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ABSTRACT

This study investigates structural topology optimization of thermoelastic structures considering two kinds of
objectives ofminimum structural compliance and elastic strain energy with a specified available volume constraint.
To explicitly express the configuration evolution in the structural topology optimization under combination of
mechanical and thermal load conditions, the moving morphable components (MMC) framework is adopted.
Based on the characteristics of the MMC framework, the number of design variables can be reduced substan-
tially. Corresponding optimization formulation in the MMC topology optimization framework and numerical
solution procedures are developed for several numerical examples. Different optimization results are obtained
with structural compliance and elastic strain energy as objectives, respectively, for thermoelastic problems. The
effectiveness of the proposed optimization formulation is validated by the numerical examples. It is revealed that
for the optimization design of the thermoelastic structural strength, the objective function with the minimum
structural strain energy can achieve a better performance than that from structural compliance design.
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1 Introduction

Structural topology optimization is effective to creat novel structural configurations. It
has been extensively utilized in various industrial applications, such as aerospace, shipbuilding,
automobile industries, precision equipment, and micro-electro-mechanical systems [1–4]. In the
aerospace industry particularly, structural topology optimization has been widely applied to reduce
the weight of aircrafts to achieve better economic benefits. However, with the harsh service
environments in supersonic speed, the friction between the wall outside an aircraft and the
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atmosphere will result in relatively high temperature [5]. The high temperature in a structure will
produce significant thermal stresses and may cause structural failure, which cannot be ignored
in the design processes. Therefore, to reduce the weight and thermal stress of thermoelastic
structures simultaneously, the topology optimization design of thermoelastic structures are studied
extensively.

Rodrigues et al. [6] pioneered the studies of thermoelastic optimization; they investigated
the topology optimization of a two-dimensional linear elastic structure under thermal loads by
the asymptotic homogenization approach. A corresponding study showed that the optimized
topologies depended significantly on the temperature differential even for simple models. Sigmund
et al. [7] investigated the distribution of three-phase materials under the action of thermal
loads using the homogenization method and proved that structures with extremely high thermal
expansion properties can be obtained by partly sacrificing the material stiffness. Li et al. [8,9]
developed an evolutionary structural optimization method to perform thermoelastic optimization.
Cho et al. [10] investigated a weakly coupled thermoelastic problem using the coupled field adjoint
sensitivity analysis method, which reduced the computing cost significantly compared with other
sensitivity analysis methods. Chung et al. [11] studied the topology optimization of structures
undergoing large deformations due to thermal and mechanical loads, which demonstrated how
temperature changes affected the optimized design of the large-deforming structures. Considering
the effect of temperature changes, Deng et al. [12] and Yan et al. [13] utilized concurrent multiscale
formulations to optimize the configurations of macroscale topologies and microscale materials. Li
et al. [14] studied the multiscale optimization based on level set approach in thermomechanical
environment and indicated that the porous material is consistently found to be favored for a
coupled multi-physics problem. Zhu et al. [15] proposed a temperature-constrained topology opti-
mization for thermo-mechanical coupled problems and revealed that the temperature constraints
play an important role in relevant problems. For more reviews regarding thermoelastic design
optimization, readers can refer to Wu et al. [16–18].

For thermoelastic structural topology optimization, minimum structural compliance, which
equals to maximum stiffness design in structural optimization only with mechanical loads as
an objective function has been adopted in the above mentioned studies. However, Pedersen
et al. [19,20] reported that for thermoelastic structures, the same optimized design cannot yield
good performances of maximum structural strength and minimum structural compliance simul-
taneously. It is challenging to regard the minimum compliance of the structure as the objective
function because the structural compliance can neither represent the displacement of the structure
nor the effective stress under a thermo–mechanical load; as such, the physical meaning of the
structural compliance optimization formulation for the thermoelastic problems will be insignifi-
cant. Deaton et al. [21] also reported that using the compliance indicator as the objective function
is no longer suitable. For some typically used thermoelastic structures, such as the engine hump-
washed structure for embedded engine aircraft under large temperature loading. Subsequently, a
stress-based design of thermal structures had been presented by Deaton et al. [22] via topology
optimization, which can efficiently dispose stress constraints under the combination of thermal
and mechanical loads. Zhang et al. [23] investigated two different optimization formulations with
minimum structural compliance and elastic strain energy as the objective functions of topology
optimization of a thermoelastic structure based on RAMP formulation, in which numerical studies
showed that the objective function with minimum elastic strain energy was more suitable for
reducing the Mises stress than the minimum structural compliance. Meng et al. [24] studied the
stress constrained thermo-elastic topology optimization in a non-uniform temperature field by
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proposed stabilizing control schemes and indicated that the compliance minimization design with
stress constraints is appropriate to achieve balance between stress level and structural stiffness.

