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ABSTRACT

Novel coronavirus disease 2019 (COVID-19) is an ongoing health emergency. Several studies are related to
COVID-19. However, its molecular mechanism remains unclear. The rapid publication of COVID-19 provides a
new way to elucidate its mechanism through computational methods. This paper proposes a prediction method
for mining genotype information related to COVID-19 from the perspective of molecular mechanisms based on
machine learning. The method obtains seed genes based on prior knowledge. Candidate genes are mined from
biomedical literature. The candidate genes are scored by machine learning based on the similarities measured
between the seed and candidate genes. Furthermore, the results of the scores are used to perform functional enrich-
ment analyses, including KEGG, interaction network, andGeneOntology, for exploring the molecular mechanism
of COVID-19. Experimental results show that themethod is promising formining genotype information to explore
the molecular mechanism related to COVID-19.
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1 Introduction

Novel coronavirus disease 2019 (COVID-19), caused by a novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is currently ravaging the world. It is the seventh known
coronavirus that can infect humans. COVID-19 is highly infectious and can cause serious compli-
cations, posing a great threat to global public safety [1]. Publicly available data indicate a fatality
rate of 3% [2]. One country after another has taken steps to tackle the disease. The EU has
mobilized a research fund of EUR 10 million to effectively manage patients and public health
preparedness and response [3]. The UK Government has invested £20 million to help develop
a vaccine against COVID-19 [4]. According to Bloomberg news, U.S. President Donald Trump
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signed a $7.8 billion emergency spending bill for COVID-19 epidemic [5]. The source of the
virus is unknown, and a specific medicine for the disease it causes remains unavailable. Many
computational methods are also used in the research of COVID-19. Kumari et al. [6] developed
forecasting models and predicted the number of confirmed, recovered, and death cases in India
caused by COVID-19 by using statistical models with correlation coefficients and multiple linear
regression. The replication, expression, and regulation of the virus depend on the host system,
which reflects its particularity in genetic composition, gene expression mode, and interaction
with other organisms. Therefore, researchers are trying to understand the genetic mechanism of
COVID-19. The downregulation of ACE2, which is the SARS-CoV-2 receptor, is an important
aspect of SARS-CoV-2 mortality suffered by elderly men [7]. This study highlighted that the S1
domain of COVID-19 spike glycoprotein potentially interacts with the human CD26, which is
a key immunoregulatory factor for hijacking and virulence [8]. Tai et al. identified the receptor-
binding domain (RBD) in SAR-Cov-2 S protein and found that the RBD protein binds strongly to
human ACE2 receptors. Thus, the RBD protein could be developed as a viral attachment inhibitor
and vaccine [9]. This work reveals that coronavirus engages papain-like proteases (PLPs) to escape
from the innate antiviral response of the host by inhibiting p53-IRF7-IFNβ signaling [10].

With the rapid development of information technology and the continuous generation of
high-throughput biological data, an endless stream of coronavirus-related research results, pub-
lished experimental data, and biomedical literature has opened a door to the computational study
of this viral disease [11–13]. Despite the many applications of biomedical text mining [14–17], few
studies focused on COVID-19 related to text mining, and most of these studies are clinical and
experimental works [18–20].

This paper proposes a prediction method for mining genotype information related to
COVID-19 by using computational methods based on biomedical text mining. The method obtains
seed genes related to COVID-19 and candidate genes by literature. Furthermore, it uses bioin-
formatics technique and statistical method for mining genotype information about the molecular
mechanism of COVID-19. The novelty of this paper is as follows:

(1) Proposing an effective method for mining gene information related to COVID-19;
(2) Predicting gene information related to COVID-19 from text mining based on computation;
(3) Analyzing the molecular mechanism of COVID-19 on the basis of genotype information.

Details are shown in the following sections.

2 Methods and Materials

Seed and candidate genes were obtained from biomedical databases and literature, respectively.
Then, the similarity matrix between the candidate and seed genes was calculated on the basis of
the semantic similarity of genetic terms. The matrix was taken as the original data set for training
in the random forest regression model. The genes with high scores were prioritized as the final
candidate genes to analyze genotype information. Finally, the molecular mechanism of pathogenic
genes was explored to understand the etiology and thus elucidate the molecular mechanism of
COVID-19. The pipeline is described in Fig. 1.

