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ABSTRACT

The presented research aims to design a new prevention class (P) in the HIV nonlinear system, i.e., the HIPV
model. Then numerical treatment of the newly formulated HIPVmodel is portrayed handled by using the strength
of stochastic procedure based numerical computing schemes exploiting the artificial neural networks (ANNs)
modeling legacy together with the optimization competence of the hybrid of global and local search schemes via
genetic algorithms (GAs) and active-set approach (ASA), i.e., GA-ASA. The optimization performances through
GA-ASA are accessed by presenting an error-based fitness function designed for all the classes of the HIPV model
and its corresponding initial conditions represented with nonlinear systems of ODEs. To check the exactness of the
proposed stochastic scheme, the comparison of the obtained results and Adams numerical results is performed.
For the convergence measures, the learning curves are presented based on the different contact rate values. More-
over, the statistical performances through different operators indicate the stability and reliability of the proposed
stochastic scheme to solve the novel designed HIPV model.

KEYWORDS
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1 Introduction

Humankind is facing many deathly infection viruses for many years. HIV is one infectious
virus that exists almost in each continent of the world with a low or high rate. Most viruses do not
have proper treatment and vaccinations like coronavirus, dengue virus, and HIV [1–3]. Humanity
can survive such diseases by taking some prevention or precautionary measures. The present study
introduces a prevention class (P) in the HIV nonlinear mathematical system, i.e., the HIPV model.
This prevention class describes the mathematical form based on four parameters, i.e., injection
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drug, safety measures, avoid from pregnancy and contact rate. The introductory HIPV nonlinear
mathematical model takes the form as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H ′(τ )= q− kV(τ )H(τ )+ r
(
1− H(τ )+ I(τ )

Hmax
()01

)
I ′(τ )=−βI(τ )+ kH(τ )V(τ ), I0 = i2,

P′(τ )= aP(τ )+ bP(τ )− cI(τ )+ δI(τ )P0 = i3,

V ′(τ )= nβI(τ )− γV(τ ), V0 = i4,

(1)

where H(τ ), I(τ ), P(τ ) and V(τ ) indicate the T-cells concentration, individuals infected from this
virus, prevention measures and particles free from virus, respectively. Furthermore, Tmax shows the
maximum T-cells concentration, r represents the T-cells growth rate concentration, a indicates the
injection drug, b shows the safety measures, c is used to avoid from pregnancy, δ describes the
contact rate, q is the source of uninfected T-cells, n shows the virus particles made by infected
T-cell and k indicates the virus rate. Many researchers using various schemes have investigated
the HIV nonlinear systems. Few of them are Khan et al. [4] explored the fractional order HIV
model involving the Liouville–Caputo and Atangana–Baleanu–Caputo derivatives. Wang et al. [5]
calculated the travelling wave solutions for a nonlocal dispersal HIV infection dynamical model.
Jiang et al. [6] discussed the dynamics of stochastic HIV-1 infection model with logistic growth.
Arshad et al. [7] presented the effects of the HIV infection on CD4+ T-cell population based
on a fractional-order model. Naik et al. [8] presented the global dynamics of a fractional order
model for the transmission of HIV epidemic with optimal control. Elaiw et al. [9] checked the
stability of delayed HIV dynamics models with two latent reservoirs and immune impairment. Lin
et al. [10] presented the threshold dynamics of an HIV-1 virus model with both virus-to-cell and
cell-to-cell transmissions, intracellular delay, and humoral immunity. Zhang et al. [11] discussed
the stabilization and sustained release of HIV inhibitors by encapsulation in silk fibroin disks.
Beside these, many renewed relevant studies are reported recently for HIV dynamics, see in [12–17]
and references cited therein.

All these citations related to HIV model have their individual novelty, merits and advantages.
But no one has designed the prevention class in the nonlinear HIV model. The aim of this
current work is to design the HIPV model and investigate numerically by using the artificial neural
networks together with the competence of the hybrid of global and local search schemes called
genetic algorithm (GA) and active-set approach (ASA), i.e., GA-ASA. The stochastic schemes
have been applied to explore many linear/nonlinear, singular/non-singular and biological, delayed,
fractional, prediction and pantograph differential models. Few well-known applications related to
these applications are Thomas-Fermi singular system [18], singular models using Gudermannian
kernel functions [19], mathematical model for random matrix theory [20], nonlinear model based
on prey-predator [21], Bouc–Wen hysteresis ODEs model for piezostage actuator [22], mosquito
dispersal model [23], nonlinear Van-der Pol Mathieu’s oscillatory models [24], functional singular
system [25], squeezing flow with heat transfer model [26], delay differential model [27], nonlinear
electric circuit models [28], singular three-point differential system [29], financial market forecasting
model [30], transmission model in human head [31], nonlinear dusty plasma systems [32] and
multi- singular fractional systems [33]. The workflow diagram of the HIPV model is presented in
Fig. 1.



