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ABSTRACT

The performance of a-posteriori error methodology based onmoving least squares (MLS) interpolation is explored
in this paper by varying the finite element error recovery parameters, namely recovery points and field variable
derivatives recovery. The MLS interpolation based recovery technique uses the weighted least squares method on
top of the finite element method’s field variable derivatives solution to build a continuous field variable derivatives
approximation. The boundary of the node support (mesh free patch of influenced nodes within a determined
distance) is taken as circular, i.e., circular support domain constructed using radial weights is considered. The field
variable derivatives (stress and strains) are recovered at two kinds of points in the support domain, i.e., Gauss points
(super-convergent stress locations) and nodal points. The errors are computed as the difference between the stress
from the finite element results and projected stress from the post-processed energy norm at both elemental and
global levels. The benchmark numerical tests using quadrilateral and triangular meshes measure the finite element
errors in strain and stress fields. The numerical examples showed the support domain-based recovery technique’s
capabilities for effective and efficient error estimation in the finite element analysis of elastic problems. The MLS
interpolation based recovery technique performs better for stress extraction at Gauss points with the quadrilateral
discretization of the problem domain. It is also shown that the behavior of theMLS interpolation based a-posteriori
error technique in stress extraction is comparable to classical Zienkiewicz-Zhu (ZZ) a-posteriori error technique.
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1 Introduction

Errors are formed in the finite element technique by the very process of splitting the problem
area into subdomains. Discretization errors, due to subdividing the problem into sub-regions, are
reflected themselves as discontinuities in stress or stress components between elements and as a
distortion of the real boundary stresses. The errors are also generated when the displacement
interpolation polynomial does not accurately represent the behavior of the continuum. The current
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research trends in the field of finite element technique include the development of alternative
approaches of error estimation to increase the effectivity of finite element codes for solving
industrial problems [1]. Zienkiewicz [2] has listed some important achievement in finite element
method and presented an outline of some problems need further attention. Chen et al. [3] present
the review made to meshless method in the last two decades which is developed to overcome the
drawbacks of the finite element techniques. A meshless method, Element Free Galerkin (EFG)
Method, requires only nodal data, i.e., no element mesh and connectivity, to implement the MLS
technique for the construction of the approximation and associates each node to a domain of
influence or weights. The method requires background mesh for performing numerical integra-
tions to construct the system matrices and the essential boundary conditions are implemented
using modified variational forms such as the Lagrange multiplier methods the penalty method
or Nitsche’s method [4,5]. A review on the state-of-the-art of wide applicability of finite element
methods is given by Cen et al. [6].

Several methods have been proposed to recover the field variables or their derivatives and
to enhance the accuracy of finite element solution. Among the existing error estimation tech-
niques, the recovery type [7] error estimation is most popular. The essence of the technique
is to use the difference between the values of more accurate recovered field variables or their
derivatives and those given by the finite element solution as a measure of the elemental error.
Zienkiewicz et al. [8] developed a local projection technique, called as super-convergent patch
recovery technique, to estimate derivatives based on the least square fit of the local polynomial
to the to the super convergent value of the derivatives. Niu et al. [9] suggested an extrac-
tion method for stress recovery and displacement from a finite element solution, with focus on
the boundary stress extraction. The process is super-convergent in that the convergence of the
quantities recovered is equivalent to the energy of the strain. Ubertini [10] has developed the
recovery by patch equilibrium and recovery by patch compatibility to get improved stresses to
the explicitly measured stresses. Rodenas et al. [11] have put forwarded the improvement of the
super-convergent patch recovery (SPR) technique, called SPR-C technique (Constrained SPR) and
found that the technique considerably enhances the accuracy of the recovered stress field and the
elemental effectivity of the Zienkiewicz-Zhu error estimator. The post-processed improved finite
element linear elasticity solution by applying the residual method with set of Neumann data for
nonconforming elements is due to Kim et al. [12]. Mohite et al. [13] have used energy predictions
over the element patches including ZZ type patch recovery to recover the exact solution of the
displacement field and strains. Rodenas et al. [14] proposes error recovery based on moving least
squares (MLS) technique to acquire smoothed stress field in which the continuity of the recovered
field is given by the shape functions of the underlying mesh. They obtained a continuous recovered
stress field that enforces the equilibrium constraints along the boundary and satisfies the internal
equilibrium equation. Parret et al. [15] propose a method for getting improved recovery of stress
field using domain decomposition method in heterogeneous structure. They have proposed the
post-processing of stress field in a non-overlapping local domain or sub-structure that depend on
the mesh connectivity. The procedure is different from the post-processing of stress field using
mesh free nodal sub-domain MLS technique, the approach used in the present study. The MLS
technique has advantage as the technique is simple to implement in domain discontinuities and
continuity of the stress field is provided through the weight function, associated to nodes of the
sub-domains. The mesh free MLS approach will not require special attention for application to
heterogeneous structures.
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Sharma et al. [16] proposed a technique for the recovery of stress for low-order 3D finite
elements. They achieved the post-processed stress field by satisfying equilibrium in an average sense
and projecting the directly computed stress field onto the conveniently chosen space. Breitkopf
et al. [17] has discussed the different aspect of MLS based interpolation for application to three-
dimensional solids. They emphasized that additional constraints, to get a unique solution for
the considered node distributions, are required for extending the technique to higher dimensions.
A coupled finite element-element-free Galerkin (EFG) method for three-dimensional mechanics
problems is presented by Sukumar et al. [18]. The EFG method construct the trial functions for
the variational principle using moving least square (MLS) approximations over the spheres or
parallelepiped domains of influence. Cai et al. [19] proposed a combined error estimator, consisting
of the explicit residual and the enhanced Zienkiewicz-Zhu (ZZ) error estimator, for the conforming
finite element approach, and demonstrated that the developed estimator is accurate for all meshes.
Dong et al. [20] proposed an error estimator based on element energy projection technique for
finite element analysis in adaptive environment.

