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ABSTRACT

Functional graded cellular structure (FGCS) usually shows superiormechanical behavior with low density and high
stiffness.With the development of additive manufacturing, functional graded cellular structure gains its popularity
in industries. In this paper, a novel approach for designing functionally graded cellular structure is proposed based
on a subdomain parameterized level set method (PLSM) under local volume constraints (LVC). In this method,
a subdomain level set function is defined, parameterized and updated on each subdomain independently making
the proposed approach much faster and more cost-effective. Additionally, the microstructures on arbitrary two
adjacent subdomains can be connected perfectly without any additional constraint. Furthermore, the local volume
constraint for each subdomain is applied by virtue of the augmented Lagrange multiplier method. Finally, several
numerical examples are given to verify the correctness and effectiveness of the proposed approach in designing the
functionally graded cellular structure. From the optimized results, it is also found that the number of local volume
constraints has little influence on the convergence speed of the developed approach.
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1 Introduction

Functionally graded cellular structure (FGCS), composed of an interconnected network of
bars or plates, is usually designed to attain a specific purpose. With low density and high stiffness
and strength [1], FGCS shows superior performance than traditional structure [2,3]. The cellular
structure leads to good thermal diffusion efficiency, strong energy absorption effect and shocking
resistance. Another advantage of FGCS is that it usually keeps working properly when some local
failures or defects occur. That’s to say, FGCS is not sensitive to local defects. Consequently, FGCS
is widely used in the aerospace, medical and other industries [4,5].

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2021.016894


1198 CMES, 2021, vol.128, no.3

The geometric configuration of the microstructures making up the cellular structure can be
regular or irregular. The honeycomb and the lattice structures belong to the former, while the foam
is the latter. The cellular structure has been studied intensively in the last few decades. Analytical
and experimental investigations were conducted to derive the detailed expression of the effective
thermal conductivity, permeability and the inertial coefficient of metal foams [6–10]. It showed
that the lattice structure has an inherent advantage over foams in resisting shock waves and
bending due to its periodic characteristics [11,12]. Of course, cell pattern has a significant influence
on failure mode and energy absorption [13,14]. The honeycomb structures was introduced at
length in [15] with its application and tests.

Nowadays, with the development of additive manufacturing (AM), the field of structure
manufacturing has been ushered into an era of rapid development, which expands the applica-
tion prospect of topology optimization at the same time. Topology optimization techniques are
gradually being used for the design of AM parts and are in focus in the ongoing research of
AM community [16]. Using additive manufacturing technology, people can realize the manufacture
of FGCS [17,18]. New computer aided design methods are developed for AM to deal with the
complex geometry of cellular structures. Aremu et al. [19] gained insight into the performance of
two variants of AM lattice and demonstrated the great potential of AM technology. A number
of approaches were developed to design the FGCS, such as relative density mapping method [20],
the size and scaling method [21], and the isostatic lines approach [22].

Topology optimization turns out to be powerful in realizing structural design. Over the last
few decades, a variety of optimization methods have been developed [23–26]. Recently, more and
more topological optimization-based algorithms are proposed to design cellular structure, such as
the projection or mapping methods [27,28], the scale related-based two scales methods [29–34].
In the current research status, the connectivity between adjacent microstructures has become an
important problem to be solved. Song et al. [35] designed a kind of irregular cellular structure
based on a modified Solid Isotropic Material with Penalization (SIMP) method and validated its
superiority through experiment. Radman et al. [36] used the Bi-directional Evolutionary Structure
Optimization (BESO) method to design cellular functionally graded materials via variation in
stiffness along a certain direction. Zhang et al. [37] developed the design element concept to design
the cellular structures by considering the materials and structures in a unified way. Li et al. [38]
developed a multi-scale topology optimization method for the integrated design of functional
graded cellular composites. Wang et al. [39] presented a concurrent design method based on
micro-architectures. Li et al. [40] developed a density-based topology optimization method for
cellular structures with quasi-periodic microstructures by employing the erode-dilate operators.
Zhu et al. [41] established an efficient method to design the infilled graded structures based
on the asymptotic homogenization theory. We proposed a new subdomain parameterized level
set method [42] which is much more cost-effective compared to the classical method since the
parameterization process can be achieved in parallel on each subdomain. Zong et al. [43] presented
a variable cutting level set method to design FGCS. By introducing a variable and continuous
cutting function, it can guarantee perfect geometric connections between adjacent cells. Further,
Liu et al. [44] developed a multiple variable cutting (M-VCUT) level set method for designing
the cellular structures. As a generalization of the VCUT level set method, connections between
microstructures in neighboring cells are naturally guaranteed without any extra constraints.