CMES, 2021, vol.129, no.1 229

Figure 1: Workflow diagram of the HIPV nonlinear mathematical model

Some novel prominent features of the current work are described as:

• The design of prevention class in the HIV nonlinear mathematical system is presented using
the injection drug, safety measures, avoid from pregnancy and contact rate.

• The designed HIPV nonlinear system is effectively solved by using the ANN along with the
optimization of GA-ASA combinations.

• For the convergence of HIPV system, the learning curves through GA and GA-ASAS are
presented using different values of the contact rate.

• The consistent overlapped outcomes through GA-ASA and the Adams numerical routines
validate the exactness of the designed scheme.

• The endorsement of the presentation is trained for different statistical valuations to get the
numerical solutions of HIPV system.

• The advantages of the designed scheme are simply performed for the nonlinear HIPV
system, easy to understand, operated efficiently, constancy and inclusive applicability are the
other significant influences.

The remaining parts of current research are described as: Section 2 designates the method-
ology and statistical presentations. Section 3 shows the result simulations. Section 4 indicates the
final declarations and future research reports.

2 Proposed Structure

The designed structure of ANNs by using the optimization of GA-ASA is presented in two
steps for solving the nonlinear mathematical HIPV model, given as:

• For the ANNs parameters, the design of fitness function is presented.
• Essential settings are provided to optimize the fitness function using the hybrid combination
of GA-ASA.

2.1 Structure of ANNs
The mathematical formulations to solve each class of the nonlinear Human Immunodeficiency

Prevention Virus (HIPV) are obtainable in this section. The proposed solutions of the nonlinear
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HIPV model are respectively represented as Ĥ, Î , P̂ and V̂ , given as:

[
Ĥ(τ ), Î(τ ),

P̂(τ ), V̂(τ )

]
=

⎡⎢⎢⎢⎣
m∑
k=1

cH,kg(wH,kτ + aH,k),
m∑
k=1

cI ,kg(wI ,kτ + aI ,k),

m∑
k=1

cP,kg(wP,kτ + aP,k),
m∑
k=1

cV ,kg(wV ,kτ + aV ,k)

⎤⎥⎥⎥⎦ (2)

[Ĥ ′(τ ), Î ′(τ ), P̂′(τ ), V̂ ′(τ )]=

⎡⎢⎢⎢⎣
m∑
k=1

cH,kg′(wH,kτ + aH,k),
m∑
k=1

cI ,kg′(wI ,kτ + aI ,k),

m∑
k=1

cP,kg′(wP,kτ + aP,k),
m∑
k=1

cV ,kg′(wV ,kτ + aV ,k)

⎤⎥⎥⎥⎦
In the above system, W represents the unknown weight vector as:

W = [WH ,WI ,WP,WV ], for WH = [cH ,ωH ,aH ], WI = [cI ,ωI ,aI ], WP = [cP,ωP,aP] and WV =
[cV ,ωV ,aV ], where

cH = [cH,1, cH,2, . . . , cH,m], cI = [cI ,1, cI ,2, . . . , cI ,m], cP = [cP,1, cP,2, . . . , cP,m],

cV = [cV ,1, cV ,2, . . . , cV ,m], wH = [wH,1,wH,2, . . . ,wH,m], wI = [wI ,1,wI ,2, . . . ,wI ,m],

wP = [wP,1,wP,2, . . . ,wP,m], wV = [wV ,1,wV ,2, . . . ,wV ,m], aH = [aH,1,aH,2, . . . ,aH,m],

aI = [aI ,1,aI ,2, . . . ,aI ,m], aP = [aP,1,aP,2, . . . ,aP,m], aV = [aV ,1,aV ,2, . . . ,aV ,m].

The log-sigmoid g(τ )= (1+ exp(−τ ))−1 is used as an activation function in the above system,
given as:

[Ĥ(τ ), Î(τ ), P̂(τ ), V̂(τ )]=

⎡⎢⎢⎢⎢⎢⎣
m∑
k=1

cH,k

1+ e−(wH,kτ+aH,k)
,
m∑
k=1

cI ,k
1+ e−(wI ,kτ+aI ,k) ,

m∑
k=1

cP,k
1+ e−(wP,kτ+aP,k) ,

m∑
k=1

cV ,k

1+ e−(wV ,kτ+aV ,k)
,

⎤⎥⎥⎥⎥⎥⎦

[Ĥ(τ ), Î(τ ), P̂(τ ), V̂(τ )]=

⎡⎢⎢⎢⎢⎢⎣
m∑
k=1

wH,kcH,ke−(wH,kτ+aH,k)

1+ e−(wH,kτ+aH,k)
,
m∑
k=1

wI ,kcI ,ke−(wI ,kτ+aI ,k)