Another concern is that the thermal load is a design-dependent load, which means that the
load changes considerably during the optimization iteration procedure. However, as the density-
based method is used to solve the topology optimization of thermoelastic problems, the parasitic
effect for low densities will occur [25]. Hence, a modified power-law model is usually required
to obtain better optimization results. Density-based methods poses some other challenges, sum-
marized as follows. Firstly, a precise geometry is difficult to obtain because of the implicitly
expressed and large area of “gray” densities in the optimized structures; furthermore, it is difficult
to establish a direct link between the optimization models and computer-aided-design modeling
system. Secondly, the number of design variables is relatively large, especially for three-dimensional
problems. Lastly, the density-based approach analysis model and optimization model are strongly
coupled; this may yield some numerical difficulties, such as the checkboard pattern. Xia et al. [26]
studied the thermoelastic problem to solve the problems of “gray” and checkboard pattern by the
level set method and obtained a smooth geometric boundary; however, the topology optimization
is still performed in an implicit framework in this approach. To solve the challenges of topology
optimization methods above, Guo et al. [27] established a moving morphable components (MMC)-
based topology optimization framework. Compared with the existing methods, the key aspect of
the MMC-based framework is that some explicit geometric parameters can be used to describe the
topology of a structure. The design domain can be composed of a set of morphable components
that can move, overlap, and disappear freely. The position, inclination, layout, and shape of
components can be changed within the prescribed design domain to derive the optimal topology.
Zhang et al. [28] utilized the ersatz material model and presented a new topology optimization
approach based on the MMC framework; furthermore, they presented a 188 line Matlab code
for implementing this approach. Based on the isogeometric analysis (IGA) technique, Zhang
et al. [29] and Zhang et al. [30] developed a new explicit topology optimization framework of
moving morphable void (MMV), and then studied the topology optimization problem of 3D
shell structure under stress constraints. Takalloozadeh et al. [31] proposed a topological derivative
approach based on the MMC framework and presented several topology optimization problems,
such as stress-based and thermoelastic structural compliance optimizations.

In this study, the MMC-based framework is utilized for thermoelastic topology optimization
problems considering the minimum structural compliance and elastic strain energy as the objective
functions, respectively, under a specified available volume constraint. The remainder of the paper
is organized as follows. In Section 2, the MMC-based topology optimization framework is briefly
reviewed, and the topology description function is elucidated. Section 3 describes the problem
formulation for different objective functions based on the MMC method. Some strategies for the
numerical implementation of the present study are described in Section 4. Section 5 presents
some numerical examples to illustrate the effectiveness of the proposed method and the physical
meaning of the different objective functions.

2 Brief Introduction of the MMC-Based Framework

Compared with other density-based and node-based topology optimization methods, the
MMC topology optimization framework [27] is based on a series of components as the basic
building blocks of the design domain, and the geometric parameters of each component are
recognized as the design variables. The final structural topology can be obtained simultaneously by
optimizing the parameters of the components (such as the thickness, length, and inclined angle),
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and changing the layout of the components in the specified design domain through moving,
morphing, blending, and overlapping between multiple components. Therefore, the MMC-based
framework can accommodate the shape, size, and topology optimization.

As shown in Fig. 1, the design domain comprises a series of components with explicit
boundaries, where the geometric parameters are the center coordinates (x0i, y0i), length Li, inclined
angle θi, and thickness f (x′). Additionally, f (x′) = t1 implies that the component is described by
a uniform thickness. The geometric parameters above are the design variables in the MMC-based
topology optimization framework.

Figure 1: Basic components of MMC-based topology optimization framework [28]

In Fig. 1, as an example, each component comprises 5 design variables and 12 components
exist; therefore, the total number of design variables in the design domain is 12×5= 60. However,
if using the density-based method, the number of design variables depends on the finite element
mesh, usually in the order of thousands. Therefore, compared with traditional density-based topol-
ogy optimization methods, the MMC-based framework reduces the number of design variables
significantly, which is another advantage of the MMC-based framework.

In the MMC-based topology optimization framework, each component in the prescribed
design domain is described by the topology description functions (TDF) φi as⎧⎪⎨
⎪⎩

φi(x) > 0

φi(x)= 0

φi(x) < 0

if x ∈Ωi

if x ∈ ∂�i

if x ∈D/�i,

(1)

where x represents the coordinates of any point in the design domain, �i is the region occupied
by the i-th component within the prescribed design domain D, and ∂�i is the boundary of the i-th
component.

For each component, the TDF can be described as

φi(x, y)=
(
x′

Li

)p
+
(

y′

f (x′)

)p
− 1, (2)

where p is a relatively large even integer number to sharpen the boundary of a component, in
this study, p= 6. Because the components in the design domain are placed at a certain angle, a
relationship between the local coordinates (x′, y′) of the component and the global coordinates
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(x, y) of the structure must be established, as shown in Fig. 2; subsequently, the local coordinates
(x′,y′) can be written as{
x′

y′

}
=
[
cosθi sinθi

−sinθi cosθi

]{
x−x0i

y− y0i

}
(3)

Based on the description of a single component, the structural topology description in a given
design domain can be expressed as follows:⎧⎪⎨
⎪⎩

φ(x) > 0

φ(x)= 0

φ(x) < 0

if x ∈�

if x ∈ ∂�

if x ∈D/�,

(4)

where � denotes the occupied design domain by a set of components �i (i= 1, 2, . . . , n) fabricated
using a solid material, φ(x)=max(φ1, . . . ,φn), where n denotes the total number of components.

Figure 2: Relationship between local and global coordinates

3 Mathematical Formulation for two Types of Objective Functions

Under the MMC-based topology optimization framework, the general topology optimization
problem can be formulated as follows [27]:

Find : a= ((a1)
T
, . . . , (at)T, . . . , (an)T)T

Minimize : I = I(a)

Subject to : gj(a)≤ 0, j= 1, . . . , k. a⊂Ua, (5)

where a denotes the vector of the design variables, with ai (i= 1, . . . , n) = (x0i, y0i, Li, θi, f (x′))T;
Ua represents the admissible sets of a; gj is the j-th constraint function.