There is a great demand for functionally graded cellular structure in practical engineer-
ing. Usually, the geometric complexity of the structures obtained by considering local volume
constraints (LVC) are significantly higher than those obtained by considering global volume
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constraints. The structures with higher geometric complexity sometimes meet the need of engi-
neering better, such as load bearing, impact resistance and anti-disturbance caused by defects.
Cai et al. [45] investigated the volume constraints on the subdomain of a continuum structure
topology optimization using a heuristic approach. Hesse et al. [46] considered multiple, arbitrarily
placed, volume constraints in shape topology based on the level-set optimization framework. Wu
et al. [47] raised a method to generate bone-like porous structures by putting LVC in the design
domain.

In this paper, we propose a strategy to generate FGCS utilizing the subdomain parameterized
level set method with local volume constraints, where the material volume usage for each sub-
domain could be restricted in a uniform or non-uniform form. By parameterizing and updating
the level set function on each subdomain, the subdomain parameterized level set method is more
efficient than the classical parameterized level set method since the parameterization process could
be proceeded only on each subdomain independently and efficiently. In addition, arbitrary adjacent
two microstructures can be connected perfectly and automatically by using the subdomain level
set method since the sensitivity analysis is conducted on the whole (global) design domain. By
introducing the local volume constraints into the subdomain level set method, the FGCS can
be easily obtained. Furthermore, an easy-to-implement regularization method is employed in this
paper to solve the mesh-dependency problem of the optimized results.

This paper is organized as follows. Firstly, the subdomain parameterized level set method
with local volume constraints (LVC) is described in detail in the next section. Then, to verify the
correctness and effectiveness of the developed approach, some numerical examples are conducted
in Section 3. Finally, conclusions are drawn in Section 4.

2 The Subdomain Parameterized Level Set Method with Local Volume Constraints

2.1 The Classic Level Set Method
Osher et al. [48] firstly raised the level set method to tackle fronts propagating with curvature-

dependent speed. Sethian et al. [49] and Osher et al. [50] applied the approach to the structure
optimization. Allaire et al. [51] and Wang et al. [24] put forward the level set method with
the shape derivative for structural topology optimization. Compared with the element based
topology optimization algorithms, such as the SIMP and the BESO, the level set based topology
optimization method can generate structural configuration with smooth and clear boundaries.

As shown in Fig. 1, in the level set method, the zero isosurface of a higher dimensional level
set function φ(x, t) is used to represent the structural boundaries during optimization. φ(x, t) can
be defined as⎧⎨⎩φ(x, t) > 0 ⇐⇒ ∀ x ∈�

φ(x, t)= 0 ⇐⇒ ∀ x ∈ ∂�

φ(x, t) < 0 ⇐⇒ ∀ x ∈D\(�∪ ∂�)

(1)

where x, t, D, � and ∂� represent the coordinate vector of any point in the design domain,
the artificial time, the design domain, the structure domain and the boundaries of structure,
respectively.
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Figure 1: Representing a two dimensional problem with a level set function

In the classical level set method, a signed distance function is usually used as the level set
function. Through the evolution of the level set function, the structural boundary can be changed
implicitly. In the classical level set method, the level set function φ(x, t) is updated by solving the
following Hamilton-Jacobi equation:

∂φ

∂t
−ϑn|∇φ| = 0, ϑn= dx

dt
·
(
− ∇φ

|∇φ|
)

(2)

where ϑn = ϑn(x, t) is the normal velocity field of the structural boundary.

During the solving of the above-mentioned Hamilton-Jacobi equation, some issues may be
caused: (a) the level set function must be re-initialized frequently to maintain a signed distance
function, which is important to keep the normal gradient of the level set function constant; (b) the
time step is required to be small enough and satisfy the Courant-Friedrichs-Lewy (CFL) condition
to ensure the numerical stability; (c) new holes are difficult to be created inside the solid material
domain.