As shown in Fig. 1, experimental data were collected from Gene Ontology (GO) and lit-
erature. The similarity matrix was taken as the original data set for training in the random
forest regression model to predict genotype information. Functional enrichment analysis by
KEGG, interacts network, and GO was performed to explore the molecular mechanism related
to SARS-CoV-2.
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Figure 1: Pipeline of this work

2.1 Collect Experimental Data
GO [21] (http://geneontology.org/covid-19.html) is a knowledge base that describes the func-

tion of genes based on evidence in the scientific literature. To assist global research on the
SARS-CoV-2 virus, the GO Consortium is integrating SARS-CoV-2 genes for the curation and
reuse of recent articles on SARS-CoV-2. In this study, the human genes that may be related
to SARS-CoV-2 infection published in the GO database were taken as seed genes, including
327 genes, on October 21, 2020.

The biomedical literature related to SARS-CoV-2 was extracted from the PubMed database
with E-Utilities (http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/eutils_help.html) by using the
key word “SARS-CoV-2” on November, 10 2020. The genes mined from this literature were taken
as initial candidate genes, including 315 genes. The human genome data set was derived from
HUGO Gene Nomenclature Committee [22] (HGNC; https://www.genenames.org/).

2.2 Calculation of Semantic Similarity between Genes
Genes have abundant functional information. Predicting gene function by analyzing the func-

tional information of genes has become a new research direction. In general, if two gene products
have similar functions, then they have similar GO annotation terms. Therefore, the related func-
tions of unknown genes can be predicted by analyzing gene terminology. Many methods have
been proposed for calculating the semantic similarity between genes [23,24]. Most of these meth-
ods depend on the results of calculating the semantic similarity between genetic terms. Typical
methods for calculating the similarity between genetic terms, such as Resnik [25], are based on
the idea that the semantic similarity of two terms is related to the corresponding lowest common
ancestor node, and the similarity is calculated by the ancestor node with the most information in
the lowest common ancestor set. The formula is shown in Eq. (1):

Sim(t, t′)= ICms(t, t′)=maxIC(t̂), t̂ ∈Pa(t, t′), (1)

http://geneontology.org/covid-19.html
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/eutils_help.html
https://www.genenames.org/


34 CMES, 2021, vol.129, no.1

where Pa(t, t′) is denoted as the set of all common ancestors between GO terms t and t’, and
IC(t) is denoted as the information content of term t. It is defined as Eq. (2) [26]:

IC(t̂)=−logP(t̂), (2)

where P(t)= freq(t)
N is denoted as the probability of the term t or its descendants appearing in the

corpus, and N is denoted as the total number of terms in the corpus.

A typical method for calculating the semantic similarity among genes is the optimal matching
algorithm proposed by Couto et al. [27]. This method defines the semantic similarity between
genes as the maximum semantic similarity between terms in the annotations corresponding to
genes. Instead of computing the maximum pairwise GO term similarity, one may also take the
average here. Given two genes g and g’ annotated with GO terms t1,. . .tn and t’1,. . ., t’m, the
similarity between g and g’ is denoted as Eq. (3):

Simgene(g,g′)=max sim(ti, t′j), i= 1, . . . ,n; j= 1, . . . ,m (3)

2.3 Random Forest Model
Random forest algorithm (RFA) is a classification and prediction model proposed by Leo

Breiman [28]. As a multi-classifier algorithm based on ensemble learning, RFA is characterized by
fast running speed, fewer parameters to be adjusted, and efficient processing of large sample data.
Based on the construction of bagging integration with decision trees that are used as learners,
this algorithm introduces randomization. The following describes the decision trees, bagging, and
randomization.

2.3.1 Decision Tree
Decision tree is a tree-shaped classifier. Leaf nodes correspond to decision results; each

internal node represents a feature-based test; the sample set of each node is divided into sub-
nodes according to the result of feature test. The root node contains a full set of samples. The
construction of the decision tree depends on the training sample data and the characteristics used
to divide each internal node.

Classification and regression tree uses the Gini Index to select the partitioning attribute. The
purity of dataset D can be measured by the Gini value. The smaller Gini(D) is, the higher the
purity is. The formula is shown in Eq. (4):

Gini(D)=
|y|∑

k=1

∑

k′ �=k
pkpk′ = 1−

|y|∑

k=1

p2k (4)

The Gini index of attribute a is calculated using Eq. (5):

Giniindex(D,a) =
V∑

v=1

|Dv|
|D| Gini(D

v) (5)

In the candidate attribute set A, the attribute with the minimum Gini index after partition is
selected as the optimal partition attribute, which means a∗ = argminGini_index(D,a), a ∈A.
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2.3.2 Bagging
Assuming that the number of samples in the original training set is N, a new training set

can be formed by randomly extracting N samples from the original training set by using Bagging
method. It can be calculated that about 37% of the data generated in each new training set may
not be elected, and this part of the data is called out-of-bag (OOB). OOB can be used as test
data to estimate the generalization performance of the decision tree, that is, out-of-bag estimation.