For a thermoelastic structural topology optimization, two types of objective function formu-
lations are presented herein that accounts for the combination effects of thermal and mechanical
loads based on the MMC framework. The objective functions are the minimum structural com-
pliance and elastic strain energy, respectively. From the comparison of the optimization results
of the two optimization objectives, we investigate the physical meanings of the different objective
functions and determine an objective function that is more suitable for the topology optimization
of thermoelastic structures. The detailed formulations of the two types of objective functions are
presented as follows.
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3.1 Mathematical Formulation with Minimum Structural Compliance
When minimizing structural compliance with a specified available volume constraint based on

the combination of thermal and mechanical loads, the corresponding mathematical formulation
can be written as follows:

Minimize : C=
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

F ith · udV +
∫
�t

Fm · udS

Subjected to:

n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

σ (u) · ε(v)dV

=
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

F ith · vdV +
∫
�t

Fm · vdS

∀ v∈Uad, V(a)≤ V̄ , a⊂Ua, u= ū , on�u, (6)

where u and v denote the displacement field and the corresponding test function defined on
� = ∪ni=1�

i with Uad = {v |H(a), v= 0 on �u}, respectively, H is the Heaviside function. F ith and
Fm represent the thermal load density of the i-th component and the mechanical load (surface
traction on Neumann boundary �t), respectively. ε and σ represents the stress and strain vector,
respectively. The symbol V̄ denotes the upper limit of the material volume, and ū is the prescribed
displacement on the Dirichlet boundary �u. The structural compliance represents the total work
performed by the specified load (mechanical load, thermal load, etc.).

3.2 Mathematical Formulation with Minimum Elastic Strain Energy
When minimizing elastic strain energy as the objective function with a specified available

volume constraint based on the combination of thermal and mechanical loads, the corresponding
mathematical formulation can be written as follows:

Minimize : �=
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

(ε− εth)
TDi(ε− εth)dV

Subject to :

V(a)≤ V̄ , a⊂Ua (7)

where ε is the total strain vector of the structure, and εth represents the thermal strain vector
caused by the thermal load, Di represents the constitutive matrix of the i-th component.

According to [23], the strain energy in Eq. (7) can also be written as follows:

�=
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

σT(Di)−1σdV (8)
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As shown in Eq. (8), σ represents the stress vector, to some extent, the strain energy measures
the stressed state of a thermoelastic structure.

4 Numerical Implementation Strategies

In this section, the finite element analysis and sensitivity analysis for topology optimization
of a thermoelastic structure are presented based on the MMC topology optimization framework.

4.1 Finite Element Analysis of Objective Functions Based on an Ersatz Material Model
The MMC-based topology optimization framework is a boundary evolution-based topology

optimization method, and the ersatz material model is typically applied for finite element analysis
to enhance computational efficiency. The specified design domain is discretized by four-node
bilinear elements; based on the method, the TDF values at four nodes of each element can be
calculated as illustrated in Fig. 3.

Figure 3: Component occupies the e-th element

Subsequently, the equivalent Young’s modulus of an element can be expressed as [28]

Ee =
E
(∑4

ζ=1 (H(φ
ζ
e ))

q)
4

(9)

where E is the Young’s modulus of the base material; q is an integer, where in the present study,

q = 2. H is the Heaviside function and φ
ζ
e , ζ = 1, . . . , 4 are the values of the TDF function of

the whole structure (i.e., φ(x)) at four nodes of element e. In the present study, the piecewise
continuous Heaviside function is used as follows:

H(z)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if z> ξ

3(1−α)

4
·
(
z
ξ
− z3

3ξ3

)
+ (1+α)

2
if − ξ ≤ z≤ ξ

α otherwise

(10)

where ξ is a parameter used to control the regularization magnitude; α is a small positive non-zero
value (α = 0.001) to ensure the non-singularity of the global stiffness matrix; z is the TDF value
of an arbitrary point within the design domain.

The objective function in Eq. (6) (structural compliance) under a combination of thermal and
mechanical loads can be discretized into the finite element format as follows:

C= FT
thU +FT

mU (11)

where U denotes the total nodal displacement vector caused by thermal and mechanical loads.
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The thermal load vector F th can be written as

Fth =
N∑
e=1

∫
ve

BT
eDεethdve =

N∑
e=1

∫
ve

BT
eDϕλ
Tdve =

N∑
e=1

Feth, (12)

where

Feth =
∫
ve

BT
eDϕλ
T dve (13)

Here, Feth represents the thermal load vector of element e, Be is the strain-displacement matrix
of element e, N is the total number of elements in the design domain. The change in temperature
and the thermal expansion coefficient can be expressed by 
T and λ, respectively; ϕ is the

vector
[
1 1 0

]T.
According to the equilibrium equation,

KU = Fm+Fth (14)

the structural compliance can be expressed as

C= FT
thU +FT

mU = (Fm+Fth)
TU =UTKU (15)

where K is the global stiffness matrix.

The objective function in Eq. (7) (structural elastic strain energy) under a combination of
thermal and mechanical loads can be discretized into the finite element format as follows:

�=
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

(ε− εth)
TDi(ε− εth)dV

=
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

εTDiεdV

+
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

εTthD
iεthdV (16)

− 2
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

εTDiεthdV

It is noteworthy that the elastic strain energy � can be categorized into three parts: the first
term

∑n
i=1
∫
�i\(∪1≤j<i(�i ∩�j)) ε

TDiεdV denotes the work generated by the mechanical and thermal

loads on the structural displacement; the second term
∑n

i=1
∫
�i\(∪1≤j<i(�i ∩�j)) ε

T
thD

iεthdV denotes

the energy generated by the initial thermal strain and the third term
∑n

i=1
∫
�i\(∪1≤j<i(�i ∩�j))

εTDi

εthdV denotes the work generated by the thermal load on structural displacement. From the
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formulations above, the relationship between structural compliance C and elastic strain energy �

can be expressed as follows:

�=C− 2
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

εTDiεthdV +
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

εTthD
iεthdV (17)

The Eq. (17) can be also written as

�=C− 2UTFth+Cth (18)

where

Cth =
n∑
i=1

∫
�i\(∪1≤j<i(�i ∩�j))

εTthD
iεthdV

For the structure without thermal load (
T = 0), the structural elastic strain energy � is
equivalent to the structural compliance, however, when the thermal load exists (
T 	= 0), the two
objective functions are different.