2.2 The Subdomain Parameterized Level Set Method
To overcome the above-mentioned issues, Wang et al. [52] proposed a parametric level set

method for shape and topology optimization using radial basis functions (RBFs). Wei et al. [53]
presented a compact and efficient code based on the parameterized level set method. Recently, we
proposed a subdomain parameterized level set method [42] for designing the cellular structures.
In this approach, the whole design domain D and structural domain � were divided into M
subdomains Ds and microstructures �s, respectively,

D=
M⋃
s=1

Ds, �=
M⋃
s=1

�s (3)

where M is the number of subdomains within the whole design domain, M = 2 for the subdomain
division in Fig. 2a. On each subdomain, a subdomain level set function φs is defined, parameter-
ized and updated independently. As illustrated in Fig. 2, the whole design domain is divided into
two subdomains D1 and D2, correspondingly two subdomain level set functions φ1 in Fig. 2b and
φ2 in Fig. 2c are defined on these two subdomains. By evolving each subdomain level set function,
the updating of the microstructure �s on the corresponding subdomain can be achieved. Finally,
the whole structure � can be formed by putting all the microstructures �s together.
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Figure 2: A design domain divided into two subdomains: (a) subdomain division; (b) subdomain
level set function φ1 defined on D1 cut by the zero plane; (c) subdomain level set function φ2
defined on D2 cut by the zero plane

Then, a subdomain level set function φs is used to represent the material distribution of the
microstructure on each subdomain, i.e.,⎧⎨⎩φs(x, t) > 0 ⇐⇒ ∀ x ∈�s

φs(x, t)= 0 ⇐⇒ ∀ x ∈ ∂�s
φs(x, t) < 0 ⇐⇒ ∀ x ∈Ds\(�s ∪ ∂�s)

(4)

Then the evolution of φs on each subdomain is realized by solving the following Hamilton-
Jacobi (HJ) equation:

∂φs(x, t)
∂t

−ϑn
s (x, t)|∇φs(x, t)| = 0 (5)

where ϑn
s is a normal velocity field of the structural boundaries on the subdomain Ds and ϑn

s
can be obtained by extracting the calculation result of ϑn

g on the subdomain Ds, where ϑn
g is a

normal velocity field of the structural boundaries on the whole design domain D and ϑn
g can be

obtained by the structural analysis of the whole structure (see subsection 2.3 for more details).



1202 CMES, 2021, vol.128, no.3

The above-mentioned issues encountered in solving the HJ equation can be overcome by
parameterizing the level set function with any spatial discretization approach. In this work, the
radial basis functions (RBFs) is introduced for parameterizing the subdomain level set function φs.
The RBFs are a set of real valued functions whose value only depend on the distance from the
knot. Common radial basis functions include the Gaussians, the Compactly Supported Radial
Basis Functions (CSRBFs), the MultiQuadric (MQ) splines, and so on. For instance, the MQ
spine could be given as

Ri =
√

(x−xi)2+ c2, xi ∈Ds (6)

where xi is the coordinates of the ith knot and c is a small constant value for all knots in most
application.

The subdomain level set function φs could be represented by the MQ splines:

φs(x, t)=
Ns∑
k=1

αks (t)R
k
s (x)+βs(x, t) (7)

where Ns is the number of knots of the RBFs on the subdomain Ds, Rs(x) and αs(t) are the
RBFs and their coefficients, respectively. βs(x, t) is a linear function to illustrate the linear and
constant component of φs, i.e.,

βs(x, t)= β0
s (t)+β1

s (t)x+β2
s (t)y (8)

To ensure the uniqueness of the solution, the following orthogonal conditions [53,54] should
be met:

Ns∑
k=1

αks (t)= 0,
Ns∑
k=1

αks (t)xk = 0,
Ns∑
k=1

αks (t)yk = 0 (9)

By substituting the coordinates xi of all knots in the subdomain into Eqs. (7)–(9), the
following expression in matrix-vector form can be obtained:

Rshs(t)= φs(t) (10)

where

Rs =
[
Rs Bs
BT
s 0s

]
, Rs =

⎡⎢⎢⎣
R1
s (x1) · · · RNs

s (x1)
...

. . .
...

R1
s (xNs) · · · RNs

s (xNs)

⎤⎥⎥⎦ , Bs =

⎡⎢⎢⎣
1 x1 y1
...

...
...