2.3.3 Randomization
The traditional decision tree selects the best feature from the feature set of the current node

when choosing the split feature, while in RFA, features are randomly selected for node splitting.
There are two ways: the first is to determine the number of candidate features F for each splitting,
and then randomly select F features from the full feature set, and then split the nodes according
to the optimal splitting criterion; the second method is to randomly select L features, then select
the coefficients randomly to make a linear combination of them to generate F new features, and
then split the nodes according to the optimal splitting criterion.

The principle of random forest is summarized as follows: In the first step, samples were
extracted with bagging method to form several training sets. The second step is to randomly
select the characteristics of each tree during the growth process to split the internal nodes. Then,
the steps are repeated to maximize the growth of each tree. Finally, the randomly growing trees
constitute the forest, and the new data are predicted based on the generated random forest [29].

2.4 Bioinformatics Analysis
Genes related to COVID-19 were optimized by twice prioritizations. The initial candidate

genes were obtained from biomedical literature related to the key word “SARS-CoV-2.” The
seed and initial candidates were constructed as the semantic similar matrix that serves as the
input of RFA for the second prioritizations. The optimized genes that exceed the threshold were
further analyzed by bioinformatics analysis. Functional enrichment analysis was performed for the
predicted pathogenic genes and construction of PPI and hub gene identification.

3 Results and Discussion

3.1 Matrix of Semantic Similarity
The GOSim packet (version 1.28.0; https://www.bioconductor.org/packages/release/bioc/html/

GOSim.html) [30] in R was used to calculate the similarity between seed genes and some genes
related to COVID-19 and obtain a matrix of 69 * 327; to calculate the similarity between seed
genes and randomly selected human genes and obtain a matrix of 80 * 327; and to calculate the
similarity between seed genes and candidate genes and obtain a matrix of 315 * 327. Some of
the results are shown in Tab. 1.

Table 1: Matrix of genes similarity

Gene AP3B1 BRD4 BRD2 CWC27

ACE2 0.311729 0.325145 0.35935 0.285483
TMPRSS2 0.320784 0.307613 0.311434 0.290107
CRP 0.226711 0.286694 0.273462 0.228211
CD4 0.480985 0.486651 0.503854 0.498158
MET 0.43288 0.38053 0.355586 0.37347
ACE 0.38071 0.273661 0.26193 0.318345

https://www.bioconductor.org/packages/release/bioc/html/GOSim.html
https://www.bioconductor.org/packages/release/bioc/html/GOSim.html
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3.2 Random Forest Regression
The similarity matrix was obtained in the previous step, which was used as the original data

set and was preprocessed. Then, the similarity between a gene and each seed gene was taken
as the influencing factor of whether or not it was a disease-related gene. That is, each sample
had 327 independent variables. The dependent variable Y value of the known disease-related gene
sample set was set to 1. After removing the seed and candidate genes, human genes were randomly
selected as a disease-independent sample set with a Y threshold of 0.9. The Synthetic Minority
Over-sampling Technique [31] algorithm was used to up-sample the data.

The Mean Square Error (MSE), Mean Absolute Error (MAE), and coefficient of determina-
tion (R2) were used to measure the fitting effect of the model. The results are with an MSE of
0.0415, a MAE of 0.1418, and an R2 of 0.8291 aiming at the size of training set with 97 genes
and testing set with 52 genes.

After inputting the data into the model, we obtained the predicted results, some of which are
shown in Tab. 2. A total of 125 genes with a Y value > 0.9 were selected as the disease-related
genes.