4.2 Sensitivity Analysis
The sensitivity analysis for minimizing the structural compliance and elastic strain energy

for the thermoelastic structural topology optimization under the available volume constraint
formulated in Eqs. (6) and (7) is presented in this section.

(1) Using minimum structural compliance as an objective function, the sensitivity with respect
to the design variables aij (ij represent the j-th design variable of i-th component) can be written
as

∂C
∂aij

= ∂UT

∂aij
KU +UT ∂K

∂aij
U +UTK

∂U
∂aij

(19)

Meanwhile, according to

∂K
∂aij

U +K
∂U
∂aij

= ∂Fm

∂aij
+ ∂Fth

∂aij
(20)

Substituting Eq. (20) into Eq. (19) results in

∂C
∂aij

= 2UT
(

∂Fm

∂aij
+ ∂Fth

∂aij

)
−UT ∂K

∂aij
U (21)

Because Fm is a design-independent force, the equation above can be expressed as

∂C
∂aij

= 2UT ∂Fth

∂aij
−UT ∂K

∂aij
U (22)
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Furthermore, ∂F th/ ∂aij and ∂K/∂aij can be written as

∂Fth

∂aij
= ∂

∂aij

N∑
e=1

Feth =
∂

∂aij

N∑
e=1

∫
ve

BT
eDϕλ
Tdve = E

4

⎛
⎝ N∑
e=1

4∑
ζ=1

q(H(φ
ζ
e ))

q−1 ∂H(φ
ζ
e )

∂aij

⎞
⎠Fe0th (23)

∂K
∂aij

= ∂

∂aij

N∑
e=1

∫
ve

BT
eDBedve= E

4

⎛
⎝ N∑
e=1

4∑
ζ=1

q(H(φ
ζ
e ))

q−1 ∂H(φ
ζ
e )

∂aij

⎞
⎠k0e (24)

where Fe0th and k0e is the element thermal load vector and element stiffness matrix corresponding

to H(φ
ζ
e ) = 1, ζ = 1, . . . , 4, and E = 1. It is noteworthy that the two methods can be used

to obtain the value of ∂H(φ
ζ
e )/∂aij, the differential method and the analytical method. The

selection of the differential step in the differential method affects the final optimized configuration
obviously, however, the appropriate differential step must be performed to obtain better results,
which increases the computational cost. Therefore, the analytical method is used in this study, and
the specific formulation is as follows:

∂H(φmax)

∂aij
=min(δ(φi), δ(φmax)) · ∂φi

∂aij
(25)

where δ = δ(x) denotes the dirac delta function, and i is the number of the components, i =
1, . . .n, φmax =max(φ1, . . . ,φn).

(2) In case that the minimum elastic strain energy as the objective function, according to
Eq. (18), then the sensitivity with respect to the design variable aij can be written as

∂�

∂aij
= ∂C

∂aij
− 2

∂UT

∂aij
Fth− 2UT ∂Fth

∂aij
+ ∂Cth

∂aij
(26)

where

∂Cth

∂aij
= 1

4

⎛
⎝ 4∑

ζ=1

q(H(φ
ζ
e ))

q−1 ∂H(φ
ζ
e )

∂aij

⎞
⎠C0

th (27)

where, C0
th denotes the energy generated by the initial thermal strain corresponding to E = 1.

∂UT/∂aij can be obtained from Eq. (20), ∂C/∂aij and ∂Fth/∂aij can be obtained from Eqs. (22)
and (23), respectively.

5 Numerical Examples and Discussions

In this section, a benchmark example is used to verify the effectiveness of the MMC-based
framework in topology optimization of thermoelastic structures, and the effects of different objec-
tive functions on the structural topology configurations are compared. Furthermore, the physical
meaning of the different objective functions is discussed. The design variable updating strategy
adopted in this study is the method of moving asymptotes (MMA) [32]. In this section, it is
assumed that the structure is in the state of plane stress, the unit of thickness is 1, and the
finite element is in the form of a bilinear four-node rectangular element. In the example, the
geometrical, material, and load parameters are in dimensionless forms.
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5.1 A Two-End Clamped Beam with Only a Mechanical Load
The purpose of this example is to verify the advantages of the proposed topology optimiza-

tion framework. A two-end clamped beam with H × L = 1 × 2 design domain is investigated,
which is discretized using a 80×160 mesh for finite element analysis; and a downward unit point
mechanical load is applied at the bottom center of the domain, as shown in Fig. 4a. The Young’s
modulus and the Poisson’s ratio of the material were E = 1, and µ = 0.3, respectively. Sixteen
components are used for the initial building blocks for the MMC-based topology optimization
framework, as illustrated in Fig. 4b, and the total number of design variables is 16× 5= 80, in
which 5 design variables in one component. This example only considers the minimum structural
compliance as the objective function, with a 10% available volume constraint.