1+ e−(wI ,kτ+aI ,k) ,

m∑
k=1

wp,kcP,ke−(wP,kτ+aP,k)

1+ e−(wP,kτ+aP,k) ,
m∑
k=1

wV ,kcV ,ke−(wV ,kτ+aV ,k)

1+ e−(wV ,kτ+aV ,k)
,

⎤⎥⎥⎥⎥⎥⎦

(3)

The optimization of an error based ‘fitness function’ is performed using the GA-ASA
procedures is given as:

e= e1 + e2+ e3 + e4+ e5, (4)

e1 = 1
N

N
∑∑

k=1

[
Ĥ ′
k− q+ kV̂kĤk− rĤk+ r

(
Ĥk+ Îk
Hmax

(̂̂)kk
)
[]2
]

(5)
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e2 = 1
N

N∑
k=1

[Î ′k+β Îk− kV̂kĤk]
2, (6)

e3 = 1
N

N∑
k=1

[P̂′
k− aP̂k− bP̂k+ cÎk− δÎk]

2, (7)

e4 = 1
N

N∑
k=1

[V̂ ′
k− nβ Îk+ γ V̂k]

2, (8)

e5 = 1
4

[
(Ĥ0− i1)

2+ (Î0 − i2)
2+ (P̂0 − i3)

2++(V̂0− i4)
2]

, (9)

where Ĥk =H(τk), Îk = I(τk), P̂k =P(τk), V̂k =V(τk), τk= kh and hN = 1. The values e1, e2, e3 and
e4 represent the fitness functions related to system (1), while, e5 represents the initial conditions
of the HIPV nonlinear system (1).

2.2 Optimization Performances: GA-ASA
In this section, the optimal performance through GA-ASA for solving the mathematical HIPV

nonlinear model is presented. The designed ANNs structure through GA-ASA for solving the
nonlinear mathematical HIPV model is shown in Fig. 2.

GA is a global search optimization procedure, which is implemented to solve the stiff, com-
plicated and nonlinear systems. In this study, GA is implemented as an optimization procedure to
solve the HIPV model. To find the best solutions of the network, GA works through the selection
operator, crossover process, reproduction practice and mutation procedure. Recently, GA has been
applied in extensive optimization practices like as, system of hospitalization expenditure [34],
higher order nonlinear singular systems [35], feature group in cancer microarray virus [36], singular
functional based boundary value models [37], nonlinear Troesch’s system [38], vehicle system
routine [39], active noise control systems [40,41], monorail vehicle system dynamics [42] and
economic load dispatch problem [43].

ASA is known as a quick and rapid local search optimization scheme, which is broadly
executed to solve both types of models based on constrained/unconstrained systems. ASA is
implemented in numerous optimizations networks based complex models. In recent few years, ASA
is implemented to execute the real-time optimal control [44], multi-rigid-body dynamic contact
problems [45], a class of nonlinear problems with monotone operators [46], predictive control for
a ball and beam system [47] and large scale optimization of cardiac defibrillation [48]. For the
slowness of the global search method, the hybridization procedure is applied via GA-ASA and
comprehensive pseudocode of the ANN using GA-ASA combination is shown in Tab. 1.
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Selection, mutation, reproduction & crossover

Local search: ASA
Start point, Best individual, Bounds & 

Optimset

The Problem

Fitness 
Evaluation

Stopping Measures 
Achieved

Best weight 
vectors of GA

Fitness 
Evaluation

Accomplished the 
stopping measures

Start of GA
Population, Random approach, Bounds and Optimset

Updated Generations
Best GA -ASA values

No

Yes

Graphical illustrations of GA -ASA

Present results

Yes

No

Mathematical Model

Optimization

Design of ANNs Nonlinear HIPV model

Hybrid combination: GA-ASA

Comparative investigations via
performance measures

Trained vectors via ANNs for the
reported results

Figure 2: Designed arrangements of the current approach to solve the HIPV nonlinear mathemat-
ical model
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Table 1: Optimization processes through ANN using GA-ASA to solve the nonlinear HIPV
mathematical model

GA
Inputs: The chromosomes are selected with the same number of elements as:
W = [c, w, a]
Population: A chromosomes set is given as:
W = [WH ,WI ,WP,WV ], for WH = [cH ,ωH ,aH ], WI = [cI ,ωI ,aI ], WP = [cP,ωP,aP] and
WV = [cV ,ωV ,aV ]
Outputs: Global weight vectors are WBGA.
Initialization: To select the chromosomes, adjust the WBGA.
Fit Assessment: Modify the fitness values e in population using Eqs. (4)–(9)

• Stopping measures: Stop if [TolCon = TolFun = 10−21], [StallLimit = 150],
[Generataions = 100], [e= 10−22] & [PopSize = 240] achieved.
Move to storage
Ranking: Rank precise WBGA in the selected “population” for fitness e.
Storage: Save WBGA, time, iterations, fitness and function counts.