Ullah et al. [21] suggested an error estimation of the hybrid finite element method (FEM)
and the Mesh-Fee Galerkin method based on local maximum entropy shape function for linear
and nonlinear problems having material and geometric nonlinearities. The Zienkiewicz et al. super-
convergent patch recovery for stresses and strains is used in the FE region of the problem domain,
while the Chung et al. [22] error estimator is used in the mesh free method region. Kumar
et al. [23] have developed several field transfer techniques, that can be used to reorganize data for
complete re-meshing of the computational domain or for mesh regularization, resulting from an
ALE (Arbitrary Lagrangian or Eulerian) formulation with super-convergence property on surface
and volume. Ahmed et al. [24] proposed Galerkin-based mesh free recovery techniques for finite-
element elastic analysis of mechanics problems. The investigation of error estimation using element
free recovery approach is carried out by Ahmed et al. [25]. They have suggested optimal values of
order of polynomial expansion in basis function and dilation parameter to form support domain
to obtain the better-quality of error estimation.

The present study is a contribution to further investigate the mesh free MLS interpolation
based a-posteriori error technique under different discretization scheme, recovery points, and
recovered derivative of field variables. The mesh free methods are developed due to the limitation
of finite element method (FEM) for situations in which distortion of elements occur such as
for large domain changes and domain discontinuities. The continuous field variable derivative for
meshless Galerkin method is obtained through local interpolation of the nodal field variable/ field
variable derivative values using MLS procedure, which involve the inversion of a moment matrix
for every point under consideration. The MLS interpolation based recovery technique uses the
least squares method on top of the finite element method’s field variable derivatives solution to
build a continuous field variable derivatives approximation. The continuity of the field variable
derivative in MLS procedure is provided by the weighting function considered [26]. The boundary
of the node support is taken as circular, i.e., circular support domain constructed using radial
weights in MLS method. The field variable derivatives (stress and strains) are recovered at two
kinds of points in support domain, i.e., Gauss points (super-convergent stress locations) and nodal
points. The field variable derivatives (stress and strains) are recovered at two kinds of recovery
points, i.e., at Gauss points (at super-convergent stress locations) and nodal points. The errors
in the finite element solution at local and global level are measured in energy norm. Numerical
experiments are performed on elastic two-dimensional plates to show that a-posteriori error tech-
niques based on MLS interpolation are accurate and reliable. The plate domain is discretization



170 CMES, 2021, vol.129, no.1

using linear triangular and quadrilateral elements. Four discretization schemes namely, triangular,
quadrilateral, structured and unstructured schemes have been selected for the study. The perfor-
mance of the MLS interpolation based error recovery method is compared with mesh dependent
patch based ZZ a-posteriori error technique [27] in term of rate of convergence, effectivity, and
adaptive refined meshes.

2 Finite Element Formulation for Elastic Problems

Considering the 2D-linear elastic problems with stress field (σ ) and unknown displacements
field (u), satisfying over a domain � that is bounded by � = �t ∪ �u and are governed by the
following differential equation

LTσ + f = 0 in � (1)

Natural and essential boundary conditions are

σ · n= t on Γt (2)

u= u on Γu (3)

where f is the body force vector, LT is the derivative operator, t and u are prescribed tractions
and displacements on �t and �u, respectively and n is the unit outward normal on the boundary
� = �t ∪�u,

The strain vector (ε) and constitutive relation is written as

ε =Lu (4)

σ =Dε (5)

where D is the elasticity matrix of linear isotropic material,

By finite element discretization, the displacements (u) of any point within an element are
calculated based on the following equation:

u=N d (6)

where N is the matrix of the interpolation functions, also known as shape functions and d is the
nodal displacement vector. The strains can be related to the nodal displacements by the following
formula:

ε =LNd =Bd (7)

where B is the strain interpolation matrix.