(a) (b) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Figure 4: First example: (a) a two-end clamped beam design domain only with a mechanical load,
(b) initial building blocks of MMC-based framework

For the design domain, as shown in Fig. 4a, the corresponding optimization problem with
only a mechanical load can be solved using an analytical method, which was described in detail by
Yan et al. [13]. According to the [13], the corresponding optimal inclined angle of the final two-bar
structural topology is θopt = π/4 for the structure described in Fig. 5b, because the length of the
design domain is twice of its width. In this section, the density-based (SIMP) and MMC-based
methods are both used to calculate the optimal topology of this example numerically, which is
then compared with the analytical solution. The optimized configurations under this case obtained
by density-based and MMC-based methods are shown in Fig. 5. The numerical results show that
the objective value from the MMC-based method agreed well with the density-based method and
is slightly better than that of the density-based method. The inclined angle of components of the
optimized configuration to the horizontal direction is 45◦ as shown in Fig. 5a, and agreed well
with the analytical result in [13], which validates the optimization model and algorithm established
in this study. Fig. 5b shows the optimized topology obtained by the density-based method, in
which the geometric profile is relatively unclear in some extends because of gray elements in the
final optimized topology. For thermal problems, the presence of gray elements in the optimized
structure will cause the following problems: firstly, in the heat transfer problem, it will be hard
to determine whether the edge of the heat sink is in contact with the other structure, which
will result in the inability to accurately evaluate the performance of the heat sink; secondly, in
the thermal convection problem, it is difficult to accurately parameterize the convection through
the gray elements, and it is necessary to introduce coefficients for correction to perform thermal
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convection calculation [33]; lastly, because the thermal load is design-dependent load, when dealing
with the coupled thermoelastic problem, the gray element will cause the inability to accurately
calculate the magnitude of the thermal load, which affects the coupled thermal analysis of
the structure. The optimized topology configuration by the MMC-based method shows a clear
geometric profile, as shown in Fig. 5a, which avoiding the “gray” elements difficulties. Therefore,
the MMC-based method is used to study the thermoelastic topology optimization problem to
compare the optimization effect from different objective functions in the following sections.

Figure 5: The optimized configurations obtained by different methods. (a) The optimized con-
figuration from MMC-based framework with the compliance C = 22.177. (b) The optimized
configuration from density-based method with the compliance C= 23.932

5.2 A Two-End Clamped Beam with Thermo-Mechanical Load
The same two-end clamped beam, as shown in Fig. 4a, with both thermal and mechanical

loads, is studied in this example. The structure is subjected to a uniform temperature 
T= 100
higher than the reference temperature, whereas the Young’s modulus and Poisson’s ratio of the
material are the same as those in the example in Section 5.1, and the thermal expansion coefficient
is λ= 1×10−2, the material parameters remain constant with temperature changes. The minimum
structural compliance is used as the optimization objective. The effects of different volume frac-
tions and different temperatures on the optimized structural topology are discussed as shown in
Fig. 6.

Fig. 6a shows the effects of different volume fractions on the optimized topological config-
urations. As we can observe from Fig. 6a, a two-bar V-shaped configuration of the optimized
configurations does not change as the volume fraction increases but the objective function value
of the structure decreased gradually as the specified volume fraction increased. However, when
the base material of the structure continued to increase, the degree of reduction of the structural
compliance became stable gradually, indicating that increasing the material can no longer reduce
the compliance of the structure significantly when the volume fractions are greater than 0.4 in
this example.

To further investigate the effect of temperature changes on the optimized structural layout,
the two-end clamped beam structure with different temperature changes is optimized under the
same volume fraction. As shown in Fig. 6b, with the increase of the temperature change, the
compliance of the structure is continuously increased, and the optimized topology of structures
differs with the increasing temperature. In addition, a sudden transformation of configuration
occurs within the temperature changes range of 175∼225, the structural configuration changes
from a two-bar V-shaped structure to a three-bar “claw-like” structure. When the temperature is
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relatively low, the layout of the optimized structure is a two-bar V-shaped because the mechanical
load is the dominant load at this time. As the temperature changes increased, the effect of the
thermal load becomes more and more prominent, and the optimized configurations changed from
a two-bar V-shaped to a three-bar “claw-like” structure. This configuration indicates that the
deformation caused by the thermal load and mechanical load offset each other, thereby reducing
the work performed by the combination of thermal and mechanical loads and reducing the
structural compliance. Furthermore, Fig. 6b illustrates that temperature changes significantly affect
the optimized configuration of the thermoelastic structure.

Figure 6: The optimized topological configurations with the objective function of compliance
considering thermal and mechanical loads. (a) Effect of different volume fractions on the opti-
mized topological configuration, (b) Effect of temperature changes on the optimized topological
configuration

As can be seen from Fig. 6b, the optimized results are both three-bar “claw-like” structures
when the temperature changes are 200 and 300, respectively. However, some slight differences exist
between the two structures.When the temperature change is 200, the middle rod of the optimized
topology structure is thicker and the two inclined bars are thinner. However, when the temperature
change is 300, the middle bar of the optimized topology becomes thinner, and the two inclined
bars are thicker. This is because the thermal load effect is more obvious in the case of 
T= 300,
the mechanical load is not dominant at this time, and the two inclined thicker bars help to resist
the thermal loading effect.