1 xNs yNs

⎤⎥⎥⎦ (11)

hs(t)=
{
α1
s (t) · · · α

Ns
s (t) β0

s (t) β1
s (t) β2

s (t)
}T

(12)

φs(t)=
{
φs(x1, t) · · · φs(xNs , t) 0 0 0

}T (13)

Substituting Eq. (10) into Eq. (5), the following HJ equation in a matrix-vector form can be
obtained:

Rs
dhs
dt

−ωs(hs(t), t)= 0 (14)
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where

ωs=V
n
s

√
(R

2
s,x+R

2
s,y)h

2
s (15)

in which Rs,x and Rs,y are the partial derivatives of the matrix Rs to x and y, respectively; V
n
s is

given as

V
n
s =

⎡⎢⎢⎢⎢⎢⎢⎣

ϑn
s (x1, t)

. . .
ϑn
s (xNs , t)

0
0

0

⎤⎥⎥⎥⎥⎥⎥⎦ (16)

By parameterizing the level set function with the RBFs, the evolution of φs is transformed
into the updating of the coefficient vector hs(t) by solving the following equation:

Rs
hs(ti+1)− hs(ti)

�t
=ωs(hs(ti), ti) (17)

where �t is the length of time step.

2.3 Sensitivity Analysis of the Objective Function and the Constraints
The compliance problem of the optimized structure is considered in the work. According to

the level set method, the mathematical formulation is given as

Minimize
φs,u

: J(φs,u)= 2
M∑
s=1

∫
Ds

εij(u)Cijklεkl(u)H(φs)d�

s.t.: a(u, v,φ)= 
(v,φ), ∀v∈U
Gs(φs)=Vs−Vs ≤ 0, s= 1, 2, . . . ,M

(18)

where J(φs,u) is the objective function, u the displacement field, εij the second-order strain tensor,
Cijkl the fourth-tensor elastic tensor, Gs the volume constraint equation, H the Heaviside function,

Vs the material volume constraint of subdomain Ds and Vs =
∫
Ds
H(φs)d� the current used

material volume in the subdomain Ds. The global level set function φ is obtained by aggregating
all of the subdomain level set functions φs. In this paper, the Heaviside function is defined as

H(φs)=
{
1, if φs ≥ 0

0, if φs < 0
(19)

The normal velocity field of the boundaries of the whole structures ϑn
g could be obtained

after the structural analysis

ϑn
g = Fx(x)u(x)+Fy(x)v(x) (20)

where x denotes the coordinate vector of the point in the whole design domain; Fx and Fy are
the external forces; u and v are the displacement fields obtained during the structural analysis; the
subscript x and y represent the directions.
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The normal velocity field ϑn
s could be obtained by

ϑn
s = ϑn

g (xs, t)−λs, xs ∈Ds (21)

where λs is the Lagrangian multiplier which is computed and updated on the subdomain Ds based
on the augmented Lagrangian scheme:

λ
j+1
s =

{
μsG

j
s, j ≤NR

λ
j
s+ γ

j
s Gs, j>NR

(22)

where μs > 0 and γ
j
s are parameters in the jth iteration. According to our experience, the initial

values of μs can be all set to 3.0 and γ
j
s can be renewed through

γ
j+1
s =min(γ

j
s + 0.001, 5) (23)

In the first NR iteration, the volume constraint is relaxed as

Gj
s(φs)=

∫
Ds

H(φs)d�−
[
V0
s − (V0

s −Vs)
j
NR

]
(24)

where V0
s is the material volume used at the initial moment.

2.4 Meshes in the Optimization
In general, in the subdomain level set method, the mesh for discretizing the microstructure

and the one for parameterizing the subdomain level set function on each subdomain could be
different. However, for the convenience of calculation, these two sets of meshes are set to the
same, i.e., the knots of the RBFs are the same to the nodes of the finite element mesh on each
subdomain.

As shown in Fig. 3, the full-scale mesh generated on the whole design domain D is used for
obtaining the displacement field (u, v) and the global normal velocity field ϑn

g (x, t), while the sub-
grid mesh established on each subdomain Ds is employed herein for parameterizing and updating
the subdomain level set function.