Using the standard Galerkin method gives the following matrix equation:

K d = F (8)

The components of K and F matrix are computed from equations as given below:

kij =
∫

Ω

BTi DBjdΩ (9)

Fi =
∫

Γi

NT
j tjdΓ +

∫
Ω

NT
j fdΩ (10)
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3 Error Estimation in Energy Norm

The error in computed state variable derivatives, i.e., stresses (eω, e∗ω) or strains (eε, e∗ε) is
defined as the difference between the exact (close form solution, σ or ε) or recovered values (σ*
or ε*) and respective computed values, σ h (or εh), i.e.,

eσ = σ − σ h , e∗σ = σ ∗ − σh (11)

eε = ε∗ − εh, e∗ε = ε∗ − εh (12)

The errors can be measured in appropriate norms. The integral measure of the error in energy
norm (E) may be defined as follows:

‖e‖E =
[∫

Ω

e∗Tσ D−1e∗σ dΩ

] 1
2

(13)

An estimator is asymptotically exact for a problem if the problem global and local (element)
effectivity index (θ), i.e., ratio of estimated error and actual error, converges to one when the mesh
size approaches to zero.

θ = ‖e‖
‖eex‖ (14)

where ‖eex‖ and ‖e‖ denote the actual error and the estimated error estimate in energy norm.

The accuracy (η) of a finite element solution may be defined as follows:

η= ‖e‖E
‖σ ∗‖ (15)

∥∥σ ∗∥∥2 = ∥∥∥σ h
∥∥∥2+‖e‖E2 (16)

The solution is acceptable if η ≤ ηallow where ηallow is the allowable accuracy. If η > ηallow,
refinement is needed.

4 MLS Interpolation Based Stress or Strain Recovery Method

The success of the finite element error recovery depends largely on the accuracy of the post-
processed solution. Different a-posteriori error techniques can be used to improve the quality of
the recovered derivatives such as simple averaging, local or global projection and those exploring
the super convergence phenomenon. The procedure given in literature [24] for classical mesh
dependent patch based recovery technique, i.e., ZZ recovery, is followed in the present study. The
MLS based a-posteriori error method employed for the recovery of stress or strain is described
below.

The MLS approach provides a continuous approximation for the field function over the entire
solution domain with reasonably accuracy, because of approach completeness, robustness, and
continuity [28]. Recovery technique based on MLS interpolation derived the approx. functions by
a set of nodes distributed over a patch or support domain (zone up to a determined distance
with influenced nodes) (Fig. 1), without depending on the meshing scheme, in a weighted least
square sense. “In MLS technique, three components are used to express the function u(x) with
the approximation uh(x), a weight function w(x) associated to each node, a basis functions P(x),
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usually consisting of a polynomial, and a set of coefficients a(x), which are functions of the
coordinates. Let the nodes be defined by xi . . .xn where xi = (xi,yi) in two dimensions The MLS
uh(x) approximation can be represented in the form of series representation as follows:

uh (x)=
m∑
j=1

pj (x) aj (x)≡ pT (x) a(x) (17)

where m is the number of polynomial basis and a (x) is the vector of coefficient given by

aT (x)= {a1 (x) . . .am−1 (x)am (x)} (18)

where a0(x) are the function of coordinates and p (x) is the basis function vector that generally
consist of monomial of the lowest order to ensure minimum completeness. For 2-D, complete
polynomial basis of order m is given by

pT (x)= {p1 (x) . . .pm−1 (x)pm (x)} (19)

The quadratic basis function, p (x), having m as 6 is given by [1,x,y,x2,xy,x2].

The approximated value of the field function can be calculated as (the contribution of point
xI in the support domain of any point x to the field variable (or derivative) at the point x).

uh (x,xI)=
m∑
j=1

pj (xI )aj (x) (20)

The vector of coefficients a(x) can be obtained by minimizing a weighted residual as follows:

J =
n∑
j=1

w(x−xI )[PT (xI )a (x)− uI ]2 (21)

where n is the number of nodes i and w(x−xi) is a weight function in 2-D associated to each node
which is usually built in such a way that it takes a unit value in the vicinity of the point where
the function and its derivatives are to be computed and vanishes outside a region �i surrounding
the point xi,

Minimization of weighted residual leads to the following expression of the coefficient vector.

a (x)=A−1 (x)B(x)us (22)

where A is called the MLS moment matrix given by

A (x)=
n∑
i=i

wi (x−xi) (x−xi)pT (xI )p (xI ) (23)

where B(x) has the form

B (x)= [wI (x−xI )p (xI ) , . . . ,wn(x−xn)p (xn)] (24)
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where us is the vector of nodal parameters of the field variables for all nodes of the support
domain. Therefore, the approximated field variables can be computed as follows:

uh (x)=
n∑

I=1

m∑
j=1

pj (x)A−1 (x)B (x)jI uI (25)

The following cubic spline weight function with circular support domain is considered in the
present study.

w (x−xi)=w
(
d
)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3
− 4d

2+ 4d
3

for d ≤ 1
2

4
3
− 4d+ 4d

2− 4
3
d
3

for 1≤ d ≤ 1
2

0 for d > 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(26)

where d = ‖x−xi‖ /dm, (x − xi) is the distance from node x to point xi and dm is the size of
influence domain of the point xi. The support size of the Ith node, dmI , is computed by dmI =
dmaxcI , in which dmax is a scaling factor called as dilation parameter.