End of GA
ASA

Inputs: WBGA is used as a start point.
Output: WGAASA shows the best GA-ASA values.
Initialize: WBGA, iterations, assignments and other values.
Stopping standards: Terminate if [e= 10−21], [Iterations = 950], [TolCon = 10−21],
[TolX = TolFun = 10−18] and [MaxFunEvals = 274000] achieved.
Fit Assessment: Compute W and e using systems 4–9.
Amendments: Standardize ‘fmincon’ for ASA, compute e for systems 4–9.
Accumulate: Transform WGAASA, e, time, iterations & function counts for the ASA trials.

ASA End

2.3 Performance Measures
The statistical operator performances based on the “variance account for (VAF),” “mean

absolute deviation (MAD),” “Theil’s inequality coefficient (TIC)” and “semi interquartile range
(S.I.R)” along with the Global performances of these operators are mathematically presented to
solve the HIVP nonlinear model in this section.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[VAFH ,VAFI ,VAFP,VAFV ]=

⎡⎢⎢⎢⎢⎢⎣

(
1− var(Hr− Ĥr)

var(Hr)

)
× 100,

(
1− var(Ir− Îr)

var(Ir)

)
× 100,(

1− var(Pr− P̂r)
var(P)r

)
× 100,

(
1− var(Vr− V̂r)

var(Vr)

)
× 100

⎤⎥⎥⎥⎥⎥⎦
[E-VAFH , E-VAFI , E-VAFP, E-VAFV ]=

[∣∣∣∣∣100−VAFH , 100−VAFI ,

100−VAFP, 100−VAFV

∣∣∣∣∣
] (10)
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[MADH ,MADI ,MADP,MADV ]=
[

n∑
r=1

|Hr− Ĥr|,
n∑
r=1

|Ir− Îr|,
n∑
r=1

|Pr− P̂r|,
n∑
r=1

|Vr− V̂r|
]

(11)

[TICH , TICI , TICP, TICV ]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1
n

∑n
r=1 (Hr− Ĥr)

2(√
1
n

∑n
r=1H

2
r +

√
1
n

∑n
r=1 Ĥ

2
r

) ,
√

1
n

∑n
r=1 (Ir− Îr)

2(√
1
n

∑n
r=1 I

2
r +

√
1
n

∑n
r=1 Î

2
r

)
√

1
n

∑n
r=1 (Pr− P̂r)

2(√
1
n

∑n
r=1P

2
r +

√
1
n

∑n
r=1 P̂

2
r

) ,
√

1
n

∑n
r=1 (Vr− V̂r)

2(√
1
n

∑n
r=1V

2
r +

√
1
n

∑n
r=1 V̂

2
r

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

{
S.I Range= 0.5× (q3− q1),

q1=1st quartile q3 = 3rd quartile,
(13)

In the above network, r shows the grid point, while Ĥ, Î, P̂ and V̂ represent the approximate
solutions.

3 Simulations and Results

In this section, the details solution for solving the HIPV nonlinear model are provided. For
the convergence measures of the prevention class, six different cases have been presented based on
the contact rate. Moreover, the obtained results have been compared with the Adams numerical
results to authenticate the correctness of the HIPV nonlinear model. The statistical performances
are also provided by taking different measures to check the consistency and reliability of the
proposed scheme. The updated mathematical form of the nonlinear HIPV system with suitable
parameters is given as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H ′(τ )= 0.1− 0.0027V(τ )H(τ )+ 3
(
1− H(τ )+ I(τ )

Hmax
()0

)
I ′(τ )=−0.3I(τ )+ 0.0027H(τ )V(τ ), I0= 0.1,

P′(τ )=−0.00001P(τ )+ 0.1P(τ )− 0.0001I(τ )+ 0.1I(τ )P0= i3,

V ′(τ )= 3I(τ )− 2.4V(τ ),V0 = i4

(14)

The formulation of the fitness function using the above system becomes as:

e= 1
N

N
∑∑

i=1

⎛⎜⎜⎜⎝
[
Ĥ ′
r− 0.1+ 0.0027V̂rĤr− 3

(
1− Ĥr+ Îr

Hmax
(̂̂)rr

)
[]2[Î ′r+ 0.3Îr− 0.0027V̂rĤr]

2
]

+
[
P̂′
r+ 0.00001P̂r− 0.1P̂r+ 0.0001Îr− 0.1Îr

]2+ [V̂ ′
r− 3Îr+ 2.4V̂r

]2
⎞⎟⎟⎟⎠

+1
4

[
(Ĥ0)

2+ (Î0 − 0.1)
2+ (P̂0)

2+ (V̂0)
2]

.