Table 2: Top 20 genes of random forest regression

No. Gene symbol Y

1 IRF7 0.988745
2 FUS 0.98703
3 AR 0.981284
4 CCN1 0.976702
5 TCIM 0.972515
6 KIN 0.971996
7 STAR 0.968551
8 ADAR 0.967078
9 PARL 0.966959
10 SARS1 0.966475
11 RAD17 0.961414
12 PLG 0.961364
13 NBN 0.961284
14 ELANE 0.960901
15 MUC1 0.960683
16 POLE 0.960029
17 PADI4 0.9598
18 CRX 0.959736
19 CD47 0.958669
20 MAF 0.958524

3.3 Functional Analysis
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt; http://www.webgestalt.org/) [32] is a

popular tool for the interpretation of gene lists derived from large-scale omics studies. GO
terminology, which includes biological process, molecular function (MF), and cellular component

http://www.webgestalt.org/
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(CC), and Kyoto Encyclopedia of Genes and Genomes (KEGG) [33] pathway enrichment analyses
were performed to predict pathogenic genes using WebGestalt.

To understand the GO categories of predicted disease genes, we placed the seed and predicted
genes into WebGestalt to perform GO analysis. GO analysis showed that the seed and predicted
genes mainly participate in metabolic process, biological regulation, and response to stimulus.
Most of the gene sets are located in membrane-enclosed lumen and nucleus. Figs. 2–4 display the
results of BP, CC, and MF enrichment, respectively.

Figure 2: Biological process enrichment

Figure 3: Cellular component enrichment

KEGG analysis indicated that the predicted genes are associated with Influenza A, virus
infection, and RIG-I-like receptor signaling pathway. The results are shown in Fig. 3. GO and
KEGG analyses of these genes provide a reference for understanding the molecular mechanism
of the unknown samples, which could find new genes related to COVID-19.
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Figure 4: Molecular function enrichment

From Figs. 2–4, GO analysis shows that the seed and predicted genes are mainly enriched in
metabolic process, biological regulation, membrane-enclosed lumen and nucleus, and protein bind-
ing, which indicate that they have similar molecular mechanisms between the seed and predicted
genes.

The seed and predicted genes were subjected to KEGG analysis, and Fig. 5 shows the result
of KEGG analysis.

Figure 5: Bubble plot of KEGG pathway enrichment

The results of the KEGG pathway enrichment in Fig. 5 indicated that the predicted genes
are associated with Influenza A, virus infection, and RIG-I-like receptor signaling pathway.

GO analysis revealed that the seed and predicted genes have similar molecular mechanisms.
KEGG analysis indicated that the predicted genes are involved with the pathways of influenza A
and virus infection. GO and KEGG analyses of these genes provide a reference for understand-
ing the molecular mechanism of the unknown samples, which could find new genes related to
COVID-19.
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3.4 PPI Network
We used the Search Tool for the Retrieval of Interacting Genes (STRING) database [34],

which is an online tool for exploring and analyzing information about protein interactions, was
used to explore the relationship between disease-related genes. STRING was used to map the
prediction and seed genes to evaluate the interaction. Then, the PPI network was constructed and
visualized using Cytoscape [35] software (version 3.5.1; www.cytoscape.org). The hub genes in the
network were identified by the plug-in Molecular Complex Detection (MCODE; version 1.5.1) [36]
with a degree cutoff = 6, haircut = on, node score cut-off = 0.2, k-core = 2, and max. depth =
100 to determine key elements.

PPI networks were constructed using STRING and Cytoscape to study the connections
between the identified and seed genes, and predict the associations of protein functions related to
the identified genes. The network that is composed of 125 predicted disease genes and 327 seed
genes is shown in Fig. 6 containing 447 nodes and 2016 edges with an average node degree of
9.02, a local clustering coefficient of 0.384, and a significant enrichment of PPI (P< 0.001).

Figure 6: PPI network containing seed and predicted genes

The PPI network that is composed of 125 predicted disease genes contains 124 nodes and
514 edges with an average node degree of 8.29, a local clustering coefficient of 0.521, and a
significant enrichment of PPI (P < 0.001), as shown in Fig. 7. The top 17 hub genes with the
highest connective degree, RAD17, POLE, PCNA, PARP1, OAS2, OAS1, NBN, MAVS, ISG15,
IRF7, IFITM3, IFITM1, IFIH1, HLA-A, FEN1, RCC1, and ADAR, were selected by MCODE
from Fig. 7. These hub genes were also primarily associated with DNA replication, viral genome
replication, and Type I interferon signaling pathway. The most significant module identified in the
PPI network is shown in Fig. 8.