The dilation factor controls the actual dimension of the support domain. The dilation factor
it is usually pre-determined by carrying out numerical experiments for a class of benchmark prob-
lems of known solutions. Liu [27] suggested the value of dilation parameter for solid mechanics
problems as 2.0−3.0. Among the considered value of dilation parameter for a plate problem,
2.5 to 5.5, the optimal performance of MLS based recovery techniques is shown by a value of
3.0 [25]. The distance cI is determined by searching for enough neighbor nodes distance for the
MLS moment matrix A (Eq. (22)) to be invertible at every point in the domain. For uniformly
distributed nodes, cI is simply the distance between two neighboring nodes. For nonuniformly
distributed nodes, cI can be taken as an average nodal spacing in the support domain of xi.
For dmax = 2.5, it means a support domain whose radius is 2.5 times the average nodal spacing.
The influence of support domain on solution error estimation is numerically experimented by
Ahmed et al. [25]. They have observed that rate of convergence of error in finite element analysis
using triangular elements increases with the increase of support domain size, and accuracy in
terms of effectivity of the error, is increased with the increase of the support domain size. The
convergence rates obtained with increasing support domain size are 2.11135, 2.17052, 2.28303
respectively at 2.5, 3.0, and 4.5 dilation parameter. The dilation parameter (dmax) is taken as 3.0
in the present study. The number of nodes in support domains or patch size used in uniformly
subdivided meshes are 15. The solution of Eq. (22) in only possible if the number of unknown
parameters a is smaller than, or at the most equal to, the number of independent equations.
The number of polynomial terms in basis function should be limited to so that the number of
unknown parameters a does not exceed the number of independent equations for a certain local
patch. If the enough number of nodes are not available in local patch, the order of polynomial
must be modified that could otherwise make the set of equations singular. In the present study
the quadratic basis function having number of polynomial terms as 6 is used. The lower order
of basis function, i.e., m = 3, for linear element will reduce the accuracy of the recovered
solution [25]. Therefore, patch size or support domain size will affect the performance of MLS
recovery approach.
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Field Nodes 
Support Domains

Figure 1: Support domains for meshless technique

5 Numerical Experiments

The behavior of the proposed error estimation is evaluated by conducting finite element
analysis on elastic plates. The study considers two plates, square plate, and plate with circular
hole for which closed form analytical solutions are available. The discretization scheme consists
of linear triangular and quadrilateral elements. The MLS based a-posteriori error technique is
used to post-process the strain at Gauss points, the strain at node points and stress at Gauss
points. However, the errors are calculated as the difference between the stress from finite element
results and projected stress from post-processed results in energy norm for various state variable
derivative recoveries at Gauss point or nodal points.

5.1 Elastic Square Plate
The 1 × 1 square plate problem, with body forces (bx, by) over the domain, is tested for the

MLS interpolation based recovery method effectivity and convergence characteristics. The body
force of the problem represented as polynomials and known displacements solution (u, v) are
given in Eqs. (27) to (29) [8].

bx = (α+β) (1− 2x) (1− 2y) (27)

by=−2βy (1− y)− (α+ 2β)2x(1−x) (28)

u= 0, & v= xy (1−x) (1− y) (29)

where constants α and β are given by the relations as α = [E.ν/((1−2.ν) · (1+ν))], β = [E/(2.(1+
ν))], and E and ν are Modulus of elasticity and Poisson’s Ratio respectively with a value of 1.0
N/mm2 and 0.3.

The linear quadrilateral element and triangular element meshing scheme are used to discretize
the plate domain in structured as well as unstructured manner. Fig. 2 shows employed meshing
scheme for domain discretization in finite element analysis. The error convergence with mesh-
refinement in finite-element solution and, recovered solution for derivatives of state variable at
Gauss/node points using MLS based a-posteriori error technique are given in Tabs. 1, 3, 5 and
7 for different discretization scheme respectively. The global effectivity of error estimation for
different discretization scheme obtained is presented in Tabs. 2, 4, 6 and 8. The error estimation
results using patch based ZZ recovery technique are also presented in Tabs. 1 to 8 with different
discretization schemes. The element (local) effectivity frequency is also calculated using different
structured/unstructured discretization schemes at Gauss/node points. The element effectivity fre-
quency is portrayed in Figs. 3 and 4, at last refinement level, for comparison of performance with
different recovery parameters, i.e., Gauss/node points and field variable derivative recovery. The



CMES, 2021, vol.129, no.1 175

stress error distribution in plate domain for different recovered field variables derivatives using
different discretization scheme, at gauss/node points are plotted in Figs. 5 and 6.

a (i): Structured Mesh (Triangular) a (ii): Structured Mesh (Quadrilateral)

b (i): Unstructured Mesh (Triangular) b (ii): Unstructured Mesh (Quadrilateral)

Figure 2: Plate domain: meshing schemes

Table 1: Plate problem: Error convergence for different field variable derivatives, recovery points,
and a-posteriori error techniques (triangular structured mesh)