(15)
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The optimization of the above fitness function is performed to solve the HIPV nonlinear
system using the hybrid combination of GA-ASA for 100 executions by taking 120 variables.
The best weight vectors show the proposed solutions of the HIPV nonlinear mathematical model
presented as:

Ĥ(τ )= −1.8460
1+ e−(1.4151τ−0.4679) −

0.0001
1+ e−(−10.13τ+0.7461) −

3.2348
1+ e−(−1.362τ+0.9250) −

0.9803
1+ e−(−0.155τ+2.8074)

− 0.3816
1+ e−(−0.473τ+0.0295) −

0.5747
1+ e−( 1.2265τ−0.8254) +

9.2127
1+ e−( 4.4776τ−6.4223) −

0.3202
1+ e−( 2.0001τ−0.9602)

+ 4.3865
1+ e−(−4.876τ−6.5474) +

0.0544
1+ e−(1.0053τ−1.0499) , (16)

Î(τ )= −0.3747
1+ e−(−0.187τ+0.9055)

+ 0.6600
1+ e−(0.2312τ−0.2922)

+ 0.6475
1+ e−(−0.346τ+0.1366)

+ 0.3449
1+ e−(−0.389τ−1.2008)

− 0.0034
1+ e−( 0.3385τ+1.7020) −

0.4243
1+ e−(−0.190τ+0.5338) −

0.3916
1+ e−( 0.2793τ−1.4906) +

0.0039
1+ e−(−1.591τ−1.5890)

− 0.0100
1+ e−( 2.0616τ+1.7314) +

0.0193
1+ e−(−0.176τ−0.0933) , (17)

P̂(τ )= 0.8278
1+ e−(0.2509τ−0.0931) +

0.2247
1+ e−(−0.159τ−1.1961) −

1.6078
1+ e−( 1.0943τ+0.1828) −

0.3441
1+ e−(−0.148τ+0.4059)

− 0.0733
1+ e−(−0.3225τ−0.7296) −

1.6158
1+ e−( 0.2680τ−0.939) +

1.3799
1+ e−( 1.1403τ+0.1218) +

0.0354
1+ e−(−1.190τ+0.5803)

− 0.2175
1+ e−(−0.6083τ−1.4061) +

0.8743
1+ e−( 0.3117τ−0.157) , (18)

V̂(τ )= −0.00002
1+ e−(14.918τ+0.2385) −

0.2499
1+ e−(−0.026τ−0.1360) −

0.1965
1+ e−(−0.149τ−0.2649) +

1.2822
1+ e−(−0.203τ+0.0967)

− 0.8445
1+ e−(−0.100τ−1.2035) −

0.4262
1+ e−(−2.375τ−1.3635) +

0.1912
1+ e−(−0.024τ−0.3418) −

2.2440
1+ e−(−3.639τ−3.8513)

− 0.2346
1+ e−(−0.388τ+1.8755) −

0.0253
1+ e−(−0.234τ−0.8591) . (19)

The fitness function shown in Eq. (4) is applied for the optimization of the hybrid computing
arrangements of GA-ASA for solving the nonlinear HIPV model. The convergence or learning
curves, restructured generations of the fitness functions are plotted in Figs. 3–8 by taking different
values of the contact rate (δ) based on the nonlinear HIPV mathematical model. One may
observed that in the start the optimization performance of fitness function using GA is fast but
after few generations its convergence competency reduced. Then the hybridization process of GA
with the local search ASA is implemented that shows more proficiency in order to solve the
nonlinear HIPV system. Hence, the reliability and steadfast convergence are obtained to solve
the nonlinear HIPV system using the GA-ASA. One may accomplish that the accuracy through
convergence is obtained using the stochastic GA-ASA process for solving the nonlinear HIPV
mathematical model.
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Figure 3: Convergence curves using the optimization process for solving the nonlinear HIPV sys-
tem by taking contact rate δ = 0.1 (a) Convergence curve based on GA (b) Convergence curve
based on GA-ASA

Figure 4: Convergence curves using the optimization process for solving the nonlinear HIPV sys-
tem by taking contact rate δ = 0.2 (a) Convergence curve based on GA (b) Convergence curve
based on GA-ASA
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Figure 5: Convergence curves using the optimization process for solving the nonlinear HIPV sys-
tem by taking contact rate δ = 0.3 (a) Convergence curve based on GA (b) Convergence curve
based on GA-ASA

Figure 6: Convergence curves using the optimization process for solving the nonlinear HIPV sys-
tem by taking contact rate δ = 0.4 (a) Convergence curve based on GA (b) Convergence curve
based on GA-ASA
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Figure 7: Convergence curves using the optimization process for solving the nonlinear HIPV sys-
tem by taking contact rate δ = 0.5 (a) Convergence curve based on GA (b) Convergence curve
based on GA-ASA