(a) (b)

Figure 3: Meshes used in the subdomain level set method: (a) full-scale mesh for the whole design
domain D; (b) sub grids for the subdomain D2

A stiffness reduction factor ρe is introduced in this work for calculating the element stiffness
matrix, where ρe = 1 represents the solid element and ρe = 10−9 represents the void element. As for
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the mixture element, ρe is set as ρe =Vsolid/Ve with Vsolid being the volume of the solid material
in the element and Ve being the element volume. For the mixture element, Vsolid is given by

Vsolid =
∫
De
H(φ)d�∫
De
d�

=
∑6d

p=1H(φ(ξp))|Je(ξ p)|wp∑2d
p=1 |Je(ξp)|wp

(25)

where De means the design domain of element; ξp denotes the coordinate of Gaussian integration
point; Je is the Jacobian Matrix of element; wp is the weight of Gaussian point; the super script
d represents the dimension of problem, d = 2 for two-dimensional problems in this paper.

As a result, the stiffness matrix of an element can be expressed as ke = ρek0, where k0 denotes
the stiffness matrix of solid element.

2.5 Filtering
In order to eliminate mesh dependency during the topology optimization, a simple filtering

approach [55,56] is employed in this paper to obtain mesh independent optimized results. The
filter is defined as

φ̃(xi, t)= 1∑
j∈Ni

Hij

∑
j∈Ni

Hijφ(xj, t) (26)

where Ni is the set of nodes j for which the node-to-node distance �(xi,xj) to node i is smaller
than the filter radius rmin and Hij is a weight factor defined as

Hij =max(0, rmin−�(xi,xj)) (27)

A cantilever beam model is taken into account herein to verify the effectiveness of the
filtering approach. The design domain, boundary conditions and initial material distribution of
the cantilever beam model are shown in Fig. 4, where W = 1 and F = 1. The Young’s modulus
and Poisson’s ratio are E = 1 and μ = 0.3, respectively. In this example, the design domain is
meshed by 80× 40, 120× 60, 160× 80, 200× 100, and 240× 120 finite elements, respectively. The
filter radius is set to rmin = 0.05 for all the filtering cases. The optimized results obtained based
on the filtering approach are shown in Figs. 5a–5e. For comparison, the optimized results without
considering the filtering are also presented in Figs. 5f–5j. From the comparison, we can that the
optimized results become independent of meshing when using the filtering approach.

(a) (b)

W

F

2W

Figure 4: Cantilever model and its initial design. (a) cantilever beam model (b) initial design
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(a) J = 60.22 (b) J = 60.52 (c) J = 60.73 (d) J = 60.88 (e) J = 61.08

(f) J = 60.10 (g) J = 60.19 (h) J = 60.39 (i) J = 60.56 (j) J = 60.73

Figure 5: Comparison of the optimized results: (a) 80 × 40, with filtering; (b) 120 × 60, with
filtering; (c) 160× 80, with filtering; (d) 200× 100, with filtering; (e) 240× 120, with filtering; (f)
80×40, without filtering; (g) 120×60, without filtering; (h) 160×80, without filtering; (i) 200×100,
without filtering; (j) 240× 120, without filtering

2.6 The Local Volume Constraints
In the structural topology optimization, global material volume constraints are usually used.

Under global material volume constraints, large area of the optimized structures have no material
or solid material, as illustrated in Fig. 5.

As mentioned in the introduction part, the functionally graded cellular structures could be
designed by virtue of the local volume constraints [45,47]. In this work, the local volume con-
straints are applied for generating the FGCS based on our previous developed subdomain level
set method [42].

For the local volume constrains, the upper limit of material usgae is different in different
positions. Generally, one should set the upper limit of material usage a little higher at the location
with larger stress, strain or strain energy, while it should be set lower at the location with smaller
stress. In this paper, the coarse-scale mesh and the subdomain division are the same, i.e., a coarse-
scale element corresponds to a subdomain. There are two ways to provide the local volume
constraints for all the subdomains. The first way is to use the SIMP method on the coarse-scale
mesh (subdomain division) without density penalization, i.e., p= 1, to generate a gray structure,
where the virtual density is regarded as the upper limit of the material volume fraction the volume
fraction which is used as a constraint in the proposed subdomain level set method. The second is
to manually specify the material volume constraints for each subdomain. The calculation process
of the proposed method is given as follows:

1. initialize φs, obtain hs by Eq. (10), then choose one of the RBFs for generating φs;
2. k= 1, while k< kmax, do
3. obtain φ by aggregating all of the subdomain level set functions φs;
4. obtain filtered level set function φ̃ by Eq. (26);
5. solve static equilibrium equation of the structure;
6. calculate ϑn

g by Eq. (20);
7. obtain ϑn

s by Eq. (21);
8. update the coefficients of the RBFs by Eq. (17);
9. update the level set function φs by Eq. (7);

10. check convergence;
11. if convergence, break the while loop; if not, k= k+ 1, then go to Step 3;
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12. end while
13. obtain φ;

3 Numerical Example

In this section, several examples are carried out to show the effectiveness of the proposed
algorithm. It should be mentioned that the initial design of microstructure defined on each
subdomain is shown in Fig. 6.

Figure 6: Initial design defined on each subdomain: (a) initial microstructure; (b) the subdoman
level set function corresponding to the initial microstructure

3.1 Predefined Local Volume Constraints
Four examples are carried out in this subsection to verify the effectiveness and correctness

of the proposed subdomain parameterized level set method with local volume constraints. The
first one is a cantilever beam model as shown in Fig. 7a with the left edge fixed and a unit
concentrated force applied on middle point of the right edge along the negative vertical direction.
The second one is a simply supported beam model as shown in Fig. 8a with a concentrated force
imposed on the middle of the upper beam. The third and the fourth ones are the computational
models with multiple load cases, the former is a cantilever beam model shown in Fig. 9a with the
left edge fixed and a unit concentrated force applied on the bottom right corner and the upper
right corner while the latter is a simply supported beam model shown in Fig. 10a subjected to
three forces respectively at 1/4, 1/2 and 3/4 of the upper edge. The Young’s modulus, the Poisson’s
ratio and the thickness of the model are set as E = 1, μ = 0.3 and t= 1, respectively. These four
examples are divided into 20×10, 30×10, 30×15, and 40×20 subdomains, respectively, and each
subdomain is further meshed by 5× 5 uniform 4-node square fine elements.

By using the SIMP method without penalization (p = 1), several gradient variable density
planar structures can be obtained easily, as shown in Figs. 7b, 8b, 9b and 10b, respectively.
In these figures, the density on each coarse-scale element can be seen as the volume fraction
constraint of the material usage on each corresponding subdomain in the calculation of the
proposed subdomain level set method with local volume constraints, i.e.,

Vs = ρsV̂s (28)
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where ρs is the density of the counterpart coarse-scale element obtained by using the SIMP
method without penalization; V̂s represents the total volume of subdomain Ds.

W

F

(a) (b)

(c)

2W

Figure 7: Optimization of a cantilever beam model: (a) design domain and its boundary condi-
tions; (b) coarse-scale design obtained by using the SIMP method with p= 1; (c) optimized cellular
structure by using the proposed subdomain level set method with local volume constraints

F

(a) (b)

(c)

2W

W

Figure 8: Optimization of a simple supported beam model: (a) design domain and its boundary
conditions; (b) coarse-scale design obtained by using the SIMP method with p= 1; (c) optimized
cellular structure by using the proposed subdomain level set method with local volume constraints
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(a) (b)

(c)

W

2W
F1

F2

Figure 9: Optimization of a cantilever model under two load cases: (a) design domain and its
boundary conditions; (b) coarse-scale design obtained by using the SIMP method with p = 1;
(c) optimized cellular structure by using the proposed subdomain level set method with local
volume constraints

(a) (b)

(c)

W

2W

F1 F2 F3

Figure 10: Optimization of a model under three load cases: (a) design domain and its boundary
conditions; (b) coarse-scale design obtained by using the SIMP method with p= 1; (c) optimized
cellular structure by using the proposed subdomain level set method with local volume constraints
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Based on these local volume constraints, four different optimized cellular structures as shown
in Figs. 7c, 8c, 9c, and 10c, respectively. By using the proposed subdomain level set method
with local volume constraints, the gradient cellular structures with clear boundaries can be easily
obtained. By comparing these two optimization results, we can see that the material volume distri-
butions are macroscopically the same, which indicates that the imposed local volume constraints
are satisfied. For the black area of the coarse-scale design results (the coarse elements with the
density being equal to 1), the counterpart subdomains are filled with solid material. For the white
areas, the counterpart subdomains are filled void material. For the gray areas, gradient cellular
structures are filled in the counterpart subdomains. In addition, the microstructures of adjacent
subdomains have good connectivity on their common boundaries. In a word, the subdomain
parameterized level set method can get a clear structure boundary making the structure easy to be
manufactured. If the material usage requirements for all subdomains can be estimated in advance
in the process of structural topology optimization, the method proposed in this paper can realize
the design of the cellular structure based on the predefined local volume constraints.

