3 L3 L1
Weighted p-indeterminate
Jaccard measure of Eq. (13)

0.9156, 0.8978,
0.9531, 0.9084

0.9594, 0.9236,
0.9631, 0.9083

0.9449, 0.9161,
0.9408, 0.8890

Ranking order L3 > L1 > L4 > L2 L3 > L1 > L2 > L4 L1 > L3 > L2 > L4
The best alternative L3 L3 L1

As for decision results in Tab. 1, the ranking orders and the best alternatives obtained by
the weighted p-indeterminate Dice measure and the weighted p-indeterminate Jaccard measure are
identical and then both indicates their sensitivity and ranking changeability corresponding to the
different indeterminate degrees (p = 0, 0.5, 1); while the ranking order and the best alternative
obtained by the weighted p-indeterminate cosine measure are different from the ones obtained
by both the weighted p-indeterminate Dice measure and the weighted p-indeterminate Jaccard
measure and indicate some robustness corresponding to the different indeterminate degrees (p= 0,
0.5, 1). But, the weighted p-indeterminate cosine measure lacks some sensitivity to the different
indeterminate degrees. From the perspective of decision flexibility, the weighted p-indeterminate
Dice measure and the weighted p-indeterminate Jaccard measure are superior to the weighted
p-indeterminate cosine measure. Then, their final decision results indicate that the best alternative
is L1 or L4 depending on an indeterminate degree and a similarity measure specified by the
decision makers.

5.2 Comparison with Related DMMethods
In the setting of IFSs, existing vector similarity measures of IFSs in the literature [15,18,19]

only are the special cases of the proposed p-indeterminate vector similarity measures of ONNSs
when p takes some specified indeterminate degree (i.e., p= 0 or 0.5 or 1). Then, the DM method
based on the proposed p-indeterminate vector similarity measures shows its better flexibility and
practicability depending on decision makers’ indeterminate degrees in indeterminate DM prob-
lems, while the existing related DM methods [15,18,19] cannot deal with the indeterminate DM
problems with ONNS information. Therefore, the developed DM method is more generalized suit-
ability and superior to the existing DM methods, and also shows the advantages in its flexibility,
efficiency and practicability under indeterminate DM environments.

To compare the proposed DM method with the existing DM method [32] in the setting of
ONNSs, we apply the existing DM method [32] to the above DM example in the setting of
ONNSs. By using Eqs. (1) and (2), the aggregated values of the ONNWAA and ONNWGA
operators are calculated when the indeterminate ranges are I = [I−, I+] = [0, 0], [0, 0.5], [0, 1].
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Then, the score values of S(oj) (j = 1, 2, 3, 4) are calculated by Eq. (3) and the decision results
are shown in Tabs. 2 and 3, respectively.

Table 2: Decision results exiting DM method using the ONNWAA operator and score
function [32]

I = [I−, I+] Score value of S(oj) Ranking The best one

I = [0, 0] 0.5685, 0.4665, 0.5331, 0.5109 L1 > L3 > L4 > L2 L1
I = [0, 0.5] 0.5398, 0.4697, 0.5332, 0.5039 L1 > L3 > L4 > L2 L1
I = [0, 1] 0.5417, 0.4754, 0.5351, 0.4977 L1 > L3 > L4 > L2 L1

Table 3: Decision results of exiting DM method using the ONNWGA operator and score
function [32]

I = [I−, I+] Score value of S(oj) Ranking The best one

I = [0, 0] 0.4968, 0.4619, 0.5284, 0.4961 L3 > L1 > L4 > L2 L3
I = [0, 0.5] 0.4987, 0.4621, 0.5279, 0.4877 L3 > L1 > L4 > L2 L3
I = [0, 1] 0.4999, 0.4617, 0.5267, 0.4788 L3 > L1 > L4 > L2 L3

From the ranking results of Tabs. 2 and 3, the exiting DM method [32] reflects ranking
difference based on the ONNWAA operator and the ONNWGA operator. Then, two kinds of
ranking orders are always unchanged corresponding to different indeterminate ranges I = [I−, I+]
= [0, 0], [0, 0.5], [0, 1], which demonstrates no sensitivity to the different indeterminate ranges.
Obviously, the indeterminate ranges cannot affect the ranking order of alternatives in the DM
example under the environment of ONNSs.

Compared with the proposed DM method, there is the same ranking order between the exiting
DM method using the ONNWGA operator and score function [32] and the proposed DM method
using Eqs. (12) and (13) for the indeterminate degree of p = 0, but the other ranking orders
show their difference. Then, the best alternative L1 or L4 is the same between the proposed DM
method and the existing one [32] in the DM example. However, the proposed DM method shows
its advantages in some decision flexibility and efficiency corresponding to decision makers’ various
indeterminate degrees (decision risks). But the existing DM method cannot result in the ranking
change of alternatives corresponding to decision makers’ different indeterminate ranges in the
DM example, and then it lacks the decision flexibility, which show its insufficiency. Therefore, it
is obvious that the proposed DM method is superior to the existing one in indeterminate DM
problems with ONNS information.

6 Conclusion

Due to the lack of similarity measures of ONNSs in the existing literature [32], this study
proposed the p-indeterminate vector similarity measures of ONNSs, including the p-indeterminate
cosine measure, the p-indeterminate Dice measure, and the p-indeterminate Jaccard measure of
ONNSs to provide effective mathematical tools for flexible DM in indeterminate problems. Then,
a multiple attribute DM approach with the different indeterminate degrees (p= 0, 0.5, 1) of the
decision makers was developed by using the p-indeterminate vector similarity measures under the
indeterminate DM environment. Lastly, an actual DM example on choosing a suitable logistics
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supplier was presented to demonstrate the flexibility, efficiency and practicability of the developed
DM approach in indeterminate DM situations. By comparison with the existing DM methods,
the superiority of this study is that the established DM approach indicates its flexibility, efficiency,
and practicability depending on decision makers’ indeterminate degrees in ONNS setting.

In this study, however, we only use the proposed p-indeterminate vector similarity measures
of ONNSs for DM problems, but lack more applications. Therefore, it is necessary for us to
extend the p-indeterminate vector similarity measures to medical diagnosis, pattern recognition,
and clustering analysis as further research directions in ONNS setting.
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