Figure 8: Convergence curves using the optimization process for solving the nonlinear HIPV sys-
tem by taking contact rate δ = 0.6 (a) Convergence curve based on GA (b) Convergence curve
based on GA-ASA
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Figure 9: (continued)
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Figure 9: Best set of weight vectors along with the comparison of best, mean and reference
solutions to solve the HIPV nonlinear mathematical system (a) Best weights for H(τ ) (b) Best
weights for I(τ ) (c) Best weights for P(τ ) (d) Best weights for V(τ ) (e) Results for class H(τ ) (f)
Results for class I(τ ) (g) Results for class P(τ ) (h) Results for class V(τ )

The proposed numerical solutions are obtained using the above systems (16–19) for 0 to 1
input with the step size of 0.1 of the HIPV nonlinear mathematical model along with the best
weights drawn in the Figs. 9a–9d. While the second half of Figs. 9e–9h presents the comparison
of the best and mean results with the Adam reference results to solve the HIPV nonlinear model.
The overlapping of the results shows the confidence and perfection of the designed scheme.
Fig. 10 shows the absolute error (AE) plots for each class of the HIPV nonlinear model. The best
and mean AE values are plotted for each category of the HIPV model. One may observe that the
best AE values of the categories H(τ ), I(τ ), P(τ ) and V(τ ) lie around 10–06–10–08, 10−08−10−10,
10−06−10−07 and 10−05−10−07, respectively. While, the mean values of AE for each category of
the HIPV model lie around 10−02−10−04, 10−05−10−06, 10−05−10−06 and 10−04−10−05, respec-
tively. Fig. 11 represents the performance operators based on E-VAF, MAD and TIC values to
solve the HIPV nonlinear model. One may see that the best performance of the H(τ ) class using
the operators E-VAF, MAD and TIC lie around 10−10−10−11, 10−06−10−07 and 10−10−10−11,
respectively. The best performances of I(τ ) for these statistical operators lie around 10−11−10−12,
10−07−10−08 and 10−11−10−12, respectively. While, the best performances of P(τ ) and V(τ ) based
on these performances lie around 10−08−10−09, 10−06−10−07 and 10−10−10−11, respectively. On
the behalf of these performances, one can accomplish that the proposed scheme is precise.

The graphical representations along with histograms and boxplots using the statistical actions
to authenticate the convergence measures are given in Figs. 12–14 for solving the HIPV model.
Fig 12 shows the TIC values for 100 trials to solve the HIPV nonlinear model and almost 95%
runs achieved very good accuracy level that are in between 10−10−10−10. The MAD performances
are plotted in Fig. 13 and almost 95% runs achieved accuracy level in between 10−04−10−06.
Likewise, the E-VAF performance are plotted in Fig. 14 and one can observe that almost 95%
runs achieved an accuracy level in between 10−06−10−08. These best presentations of the runs
using the ANN along with GA-ASA are found to be satisfactory for the E-VAF, TIC and MAD
operators.
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Figure 10: AE values for each category of the HIPV nonlinear model (a) AE for class H(τ ) (b)
AE for I(τ ) class (c) AE for P(τ ) class (d) AE for V(τ ) class

Figure 11: Performance operators based on E-VAF, MAD and TIC values to solve the HIPV
nonlinear model
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Figure 12: Convergence plots for the TIC values along with histogram/Boxplots to solve the HIPV
nonlinear model
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Figure 13: Convergence plots for the MAD values along with histogram/Boxplots to solve the
HIPV nonlinear model
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Figure 14: Convergence plots for the E-VAF values along with histogram/Boxplots to solve the
HIPV nonlinear model
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Table 2: Statistical presentations for solving the HIPV nonlinear model based on H(τ ) class

τ H(τ )

Min Max Med Mean S.I Range ST.D

0 1.6377E-08 4.6720E-04 4.5848E-06 1.8610E-05 5.3442E-06 5.4089E-05
0.1 5.9156E-08 4.7400E-02 1.2960E-05 1.0287E-03 1.1693E-05 6.6058E-03
0.2 1.9430E-08 6.0309E-02 2.7709E-05 1.3097E-03 2.2189E-05 8.4029E-03
0.3 4.7200E-07 8.1658E-02 3.0612E-05 1.7736E-03 3.1225E-05 1.1383E-02
0.4 2.3255E-07 1.0989E-01 2.9581E-05 2.3783E-03 4.7282E-05 1.5318E-02
0.5 1.0969E-07 1.4800E-01 3.8530E-05 3.1968E-03 4.8653E-05 2.0629E-02
0.6 9.9906E-07 1.9944E-01 6.2370E-05 4.3087E-03 6.4859E-05 2.7800E-02
0.7 7.9126E-07 2.6870E-01 8.6570E-05 5.8108E-03 9.0269E-05 3.7455E-02
0.8 6.5015E-07 3.6193E-01 9.9611E-05 7.8360E-03 1.2367E-04 5.0451E-02
0.9 1.3928E-06 4.8746E-01 1.3191E-04 1.0550E-02 1.6817E-04 6.7948E-02
1 2.5086E-06 6.5658E-01 2.0238E-04 1.4192E-02 2.1230E-04 9.1522E-02