The convergence histories of these four examples are shown in Fig. 11, where the compliances
fall fast in the beginning 20 steps approximately and reaches a minimize value. After that, it
gradually rises to the local maximum value, then slowly declines and finally tends to a stable
value. Based on the calculation results, we can find that no matter what the structure is and how
many the subdomains are, the optimizations converge after about 150 steps. This indicates that the
number of local volume constraints has little influence on the convergence speed of the algorithm
of the presented method.
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Figure 11: Iteration history of objective function: (a) the cantilever beam model as shown in
Fig. 7; (b) the model as shown in Fig. 8; (c) the cantilever beam model under two load cases as
shown in Fig. 9; (d) the model under three load cases as shown in Fig. 10

3.2 Gradient Cellular Structural Design
Three cases in this subsection are conducted to illustrate the effectiveness of the presented

subdomain level set method with local volume constraints when designing the functionally graded
cellular structure. All the cases are carried out based on the cantilever beam model shown in
Fig. 12a. Their coarse-scale meshes for the cases are the same as shown in Fig. 12b, where the
whole design domain is divided into 30× 10 subdomains, and each subdomain is further divided
into 5× 5 4-node square finite elements. For these three cases, the local volume constraints are
different. The volume fraction value vf of each subdomain shows in Figs. 13a, 13c, and 13e for the
three cases, respectively. It should be mentioned that we set the volume fraction of the subdomains
located at the lower right corner and upper right corner to zero since the materials at the these
subdomains contribute little to the stiffness of the cantilever beam.

l

(a) (b)

2W

W

Figure 12: Cantilever beam model: (a) design domain and boundary conditions; (b) coarse-scale
mesh/subdomain division
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Volume fraction upper limit of each subdomain and the corresponding optimized
results: (a) uniform volume fraction upper limits; (b) optimized cellular structure based on the
uniform local volume constraints shown in (a); (c) Monotonically decreasing volume fraction
upper limits; (d) optimized cellular structure based on the local volume constraints shown in (c);
(e) Fluctuating volume fraction upper limits; (f) optimized cellular structure based on the local
volume constraints shown in (e)

Three different distributions of the volume fraction upper limit for each subdomain are
shown in Figs. 13a, 13c, and 13e, respectively, which represent three different local volume con-
straints, i.e., uniform distributed LVC, monotonically decreasing distributed LVC, and fluctuating
distributed LVC. Based on these three different local volume constraints, the optimized gradient
cellular structures are obtained by using the proposed subdomain level set method and they are
presented in Figs. 13b, 13d, and 13f, respectively. As shown in Fig. 13b, the material distribution
at the upper and lower ends of the structure is rather concentrated, which is mainly used to
bear the bending moment. The intermediate material distribution is relatively uniform, showing
the cellular distribution. The optimized structures in Fig. 13 are similar to each other basically,
but there is a little difference to be pointed out. It can be seen from Fig. 13d that the structure
presents gradient change from the left to right duo to the graded local volume constraints. The
material distribution on the left parts of the structure is denser and then becomes sparse from the
left to right. While the material distribution in Fig. 13f presents a dense-sparse alternation pattern.
The compliances of these optimized structures are 235.75, 209.63 and 245.95 for the above-
mentioned three local volume constraints, respectively. The structure obtained by local volume
constraints which are monotonically decreasing from the left to right is stiffer than the other two
cases. From the optimization results, each subdomain can meet the specified volume constraints.
This further validates the correctness and effectiveness of the proposed method.
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3.3 Defect Sensitivity
Another advantage of cellular structure is that it is not sensitive to local defects. When local

damage occurs, the cellular structure still maintains a nice integrity. In practical, many factors will
lead to local failure, such as local stress concentration, damage fatigue, manufacturing error and
other accidental events. They usually decide the kind of cracks and holes of different shapes and
sizes in material failure. For convenience, we introduce a simplified model of material removal
to tackle the complicated problem in the optimization process [57]. In other word, the volume
fraction of the subdomain to be removed is changed into zero. Theoretically, when an optimized
structure suffers from local failure, the stiffness of the structure will be reduced significantly.
Consequently, the structure may no longer bear any loads or even be destroyed. If a structure
can still maintain good stiffness when the local damage happens, it indicates that the structure is
rather stable and not sensitive to local defects.