Mesh
size (1/h)

Exact stress error
in FEM analysis

Stress error in energy norm

Error recovery based on MLS ZZ recovery

Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

1/4 0.0937491 0.0312265 0.0420901 0.0844240 0.1442486
1/8 0.0484492 0.0069389 0.0105996 0.0366971 0.0595053
1/12 0.0325124 0.0028514 0.0045769 0.0212411 0.0340202
1/16 0.0244409 0.0015211 0.0025115 0.0141887 0.0226413
1/24 0.0163211 0.0006328 0.0010789 0.0079263 0.0126257
1/32 0.0122480 0.0003423 0.0005942 0.0052107 0.0082994
Rate of Converg. 0.9787520 2.1705202 2.0487993 1.3393680 1.3731344
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Table 2: Plate problem: Global effectivity for different field variable derivatives, recovery points,
and a-posteriori error techniques (triangular structured mesh)

Mesh size (1/h) Global effectivity, θ

Error recovery based on MLS ZZ error recovery

Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

¼ 0.9180188 0.9246418 0.9169672 1.4313480
1/8 0.9776879 0.9758312 1.0097272 1.3629726
1/12 0.9896826 0.9882010 1.0206941 1.2941474
1/16 0.9940918 0.9930548 1.0212718 1.2449615
1/24 0.9973320 0.9967740 1.0181786 1.1824685
1/32 0.9984889 0.9981463 1.0151561 1.1450787

Table 3: Plate problem: Error convergence for different field variable derivatives, recovery points,
and a-posteriori error techniques (triangular unstructured mesh)

Unstructured mesh Exact stress error
in FEM analysis

Stress error in energy norm

Error recovery based on MLS ZZ recovery

No. of
element

DoF Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

45 66 0.067890 0.016716 0.022691 0.039452 0.090307
88 118 0.050178 0.009175 0.012286 0.025018 0.062004
223 270 0.030644 0.004282 0.004788 0.013945 0.034043
925 1014 0.013872 0.001141 0.001189 0.004057 0.009970
1978 2106 0.009289 0.000567 0.000568 0.002192 0.005381
Rate of Converg. 0.182967 0.381777 0.513989 0.364228 0.464542

5.2 Elastic Circular Hole Plate
The elastic plate with circular hole, a typical stress concentration problem under the action of

a unit in-plane traction applied in the x-direction, is tested for MLS interpolation based recovery
method effectivity and convergence characteristics. The plate side is 5a, having radius of the
circular hole “a” as 1. The vertical, and normal displacement components are zero along the
circular arc of quarter part of circular hole plate. Along the symmetry lines of circular hole plate,
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the shear stress is zero. The known close form stress field solutions are given in Eqs. (30) to
(32) [8].

σx = σ∞

[
1− a2

r2
(1.5 cos2θ − cos 4θ)− 1.5

a4

r4
cos 4θ

]
(30)

σy= σ∞

[
0− a2

r2
(0.5 cos2θ − cos4θ)− 1.5

a4

r4
cos 4θ

]
(31)

σxy = σ∞

[
0− a2

r2
(0.5 sin2θ − sin4θ)− 1.5

a4

r4
sin4θ

]
(32)

where r = y2 + x2 and σ∞ is the uniaxial traction at infinity.

Table 4: Plate problem: Global effectivity for different field variable derivatives, recovery points,
and a-posteriori error techniques (triangular unstructured mesh)

Unstructured mesh Global effectivity, θ

Error recovery based on MLS ZZ error recovery

No. of
element

DoF Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

45 66 0.958672 0.972513 0.941220 1.407369
88 118 0.970474 0.979195 0.960244 1.398162
223 270 0.983250 0.985821 0.991296 1.367203
925 1014 0.995079 0.995191 1.003399 1.184349
1978 2106 0.995949 0.997763 1.003094 1.125893

Table 5: Plate problem: Error convergence for different field variable derivatives, recovery points,
and a-posteriori error techniques (quadrilateral structured mesh)

Mesh
size (1/h)

Exact stress error
in FEM analysis

Projected stress error in energy norm

Error recovery based on MLS ZZ error recovery

Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

¼ 0.0602619 0.0154506 0.022520 0.036837 0.0190381
1/8 0.0300482 0.0035616 0.004682 0.006759 0.0071214
1/12 0.0200230 0.0015495 0.001857 0.002164 0.0036462
1/16 0.0150149 0.0008651 0.000963 0.000982 0.0021981
1/24 0.0100089 0.0003827 0.000383 0.000346 0.0010457
1/32 0.0075063 0.0002150 0.000200 0.000175 0.0006082
Rate ofConverg. 1.001686 2.055634 2.271584 2.572382 1.656029
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Table 6: Plate problem: Global effectivity for different field variable derivatives, recovery points,
and a-posteriori error techniques (quadrilateral structured mesh)