The MCODE scores of the top 17 hub genes are shown in Tab. 3. They are in the most
significant module identified in the PPI network related to the predicted genes.

https://www.cytoscape.org
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Figure 7: PPI network of the predicted genes

Figure 8: Most significant module from Fig. 7
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Table 3: Matrix of MCODE score

No. Gene MCODE_score

1 IFITM1 8
2 OAS2 8
3 IRF7 7.418182
4 ISG15 7.418182
5 OAS1 7.418182
6 IFITM3 7.418182
7 IFIH1 7.418182
8 NBN 7
9 PARP1 7
10 FEN1 7
11 HLA-A 7
12 RAD17 7
13 MAVS 7
14 POLE 7
15 ERCC1 7
16 PCNA 7
17 ADAR 6.805556

The 17 genes were further analyzed by literature evidence to determine the validity of our
method. Studies have shown that SARS-CoV-2 infection is characterized by a high mortality rate
from age-related diseases in older men [7,37]. Two host receptors for COVID-19, CD26 [8] and
ACE-2 (angiotensin-converting enzyme 2) [9], are associated with aging. Krishna et al. [38] found
that transcriptional changes of target genes regulating mitochondrial function (such as FEN1),
cell senescence (such as PCNA), and telomere loss (such as RAD17, NBN, and PARP1) in the
pathobiological process of COPD and IPF were related to changes in the ACE2-TMPRSS2-Furin-
DPP4 axis of COVID-19. Aging plays an important role in SARS-CoV-2 infection. Therefore,
anti-aging drugs possibly have a positive effect on the treatment and prevention of COVID-19.
The interferon-stimulated gene (ISG) family includes IFITM3, IFITM1, IFIH1, OAS2, OAS3,
IRF7, MAVS, and so on. IFN-I (I type of interferon) response plays a key role in antiviral
infection. It can prevent the virus by inducing the expression of ISGs [39]. SARS-CoV-2 induces
a strong interferon response [40]. Kristel et al. [41] found that ISGs are significantly upregulated
in bronchoalveolar lavage fluid from patients with COVID-19. SARS-CoV can use its structural
and non-structural proteins to counter the effect of IFN and suppress innate immunity [42]. For
example, SARS-CoV ORF-9b manipulates host cell mitochondria and mitochondrial function and
inhibits MAVS signaling to suppress innate immunity [43]. Coronavirus PLPs have been identified
as suppressors of the innate immune response. The ISG15-dependent activation of MDA5 is
antagonized through direct de-ISGylation mediated by the PLPs of SARS-CoV-2. IRF7, as a
target gene of p53, mediates the p53-directed production of Type I interferon. By promoting
p53 degradation, PLPs inhibit the p53-mediated antiviral response to help evade host innate
immunity [44].

According to the above analysis results, the top 17 hub genes are more or less related to
SARS-CoV-2.
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4 Conclusion

COVID-19 is a serious threat to people’s health and life safety currently. The acquisition of
its genetic information is important. The novelty of this work is (1) proposing an effective method
for mining genotype information related to COVID-19; (2) predicting gene information related
to COVID-19 from text mining based on computation; and (3) analyzing molecular mechanism
of genotype information of COVID-19. Initially, 327 seed genes were obtained from the gene
ontology database based on evidence. The initial 315 candidates were obtained from biomedical
literature with the keyword “SARS-CoV-2” by text mining. Then, the semantic similarity matrix
between seeds and candidates was constructed. The results were processed using RFA. The 125
disease genes with the Y threshold of 0.9 were prioritized. GO and pathway analyses based on the
WebGestalt tool were performed to analyze further the biological functions of these disease genes.
Enrichment analysis results indicated that these genes were mainly enriched in DNA replication,
type I interferon signaling pathway, and DNA repair. KEGG pathway analysis indicated that
these genes were mainly enriched in Influenza A, virus infection, and RIG-I-like receptor signaling
pathway. These results contribute to further understanding the possible roles of these genes in
the occurrence and development of COVID-19. Basing on these 125 predicted disease genes, we
constructed a PPI network. We identified 17 hub genes in this network, which were believed to
be closely related to the pathogenesis of COVID-19 based on literary evidence. The 125 predicted
disease genes that may be correlated with COVID-19 could be analyzed using the computational
approach. This method may provide a new clue for investigating the potential biomarkers and
biological genetic mechanisms of COVID-19. The results also show it is promising for mining
genotype information for exploring its molecular mechanism for further developing the potential
diagnosis and therapeutic intervention methods of COVID-19.

Further works would be to detect advanced technologies to extract more accurate genotype
information related to COVID-19. In addition, the phenotypic information related to COVID-19
will be mined so that genotypic and phenotypic information can be combined to elucidate the
molecular mechanism and pathogenesis of COVID-19.
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