However, the structural compliance represents the total work generated by a specified load
(mechanical or thermal load). When a structure is subjected to a mechanical load, the compliance
of the structure represents the measurement of the volume and shape changes caused by the
mechanical loads. However, when the structure is subjected to a combination of thermal and
mechanical loads, the physical meaning of the compliance of the structure is questionable. The
structural deformation cannot guarantee to be minimized in this case. Furthermore, from Fig. 7c
and Tab. 1, we can observe a relatively high-stress level in the optimized structure, in which
the optimized three-bar “claw-like” configuration applies more strict constraint on the structural
deformation.
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Figure 7: Optimized topological configurations and corresponding Mises stress nephograms
obtained by two types of objective functions when 
T = 200. (a) The optimized topological
configuration obtained by minimum compliance optimization. (b) The optimized topological con-
figuration obtained by minimum strain energy optimization. (c) The Mises stress nephograms of
the optimized topological configuration with minimum compliance optimization, maximum Mises
stress is 10.95. (d) The Mises stress nephograms of the optimized topological configuration with
minimum strain energy optimization, maximum mises stress is 6.37

Table 1: Maximum mises stress of optimized results obtained by different objective function

Case Maximum mises stress obtained
by compliance optimization

Maximum mises stress obtained
by strain energy optimization


T= 50 1.613 1.141

T= 100 2.565 1.988

T= 150 3.550 2.996

T= 200 4.546 4.114

T= 250 5.548 5.235

T= 300 6.553 6.358

To considering the effects of structural stress, the minimum elastic strain energy is chosen
as another type of objective function to obtain the optimized topology of the thermoelastic
structure. To compare the different structural configurations obtained by the two types of objective
functions at the same temperature changes, the optimized configurations at 
T= 200 are given in
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Figs. 7a and 7b. The Mises stress of the two configurations are calculated by ABAQUS [34]
and presented in Figs. 7c and 7d, respectively. The maximum Mises stress of the optimized
configuration with the minimum compliance as the objective function is 10.95 presented in Fig. 7c,
whereas that with the minimum strain energy as the objective function is 6.37 in Fig. 7d. This
is because the two-bar V-shaped configuration obtained from the minimum elastic strain energy
formulation can relatively easily relax the constraints on structural deformation and reduce the
thermal stress of the structure, which can be seen from the stress nephogram.

The finite element analysis in Figs. 7c and 7d, an 8-node biquadratic element is adopted
to ensure the convergence of the Mises stress values of different mesh densities at the same
temperature. Fig. 8 shows the effect of temperature changes on the optimized configurations
obtained by minimum strain energy optimization. Then it can be seen from Fig. 8 that the
optimized configuration based on minimum strain energy always presented a two-bar V-shaped
configuration for all the temperature change cases, which is obviously difference with that observed
in compliance optimization (changing from a two-bar V-shaped configuration to a three-bar
“claw-like” configuration).

Figure 8: The Effect of temperature on structural strain energy

It is especially pointed that for a better comparison, the mechanical load is set as F = 0.1
(compared with Fig. 4a), Tab. 1 shows the maximum Mises stress values at different temperature
changes with minimum compliance and minimum strain energy as the objective functions. The
results show that setting the strain energy minimization as the objective function can reduce the
stress and provide a better strength design compared with that from compliance minimization for
the same thermoelastic structure.

Tab. 2 shows the comparison of the maximum displacement values of the two topological
configurations obtained based on the two different objective functions at different temperature
changes. As show in Tab. 2, when the temperature changes are relatively low, such as 
T = 50
or 
T = 100, the maximum deformations of the optimized configurations obtained from the
minimum compliance design are smaller than that obtained from minimum strain energy design.
However, when the temperature change are relatively large, such as 
T > 150, the maximum
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deformations of the optimized configurations obtained from the minimum strain energy design
are smaller than that obtained from the minimum compliance design. Therefore, different from
the compliance optimization in the topology optimization only with mechanical loads which gives
the minimum deformation design, the compliance design of the thermoelastic structure does not
always give the minimum deformation design.

Table 2: Maximum displacement of optimized results obtain by different objective function

Case Maximum displacement obtained
by compliance optimization

Maximum displacement obtained
by strain energy optimization


T= 50 5.40 8.69

T= 100 14.01 15.41

T= 150 22.63 22.14

T= 200 31.25 28.86

T= 250 39.87 35.58

T= 300 48.50 42.30

Combined with Tabs. 1 and 2, it can be observed that when the objective function of the min-
imum strain energy of the structure is used, the maximum Mises stress of the optimized structure
is always lower than that from compliance design, while the maximum displacement values of the
optimized structure designed with the minimum compliance and that with the minimum strain
energy have no consistent magnitude relationship. Therefore, for the topological optimization
design of a thermoelastic structure, the physical significance of taking the minimum compliance as
the objective function is not clear, and the performance of the optimized configurations obtained
is not well predicted.

6 Conclusions

In the present study, to overcome the challenges of traditional topological optimization meth-
ods for addressing thermoelastic topology optimization, the MMC-based topology optimization
framework is applied. Topology optimization design is performed using the minimum compliance
and minimum strain energy as the objective functions, with a specified available volume con-
straint. Subsequently, the response of the optimized structural topology under the combination of
thermal and mechanical loads is investigated. The topological optimization formulation and the
derivation of analytical sensitivity are presented, and the physical meanings of different objective
functions are discussed separately. When using the minimum compliance as the objective function
for topology optimization design, the thermal load exerted a certain effect on the topological
configuration of the structure. The topological configuration of the structure changed from a two-
bar V-shaped structure to a three-bar “claw-like” structure. Such a configuration transformation
is beneficial to reduce the compliance of the structure but increases the level of stress inside the
structure. However, when using the minimum strain energy as the objective function for topology
optimization design, there is no topology changing observed as the thermal load increased. This
occurred because the minimum strain energy of the structure indicates the stress level of the
structure, and the two-bar V-shaped structure obtained from the minimum elastic strain energy
formulation is beneficial for relaxing the structural deformation constraints. In addition, the results
indicate that by utilizing the minimum strain energy as the objective function, compared with
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compliance minimization, the structural configurations obtained are more superior in terms of
structural strength.