Table 3: Statistical presentations for solving the HIPV nonlinear model based on I(τ ) class

τ I(τ )

Min Max Med Mean S.I Range ST.D

0 8.6503E-10 1.5785E-05 7.1864E-07 1.8610E-05 1.1335E-06 3.3787E-06
0.1 1.3550E-08 5.3561E-05 3.2246E-06 1.0287E-03 2.6408E-06 7.2566E-06
0.2 7.9559E-09 6.8027E-05 3.9649E-06 1.3097E-03 3.7177E-06 9.8190E-06
0.3 1.9216E-08 7.5179E-05 6.5913E-06 1.7736E-03 4.5963E-06 1.2129E-05
0.4 4.9970E-08 5.6836E-05 6.7106E-06 2.3783E-03 6.0846E-06 1.2446E-05
0.5 5.9831E-09 4.7231E-05 8.2174E-06 3.1968E-03 6.3420E-06 1.1193E-05
0.6 1.0263E-08 4.6508E-05 7.4482E-06 4.3087E-03 5.2442E-06 9.5789E-06
0.7 3.9926E-08 7.1441E-05 4.1949E-06 5.8108E-03 3.3778E-06 1.0191E-05
0.8 3.6312E-08 1.0434E-04 4.0627E-06 7.8360E-03 3.0320E-06 1.3172E-05
0.9 2.2420E-10 1.2800E-04 5.8047E-06 1.0550E-02 4.3344E-06 1.5324E-05
1 1.8850E-08 1.2486E-04 3.5504E-06 1.4192E-02 3.2511E-06 1.4563E-05

The statistical presentations taking different gages like Minimum (Min), S.I Range, standard
deviation (ST. D), Maximum (Max), Mean and Median (Med) are used to check the validation of
the HIPV nonlinear model given in Tabs. 2–5. In these tables, the Min and Max gages respectively
indicate the best and worst performances for hundred executions. For H(τ ) class, the performances
based on “Min,” “Max,” “Med,” “Mean,” “S.I Range” and “ST.D” lie around 10−06−10−08,
10−01−10−02, 10−04−10−06, 10−02−10−05, 10−04−10−06 and 10−02−10−05, respectively. For I(τ )

class, the performances based on “Min,” “Max,” “Med,” “Mean,” “S.I Range” and “ST.D” lie
around 10−08−10−10, 10−04−10−05, 10−06−10−07, 10−02−10−05, 10−05−10−06 and 10−05−10−06,
respectively. Similarly, for P(τ ) class, the performances based on “Min,” “Max,” “Med,” “Mean,”
“S.I Range” and “ST.D” lie around 10−07−10−10, 10−05−10−06, 10−06−10−07, 10−03−10−05,
10−06−10−07 and 10−05−10−06, respectively. Moreover, for V(τ ) class, the performances based on



246 CMES, 2021, vol.129, no.1

“Min,” “Max,” “Med,” “Mean,” “S.I Range” and “ST.D” lie around 10−07−10−09, 10−04−10−05,
10−05−10−06, 10−05−10−06, 10−05−10−07 and 10−05−10−06, respectively. These small values per-
formances designate the worth and value of the designed scheme to solve the HIPV nonlinear
model. One may find through these accomplished actions that the proposed approach is precise,
accurate and stable.

Table 4: Statistical presentations for solving the HIPV nonlinear model based on P(τ ) class

τ P(τ )

Min Max Median Mean S.I Range ST.D

0 2.5989E-10 1.8505E-05 4.6175E-07 1.8610E-05 7.8245E-07 2.9527E-06
0.1 1.4111E-07 5.3657E-05 2.3457E-06 1.0287E-03 3.0229E-06 8.0955E-06
0.2 5.7269E-08 7.7215E-05 3.6965E-06 1.3097E-03 3.6843E-06 1.1442E-05
0.3 2.8241E-07 9.0006E-05 4.5533E-06 1.7736E-03 4.2207E-06 1.2120E-05
0.4 1.0675E-07 6.5357E-05 4.2574E-06 2.3783E-03 5.3379E-06 1.1839E-05
0.5 3.8237E-08 6.1991E-05 5.7020E-06 3.1968E-03 6.3486E-06 1.1551E-05
0.6 1.0820E-08 7.2882E-05 6.6137E-06 4.3087E-03 5.3160E-06 1.1922E-05
0.7 8.3392E-08 6.9889E-05 5.0312E-06 5.8108E-03 5.0082E-06 1.2358E-05
0.8 1.9028E-08 7.5191E-05 3.7824E-06 7.8360E-03 4.0082E-06 1.2316E-05
0.9 6.4691E-08 6.6702E-05 4.8486E-06 1.0550E-02 3.7728E-06 1.1000E-05
1 1.0121E-07 5.5042E-05 3.4958E-06 1.4192E-02 3.2566E-06 8.2567E-06