Mesh size (1/h) Global effectivity, θ

Error recovery based on MLS ZZ error recovery

Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

¼ 0.959143 0.957845 1.082713 1.095657
1/8 0.987119 0.977338 0.985943 1.039655
1/12 0.993992 0.987819 0.990965 1.021521
1/16 0.996584 0.992535 0.995073 1.013398
1/24 0.998483 0.996406 0.998168 1.006590
1/32 0.999152 0.997900 0.999126 1.003899

Table 7: Plate problem: Error convergence different field variable derivatives, recovery points, and
a-posteriori error techniques (quadrilateral unstructured mesh)

Unstructured mesh Exact stress error
in FEM analysis

Stress error in energy norm

Error recovery based on MLS ZZ error recovery

No. of
element

DoF Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress
recovery at
Gauss point

45 122 0.040631 0.018695 0.008598 0.010228 0.012687
99 238 0.028454 0.010607 0.006669 0.006287 0.013030
184 426 0.018113 0.006233 0.005874 0.001747 0.004080
455 1002 0.010920 0.001538 0.001366 0.000606 0.001652
887 1658 0.009031 – 0.000950 0.000570 0.002101
1945 4066 0.006117 – 0.000794 0.000360 0.000806
Rate ofConverg. 0.75403 1.347744 1.066737 1.528106 1.145421

The one quarter of circular hole plate domain is modeled because of symmetry of plate
problem. and domain is discretized with linear triangular/quadrilateral elements as shown in
Fig. 7. The error convergence with order of refinement in finite element solution and, recovered
solution for derivatives of state variable at Gauss/node points using MLS based a-posteriori error
technique and ZZ recovery technique are represented in Tabs. 9 and 11 for different discretization
scheme, respectively. The effectivity (global) of error estimation acquired with MLS based a-
posteriori error technique and ZZ recovery technique for different discretization scheme is given
in Tabs. 10 and 12. The local or element effectivity frequency in plate domain is also found using
different recovery parameters and is portrayed in Fig. 8 at last mesh level considered.
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Table 8: Plate problem: Global effectivity for different field variable derivatives, recovery points,
and a-posteriori error techniques (quadrilateral unstructured mesh)

Unstructured mesh Global effectivity, θ

Error recovery based on MLS ZZ error rsecovery

No. of
element

DoF Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

45 122 1.116827 0.990234 0.989506 1.035041
99 238 1.047492 1.003236 1.001372 1.056463
184 426 1.053205 1.036178 0.993695 1.012873
455 1002 1.005126 1.003849 0.997640 1.007572
887 1658 — 0.999199 0.998410 1.020866
1945 4066 — 1.003655 1.000076 1.003431

(i) (ii)

Figure 3: Plate problem: Local effectivity vs. number of elements in plate problem for different
field variable derivatives, recovery points, and a-posteriori error techniques (triangular mesh) (i)
structured mesh size (h) = 1/32 (ii) elements in unstructured mesh = 1978

(i) (ii)

Figure 4: Plate problem: Local effectivity vs. number of elements for different field variable deriva-
tives, recovery points, and a-posteriori error techniques (quadrilateral mesh) (i) structured mesh
size (h) = 1/32 (ii) elements in unstructured mesh = 455
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Figure 5: Error distribution in plate problem domain in plate problem for different field variable
derivatives, recovery points, and a-posteriori error techniques [triangular mesh size (h) = 1/32] (a)
exact error (b) projected error (ZZ, stress at gauss point) (c) projected error (MLS based strain
at Gauss point) (d) projected error (MLS based strain at Node point) (e) projected error (MLS
based stress at Gauss point)
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Figure 6: Error distribution in plate problem domain for different field variable derivatives, recov-
ery points, and a-posteriori error techniques [quadrilateral mesh size (h) = 1/32] (a) exact error
(b) projected error (ZZ, stress at Gauss point) (c) projected error (MLS based strain at Gauss
point) (d) projected error (MLS based strain at Node point) (e) projected error (MLS based stress
at Gauss point)

6 Discussion

The study compares the MLS based technique and Zienkiewicz-Zhu (ZZ) technique used a-
posteriori in finite element analysis by analyzing benchmark problems, i.e., square solid plate and
plate with circular hole in elastic framework. The performance of recovery techniques is studied
by varying recovery parameters, i.e., recovery points (Gauss/node) and recovered field variables
derivatives (Strain/Stress). Four different discretization schemes namely, triangular, quadrilateral,
structured and unstructured schemes are considered in the study. The MLS based a-posteriori
error technique considers element free scattered nodes in support domain (a circular zone in
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the study) for post processing of the field variable derivatives, while Zienkiewicz-Zhu (ZZ) error
estimation considers mesh dependent patch of elements surrounding the vertex node. The flow
chart to show the adaptive finite element analysis using the recovery techniques is depicted in
Fig. 9.