Funding Statement: Financial supports for this research were provided by the National Nat-
ural Science Foundation of China (Nos. 11672057, 12002278, U1906233), the National Key
R&D Program of China (2017YFC0307201), the Key R&D Program of Shandong Province
(2019JZZY010801), the Fundamental Research Funds for the Central Universities (NWPU-
G2020KY05308). These supports are gratefully acknowledged.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study

References
1. Guo, X., Cheng, G. D. (2010). Recent development in structural design and optimization. Acta Mechanica

Sinica/Lixue Xuebao, 26(6), 807–823. DOI 10.1007/s10409-010-0395-7.
2. Rozvany, G. I. N. (2009). A critical review of established methods of structural topology optimization.

Springer, 37(3), 217–237. DOI 10.1007/s00158-007-0217-0.
3. Sigmund, O., Maute, K. (2013). Topology optimization approaches: A comparative review. Structural and

Multidisciplinary Optimization, 48(6), 1031–1055. DOI 10.1007/s00158-013-0978-6.
4. Takezawa, A., Yoon, G. H., Jeong, S. H., Kobashi, M., Kitamura, M. (2014). Structural topology opti-

mization with strength and heat conduction constraints. Computer Methods in Applied Mechanics and
Engineering, 276, 341–361. DOI 10.1016/j.cma.2014.04.003.

5. Ni, X. Q., Cheng, G. D. (2015). Optimal design of thin solid elastic plates under thermal load. Applied
Mathematics and Mechanics, 36(3), 233–241. DOI 10.3879/j.issn.1000-0887.2015.03.001.

6. Rodrigues, H., Fernandes, P. (1995). A material based model for topology optimization of thermoe-
lastic structures. International Journal for Numerical Methods in Engineering, 38(12), 1951–1965. DOI
10.1002/(ISSN)1097-0207.

7. Sigmund, O., Torquato, S. (1997). Design of materials with extreme thermal expansion using a three-phase
topology optimization method. Journal of the Mechanics and Physics of Solids, 45(6), 1037–1067. DOI
10.1016/S0022-5096(96)00114-7.

8. Li, Q., Steven, G. P., Xie, Y. X. (1999) Displacement minimization of thermoelastic structures by evolution-
ary thickness design. Computer Methods in Applied Mechanics and Engineering, 179(3–4), 361–378. DOI
10.1016/S0045-7825(99)00047-X.

9. Li, Q., Steven, G. P., Xie, Y. M. (2001). Thermoelastic topology optimization for problems with varying
temperature fields. Journal of Thermal Stresses, 24(4), 347–366. DOI 10.1080/01495730151078153.

10. Cho, S., Choi, J. Y. (2005). Efficient topology optimization of thermo-elasticity problems using coupled
field adjoint sensitivity analysis method. Finite Elements in Analysis and Design, 41(15), 1481–1495. DOI
10.1016/j.finel.2005.05.003.

11. Chung, H., Amir, O., Kim, H. A. (2020). Level-set topology optimization considering nonlin-
ear thermoelasticity. Computer Methods in Applied Mechanics and Engineering, 361, 112735. DOI
10.1016/j.cma.2019.112735.

12. Deng, J., Yan, J., Cheng, G. (2013). Multi-objective concurrent topology optimization of thermoelastic
structures composed of homogeneous porous material. Structural and Multidisciplinary Optimization,
47(4), 583–597. DOI 10.1007/s00158-012-0849-6.

13. Yan, J., Guo, X., Cheng, G. (2016).Multi-scale concurrent material and structural design under mechanical
and thermal loads. ComputationalMechanics, 57(3), 437–446. DOI 10.1007/s00466-015-1255-x.

14. Li, L., Kim, H. A. (2020). Multiscale topology optimization of thermoelastic structures using level set
method.AIAAScitech 2020 Forum, vol. 1. American Institute of Aeronautics andAstronautics Inc., AIAA.
Orlando, FL, USA. DOI 10.2514/6.2020-0890.

http://dx.doi.org/10.1007/s10409-010-0395-7
http://dx.doi.org/10.1007/s00158-007-0217-0
http://dx.doi.org/10.1007/s00158-013-0978-6
http://dx.doi.org/10.1016/j.cma.2014.04.003
http://dx.doi.org/10.3879/j.issn.1000-0887.2015.03.001
http://dx.doi.org/10.1002/(ISSN)1097-0207
http://dx.doi.org/10.1016/S0022-5096(96)00114-7
http://dx.doi.org/10.1016/S0045-7825(99)00047-X
http://dx.doi.org/10.1080/01495730151078153
http://dx.doi.org/10.1016/j.finel.2005.05.003
http://dx.doi.org/10.1016/j.cma.2019.112735
http://dx.doi.org/10.1007/s00158-012-0849-6
http://dx.doi.org/10.1007/s00466-015-1255-x
http://dx.doi.org/10.2514/6.2020-0890


1196 CMES, 2021, vol.128, no.3

15. Zhu, X., Zhao, C., Wang, X., Zhou, Y., Hu, P. et al. (2019). Temperature-constrained topology opti-
mization of thermo-mechanical coupled problems. Engineering Optimization, 51(10), 1687–1709. DOI
10.1080/0305215X.2018.1554065.

16. Wu, C., Fang, J., Li, Q. (2019). Multi-material topology optimization for thermal buckling criteria.
ComputerMethods in AppliedMechanics and Engineering, 346, 1136–1155.DOI 10.1016/j.cma.2018.08.015.

17. Gao, T., Zhang, W. (2010). Topology optimization involving thermo-elastic stress loads. Structural and
Multidisciplinary Optimization, 42(5), 725–738. DOI 10.1007/s00158-010-0527-5.