Three cantilever beams examples, whose computational model and boundary conditions are
the same as the cantilever model shown in Fig. 7a, are carried out for comparison to illustrate
the defect sensitivity of cellular structure. The results in the first row of Fig. 14 are obtained
by using the SIMP method on the coarse-scale mesh of 20× 10 grids. The penalty coefficient p
and the volume fraction are set to p = 3 and vf = 50%, respectively. The results in the second
row of Fig. 14 are the cellular structures obtained by the proposed method. The whole design
domain is divided into 20× 10 subdomains, and each subdomain is divided into a fine grid of
20× 20. The results in the third row of Fig. 14 are optimized by using the SIMP method on the
fine-scale meshes of 400×200 grids. We assume that the local defect occurs in the yellow area of
the structure. Through finite element analysis, we can calculate the compliance of each structure
considering the local defect.

The compliance values of the structures before and after considering local defects are shown
in Fig. 14, where Jo and Jd denote the compliance values of structures without and with con-
sidering local defect, respectively. We can see that the compliance of the structure in Figs. 14a
and 14b is Jo= 91.39 when the structure is in good condition while increased to Jd = 200.25 and
Jd = 1000.04 when two different defects occur. While the compliance of the optimized cellular
structure in Figs. 14c and 14d is only increased from Jo = 62.64 to Jd = 71.12 and Jd = 65.79 when
the two defects occur. The compliance of the optimized structure by using the SIMP method with
the filter radius rmin= 1.2le on the fine-scale mesh in Figs. 14e and 14f, where le denotes the size
of element, is changed from Jo= 61.23 to Jd = 159.76 and Jd = 82.43 when the defects occur. For
the traditional optimized structures by using the SIMP method with penalization, by comparison
with the compliance of the structure without considering defect, the compliance of the structure
obtained based on the coarse-scale mesh increased by 119% and 994% when two different defects
appear, and the compliance of the structure optimized based on the fine-scale mesh increased by
161% and 35% when considering the defects. While for the cellular structure obtained by using
the proposed subdomain level set method, it only increased by 13.5% and 5% when two defects
occur. From the comparison, we can see that the cellular structure is less sensitive to local defect
compared with the traditional structure. When the local failure occurs, the cellular structure may
be able to maintain normal working state.
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(a) Jo = 91.93 ⇒ Jd = 200.25 (b) Jo = 91.93 Jd = 1000.04

(c) Jo = 62.64 Jd = 71.12 (d) Jo = 62.64 Jd = 65.79

(e) Jo = 61.23 Jd = 159.76 (f) Jo = 61.23 Jd = 82.43

⇒

⇒⇒

⇒ ⇒

Figure 14: Effects of defects (marked in yellow) on structural performance (objective function):
(a) and (b) structures optimized by using the SIMP method with p= 3 based on the coarse-scale
mesh; (c) and (d) structures optimized by using the subdomain level set method based on the
fine-scale mesh; (e) and (f) structures optimized by using the SIMP method with p= 3 based on
the fine-scale mesh

4 Conclusion

A subdomain level set based topology optimization method is developed for designing the
functionally graded cellular structure by imposing the local volume constraint on each subdo-
main. The microstructures on adjacent subdomains can be connected automatically by using the
proposed method. A simple filtering approach is employed into the proposed subdomain level
set method for generating mesh independent results. Two ways are provided in this paper to
generate the material volume constraints for all the subdomains. The first is to use the SIMP
method on the coarse-scale mesh without p = 1 to generate local volume fraction upper limit
for each subdomain. The second is to manually specify the material volume constraints for each
subdomain. By using the predefined local volume constrains, we can obtain gradient cellular
structures with the developed method. Several numerical examples are carried out for verifying the
effectiveness and correctness of the presented method. Computation results show that the number
of local volume constraints has little influence on the convergence speed of the proposed method.
By comparison with the traditional structure optimized by using the SIMP method with density
penalization, i.e., p = 3, it is found that the gradient cellular structure optimized by using the
proposed method is less sensitive to local defect.
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