(i): Triangular Mesh (ii): Quadrilateral Mesh

Figure 7: Circular hole plate: Meshing schemes

Table 9: Circular hole plate: Error convergence for different field variable derivatives, recovery
points, and a-posteriori error techniques (triangular mesh)

Unstructured mesh Exact stress error
in finite element
analysis

Stress error in energy norm

Error recovery based on MLS ZZ error recovery

No. of
element

DoF Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

155 194 0.012905 0.00931 0.01082 0.00924 0.01323
373 430 0.00994 0.00639 0.00714 0.00586 0.00833
1181 1280 0.00608 0.00274 0.00304 0.00305 0.00534

Table 10: Circular hole plate: Global effectivity for different field variable derivatives, recovery
points, and a-posteriori error techniques (triangular mesh)

Unstructured mesh Global effectivity, θ

Error recovery based on MLS ZZ error recovery

No. of
element

DoF Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

155 194 0.76524 0.82747 0.75277 1.01807
373 430 0.84861 0.88836 0.80702 1.01433
1181 1280 0.88067 0.90077 0.88090 1.12788
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Table 11: Circular hole plate: Error convergence for different field variable derivatives, recovery
points, and a-posteriori error techniques (quadrilateral mesh)

Unstructured mesh Exact stress error
in finite element
analysis

Stress error in energy norm

Error recovery based on MLS ZZ error recovery

No. of
element

DoF Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

179 214 0.00809 0.00574 0.00656 0.00704 0.00926
437 966 0.00471 0.00242 0.00279 0.00333 0.00241
970 2032 0.00344 0.00193 0.00199 0.00177 0.00181

Table 12: Circular hole plate: Global effectivity for different field variable derivatives, recovery
points, and a-posteriori error techniques (quadrilateral mesh)

Unstructured mesh Global effectivity, θ

Error recovery based on MLS ZZ error recovery

No. of
element

DoF Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

179 214 0.87136 0.89959 0.96035 1.40136
437 966 0.84050 0.88865 0.96467 0.89920
970 2032 0.89471 0.90619 0.90195 0.92321

Numerical experiments with MLS based a-posteriori error technique demonstrate that the
higher convergence and accuracy is obtained in recovered Gauss/node point values of the deriva-
tives with different meshing schemes, and it is clear from Tabs. 1–8 that error recovery parameters,
type of recovery points and field variables derivatives, affect the performance of MLS based
error estimation. The solution errors in the finite element analysis, called discretization error,
are crept due to subdivision of problem domain. The discretization errors are generated because
the sub-domains are not capable of representing the full range of behavior of the continuum.
The discretization error can be decreased by finer elements mesh. The MLS based a-posteriori
error technique performs better with quadrilateral elements discretization as compared to domain
discretization with triangular elements. The MLS interpolation based recovery technique performs
better for stress extraction at Gauss points with quadrilateral discretization of problem domain.
However, for triangular discretization of problem domain, the MLS interpolation based recovery
technique performs better for strain extraction at node points. This is also verified with Fig. 3
and it shows element effectivity frequency in plate domain. The figure infers that local effectivity
is converging to around one for most of the elements for stress recovery at Gauss point using the
MLS based a-posteriori error technique. Exact and computed error distributions using different
discretization scheme, recovery points and recovered field variables, displayed in Figs. 5 and 6, sup-
ports the conclusions for better performance of MLS based recovery technique stress extraction
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at gauss points. It concludes that MLS based a-posteriori error technique effectively predicts the
error in energy norm of the recovered solution for stress both at local and global levels.

(a) (b)

Figure 8: Circular hole plate: Local effectivity vs. number of elements for different field variable
derivatives, recovery points, and a-posteriori error techniques (a) triangular mesh (elements =
1002) (b) quadrilateral mesh (elements = 358)

Figure 9: Flow chart for ZZ and MLS recovery technique based adaptive finite element analysis

The error estimation incorporated finite element analysis results, shown in Tabs. 9–12 and
Fig. 8, for circular hole plate with MLS interpolation and mesh dependent patch based a-
posteriori error techniques, by varying discretization scheme, recovery points and field variables
derivative recovery, also predict similar performance. It is also seen that MLS based a-posteriori
error technique for extraction of field variable derivative is more effective than the mesh depen-
dent patch based ZZ recovery technique especially with stress concentration problems. The poor
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performance of ZZ error recovery scheme may be due to inaccurate recovery of nodal derivatives
and computed stresses on boundary as the number of sampling node in ZZ scheme will be
lesser due to patch dependency on the meshing scheme. However, there is no mesh dependency
for number of sampling nodes on boundary in the support domain, i.e., patch of influenced
nodes within a determined distance. The error convergence is much faster with increasing order
of meshing in MLS based a-posteriori error technique as compared to the finite element solution
and ZZ technique based solution, so the cost of computation required to obtain a solution with
a predefined accuracy will be smaller than for traditional h-adaptive processes.

Table 13: Circular hole plate: Actual and computed global errors in energy norm (%) for different
field variable derivatives, recovery points, and a-posteriori error techniques

Meshing
scheme

Mesh Error in energy norm (%)

No. of
element
(No.)