Table 5: Statistical presentations for solving the HIPV nonlinear model based on V(τ ) class

τ V(τ )

Min Max Med Mean S.I Range ST.D

0 1.0775E-09 8.3983E-05 1.0944E-06 3.5984E-06 1.4599E-06 9.2831E-06
0.1 1.9899E-07 2.8312E-04 8.1502E-06 1.4794E-05 5.8441E-06 2.9998E-05
0.2 6.0195E-07 1.8907E-04 1.1277E-05 1.8719E-05 1.0430E-05 2.3941E-05
0.3 1.2154E-07 1.5281E-04 7.8086E-06 1.4799E-05 8.3632E-06 2.0144E-05
0.4 8.5862E-09 1.1888E-04 5.3149E-06 1.0123E-05 4.7844E-06 1.6262E-05
0.5 2.2421E-07 9.4371E-05 7.4011E-06 1.1462E-05 6.6073E-06 1.3407E-05
0.6 1.7104E-07 7.3380E-05 8.6283E-06 1.4250E-05 8.2804E-06 1.4298E-05
0.7 7.2227E-08 9.0064E-05 8.9980E-06 1.3166E-05 5.3049E-06 1.4642E-05
0.8 2.8017E-08 7.7007E-05 7.7262E-06 1.1395E-05 5.3109E-06 1.3465E-05
0.9 1.2282E-07 1.0137E-04 9.4099E-06 1.4776E-05 7.0165E-06 1.7939E-05
1 1.9025E-07 1.0178E-04 7.0364E-06 1.2025E-05 6.3172E-06 1.5699E-05

The performance of the global “G-MAD,” “G-EVAF” and “G-TIC” operatives for hundred
executions based on the proposed scheme are shown in Tab. 6 to solve the HIPV nonlinear
model. These Min global “G-MAD,” “G-TIC” and “G-EVAF” performances are found around
10−05−10−06, 10−09−10−10 and 10−06−10−08, while the global S.I Range performances are found
around 10−05−10−06, 10−09−10−10 and 10−06−10−08 for the HIPV nonlinear model. These close
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ideal values of the global performances indicate the precision, accurateness and correctness of the
proposed scheme.

Table 6: Global presentations of the TIC, MAD and E-VAF operatives for solving the HIPV
nonlinear model

Class ‘G-MAD’ ‘G-TIC’ ‘G-EVAF’

Min S.I Range Min S.I Range Min S.I Range

H(τ ) 6.3352E-05 7.0866E-05 3.9481E-09 4.4186E-09 8.8507E-08 3.0806E-07
I(τ ) 5.8032E-06 3.3711E-06 3.2011E-10 1.8574E-10 2.3833E-07 3.2563E-07
P(τ ) 4.7674E-06 3.5962E-06 2.7718E-10 2.2256E-10 1.1764E-06 2.5215E-06
V(τ ) 8.7662E-06 5.2399E-06 4.9977E-10 2.8481E-10 3.8918E-08 5.5154E-08

4 Conclusions

The presented work is related to introducing a new prevention class in the nonlinear HIV
system named HIPV model. HIV is a virus with no treatment, so prevention is one of the best
options to control or spread this type of dangerous virus. The introduced prevention class uses
the four subclasses named injection drug, safety measures, avoid from pregnancy and contact rate.
This designed HIPV nonlinear model is solved using the ANNs and optimization is performed
using the hybrid procedure of GA-ASA. For the convergence of the HIPV model, six different
contact rate values have been analyzed through the process of GA-ASA. The reliable accuracy
through convergence is obtained using the stochastic GA-ASA process for solving the nonlinear
HIPV mathematical model. For the correctness of the designed HIPV model and the proposed
stochastic scheme, the proposed results through the GA-ASA optimization process overlapped
with the Adams numerical solutions. An activation log-sigmoid function is applied along with
120 variables. For the precision and accuracy of the proposed numerical approach, the statistical
based performances of TIC, MAD and E-VAF for 100 executions using 120 variables have been
provided. For the TIC, MAD and E-VAF convergence, most of the runs have achieved a very
high accuracy level for solving each class of the nonlinear HIPV model. Moreover, the valuations
through statistics based Min, ST.D, Mean, S.I range, Max, Median further validate the value of
the designed ANN along with the GA-ASA. The global presentations with high ranks of these
statistical operators have also been performed for solving the nonlinear HIPV system.

In the future, the designed ANN along with GA-ASA is proficient to solve the prediction
model [49,50], fluidics nonlinear systems [51–54], biological nonlinear systems for Hepatitis-B
virus [55], transmissibility of measles [56] and novel COVID-19 dynamics [57,58].
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