18. Li, L., Du, Z., Kim, H. A. (2020). Design of architected materials for thermoelastic macrostructures using
level Set method. JOM, 72(4), 1734–1744. DOI 10.1007/s11837-020-04046-2.

19. Pedersen, P., Pedersen, N. L. (2010). Strength optimized designs of thermoelastic structures. Structural and
Multidisciplinary Optimization, 42(5), 681–691. DOI 10.1007/s00158-010-0535-5.

20. Pedersen, P., Pedersen, N. L. (2012). Interpolation/penalization applied for strength design of
3D thermoelastic structures. Structural and Multidisciplinary Optimization, 45(6), 773–786. DOI
10.1007/s00158-011-0755-3.

21. Deaton, J. D., Grandhi, R. V. (2013). Stiffening of restrained thermal structures via topology optimization.
Structural and Multidisciplinary Optimization, 48(4), 731–745. DOI 10.1007/s00158-013-0934-5.

22. Deaton, J. D., Grandhi, R. V. (2016). Stress-based design of thermal structures via topology optimization.
Structural and Multidisciplinary Optimization, 53(2), 253–270. DOI 10.1007/s00158-015-1331-z.

23. Zhang, W., Yang, J., Xu, Y., Gao, T. (2014). Topology optimization of thermoelastic structures: Mean com-
pliance minimization or elastic strain energy minimization. Structural and Multidisciplinary Optimization,
49(3), 417–429. DOI 10.1007/s00158-013-0991-9.

24. Meng, Q., Xu, B., Wang, C., Zhao, L. (2020). Stress constrained thermo-elastic topology optimiza-
tion based on stabilizing control schemes. Journal of Thermal Stresses, 43(8), 1040–1068. DOI
10.1080/01495739.2020.1766391.

25. Bruyneel, M., Duysinx, P. (2005). Note on topology optimization of continuum structures including self-
weight. Structural and Multidisciplinary Optimization, 29(4), 245–256. DOI 10.1007/s00158-004-0484-y.

26. Xia, Q., Wang, M. Y. (2008). Topology optimization of thermoelastic structures using level set method.
ComputationalMechanics, 42(6), 837–857. DOI 10.1007/s00466-008-0287-x.

27. Guo, X., Zhang, W., Zhong, W. (2014). Doing topology optimization explicitly and geometrically—A new
moving morphable components based framework. Journal of Applied Mechanics, Transactions ASME,
81(8), 1–12. DOI 10.1115/1.4027609.

28. Zhang, W., Yuan, J., Zhang, J., Guo, X. (2016). A new topology optimization approach based on
moving morphable components (MMC) and the ersatz material model. Structural and Multidisciplinary
Optimization, 53(6), 1243–1260. DOI 10.1007/s00158-015-1372-3.

29. Zhang, W., Li, D., Kang, P., Guo, X., Youn, S. K. (2020). Explicit topology optimization using IGA-based
moving morphable void (MMV) approach. Computer Methods in Applied Mechanics and Engineering, 360,
112685. DOI 10.1016/j.cma.2019.112685.

30. Zhang, W., Jiang, S., Liu, C., Li, D., Kang, P. et al. (2020). Stress-related topology optimization of shell
structures using IGA/TSA-based moving morphable void (MMV) approach. Computer Methods in Applied
Mechanics and Engineering, 366, 113036. DOI 10.1016/j.cma.2020.113036.

31. Takalloozadeh,M., Yoon, G. H. (2017). Implementation of topological derivative in the moving morphable
components approach. Finite Elements in Analysis and Design, 134, 16–26. DOI 10.1016/j.finel.2017.05.008.

32. Svanberg, K. (1987). The method of moving asymptotes—Anewmethod for structural optimization. Inter-
national Journal for Numerical Methods in Engineering, 24(2), 359–373. DOI 10.1002/(ISSN)1097-0207.

33. Deaton, J. D., Grandhi, R. V. (2014). A survey of structural and multidisciplinary continuum
topology optimization: Post 2000. Structural and Multidisciplinary Optimization, 49(1), 1–38. DOI
10.1007/s00158-013-0956-z.

34. ABAQUS (2014). ABAQUS v.6.14-2 Commercial FE Software and Documentation. Dassault Systèmes.
Simulia Corporation, Providence, RI, USA.

http://dx.doi.org/10.1080/0305215X.2018.1554065
http://dx.doi.org/10.1016/j.cma.2018.08.015
http://dx.doi.org/10.1007/s00158-010-0527-5
http://dx.doi.org/10.1007/s11837-020-04046-2
http://dx.doi.org/10.1007/s00158-010-0535-5
http://dx.doi.org/10.1007/s00158-011-0755-3
http://dx.doi.org/10.1007/s00158-013-0934-5
http://dx.doi.org/10.1007/s00158-015-1331-z
http://dx.doi.org/10.1007/s00158-013-0991-9
http://dx.doi.org/10.1080/01495739.2020.1766391
http://dx.doi.org/10.1007/s00158-004-0484-y
http://dx.doi.org/10.1007/s00466-008-0287-x
http://dx.doi.org/10.1115/1.4027609
http://dx.doi.org/10.1007/s00158-015-1372-3
http://dx.doi.org/10.1016/j.cma.2019.112685
http://dx.doi.org/10.1016/j.cma.2020.113036
http://dx.doi.org/10.1016/j.finel.2017.05.008
http://dx.doi.org/10.1002/(ISSN)1097-0207
http://dx.doi.org/10.1007/s00158-013-0956-z