DOF Actual
FEM

Error recovery based on MLS ZZ error recovery

Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

Triangular
Elements

373 430 8.00 6.82 7.14 6.49 8.09

Quadrilateral
Elements

437 966 3.80 3.20 3.38 3.67 3.42

Adaptive analysis of plate problem, i.e., refinement of finite element mesh under guidance
of a-posteriori error techniques for satisfying predefined error limit is also carried out. Adaptive
analysis results are obtained for ZZ error recovery and MLS based a-posteriori error technique
with different discretization scheme, recovery point and recovered field variable derivatives. The
initial meshes are adaptively modified to bring the solution error within the target limit. Tabs. 13
and 14 show the degrees of freedom and number of elements in refined meshes at prescribed
error limit of 2%. Figs. 10–11 show the adaptively improved meshes through the guidance of
ZZ error recovery and MLS based a-posteriori error technique for triangular and quadrilateral
meshing schemes. It is clear from the figures of adaptively refined meshes that the initial uniform
mesh become high density mesh in field variable derivative concentration area, i.e., near the plate
hole and low density mesh away from the plate hole. However, the mesh is uniformly dense near
the hole using the quadrilateral element mesh as compared to the density mesh generated using
the triangular element mesh. It can be concluded that domain discretization using quadrilateral
element is more effective and faithful to recover the field variable derivative errors. The MLS based
a-posteriori error technique coupled adaptive analysis found that the number of elements required
to achieve target accuracy with stress extraction at Gauss point is lesser as compared to strain
extraction at Gauss or node point. It infers that the MLS based a-posteriori error technique is
more efficient in extracting the stresses at Gauss point as compared to the extraction of strains.
Also, lesser number of elements are required to achieve target accuracy using the MLS based
a-posteriori error technique as compared to patch based ZZ error estimation with quadrilateral
meshing schemes and number of elements using the MLS based a-posteriori error technique are
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comparable with triangular meshing schemes. It concludes that MLS based a-posteriori error
technique is more efficient than the ZZ recovery technique.

Table 14: Circular hole plate: Degrees of freedom (DOF) and number of element in adaptively
refined meshes for different field variable derivatives, recovery points, and a-posteriori error
techniques (2% prescribed error)

Meshing scheme Initial mesh Error recovery based on MLS ZZ error recovery

Strain at
Gauss
point

Strain at
Node
point

Stress at
Gauss
point

Stress at
Gauss
point

No. DOF No. DOF No. DOF No. DOF No. DOF

Triangular elements 373 430 902 984 790 878 707 778 660 732
Quadrilateral elements 437 966 1152 2438 1024 2178 896 1914 1063 2262

(a) (b) (c) (d) (e)

Figure 10: Circular hole plate: Adaptively refined mesh for different field variable derivatives,
recovery points with ZZ & MLS a-posteriori error techniques [triangular initial mesh elements
= 373, 2% prescribed error] (a) initial mesh (b) stress (ZZ, Gauss) (c) strain (Gauss) (d) strain
(Node) (e) stress (Gauss)

(a) (b) (c) (d) (e)

Figure 11: Circular hole plate: Adaptively refined mesh for different field variable derivatives,
recovery points with ZZ & MLS a-posteriori error techniques [quadrilateral initial mesh elements
= 437, 2% prescribed error] (a) initial mesh (b) stress (ZZ, Gauss) (c) strain (Gauss) (d) strain
(Node) (e) stress (Gauss)
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7 Conclusions

The study presents the effectiveness of moving least squares (MLS) interpolation based on
a-posteriori error technique to recover the finite element solution error with varying the finite
element error recovery parameters, namely types of recovery points and field variable derivatives
recovery. The MLS technique has a limitation: it needs a dilation factor to form a proper patch
size and requires a proper order of basis function for a particular problem. The moment matrix of
MLS technique may result in ill-conditioning or singular due to inappropriate nodes distribution
and polynomial basis functions. Moreover, the Kronecker delta function property is not satisfied
in MLS based technique. Special measures such as Lagrange multiplier methods, penalty method
etc., are required to impose essential boundary conditions in the elastic analysis. The MLS inter-
polation based a-posteriori technique uses the weighted least squares method on top of the finite
element method’s field variable derivatives solution to build a continuous field variable derivatives
approximation. The stress and strains are recovered at two kinds of recovery points, i.e., at
Gauss points (at super-convergent stress locations) and nodal points. The numerical tests consider
discretization with quadrilateral and triangular meshes to measure the approximation errors in
strain and stress fields. The numerical examples showed capabilities of the MLS interpolation
based recovery technique for effective error estimation in the finite element analysis. The higher
convergence and improved behavior of MLS interpolation based a-posteriori error technique is
achieved for stresses recovered at Gauss point compared to strains recovered at Gauss/node point
using quadrilateral elements discretization. The MLS-based a-posteriori error technique coupled
adaptive analysis found that fewer elements are required to achieve target accuracy with stress
extraction at Gauss point compared to strain extraction at Gauss or node point. The MLS
interpolation based recovery technique performs better for stress extraction at Gauss points with
a quadrilateral discretization of problem domain. In contrast, the recovery technique performs
better for strain extraction at node points for the triangular discretization of problem domain.
The study also concluded that MLS interpolation based a-posteriori technique is more effective
and efficient than the mesh dependent ZZ recovery technique.
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