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ABSTRACT

The present work couples isogeometric analysis (IGA) and boundary element methods (BEM) for three dimen-
sional steady heat conduction problems with variable coefficients. The Computer-Aided Design (CAD) geometries
are built by subdivision surfaces, and meantime the basis functions of subdivision surfaces are employed to
discretize the boundary integral equations for heat conduction analysis. Moreover, the radial integration method
is adopted to transform the additional domain integrals caused by variable coefficients to the boundary integrals.
Several numerical examples are provided to demonstrate the correctness and advantages of the proposed algorithm
in the integration of CAD and numerical analysis.
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1 Introduction

Since the pioneering work of Hughes et al. [1], isogeometric analysis (IGA) has attracted
extensive attention from academia and industry. Different from the traditional numerical meth-
ods based on Lagrange polynomials, IGA employs the same basis functions used for geometric
modeling in Computer-Aided Design (CAD), such as Non-Uniform Rational B-splines (NURBS)
to discretize the unknown physical fields in Partial Differential Equations. Due to the capability
of integrating CAD and numerical analysis, IGA is able to eliminate cumbersome meshing pro-
cedures, guaranteeing geometric exactness, and offering high-order continuous approximation and
flexible refinement schemes [2–6]. In order to ease the implementation of IGA, Bézier extraction
operation [7] is introduced, which also accelerates the evaluation of basis functions significantly.

The concept of IGA was first proposed in the context of finite element methods (FEM).
Its application in engineering practice for complex geometries is limited due to the volume
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parameterization of FEM conflicts with the boundary representation of CAD. On the con-
trary, the boundary element method (BEM) only needs boundary parameterization and thus is
naturally compatible with CAD model [8–12]. The isogeometric boundary element method (IGA-
BEM) has been successfully applied to many fields, including linear elasticity [13–16], potential
problems [17–20], fracture mechanics [21–25], electromagnetics [26], acoustics [27–32], structural
optimization [33–37].

Heat conduction is of paramount importance in engineering. IGABEM based on NURBS
was applied to 3D steady thermal conduction problems for a medium with non-homogenous
inclusions [38,39] and transient heat conduction problems with heat sources [40–46]. In the present
paper, we adopts IGABEM based on subdivision surfaces for simulating steady heat conduc-
tion problems with variable coefficients. The subdivision surface method is a CAD technology
which was first proposed by Catmull et al. [47]. Compared to NURBS or other CAD modeling
techniques, a salient feature of the subdivision surface method is that it is capable of construct-
ing water-tight geometries and address extraordinary (or irregular) points [48]. Cirak et al. [49]
combined the subdivision surface method with the FEM to simulate the deformation of thin
shell structures. Green et al. [50] put forward a multi-level method based on subdivision surfaces
for accelerating the analysis of large-scale thin shell problems. The multi-resolution subdivision
surfaces were also used for structural shape optimization in electromagnetic fields [51]. For heat
conduction problems with variable thermal conductivity coefficients, an addition domain integral
term appears in the boundary integral equations. To solve this problem, the radial basis function
method (RBF) was proposed to transform the domain integral to the boundary integral in
conventional BEM [52,53]. Such RBF method is also incorporated to the present work with
IGABEM.

The remainder of the paper is organized as follows. The Catmull–Clark subdivision surface
method is introduced in Section 2. The IGABEM with subdivision surfaces is used for solution
of heat conduction with variable coefficient in Section 3. Then, several numerical examples are
discussed in Section 4, followed by the conclusion in Section 5.

2 Subdivision Surface Method Based on Catmull–Clark

Subdivision surface is defined as the limit of an infinite refinement or subdivision process.
Each new subdivision step produces a new mesh with more polygonal elements and smoother
geometries. By repeatedly refining the initial polygon mesh, a series of meshes that approach the
final subdivision surface is generated. The subdivision surface inherits the reconfigurability of
spline curve, so that all control meshes generated in subdivision process can accurately represent
the same spline surface. An important technical advance in subdivision surfaces is to generate
limiting surfaces by constructing an elementwise mapping from the subdivided meshes. In this way,
the subdivided meshes play the same role as control grids of NURBS in geometry modeling, and
the limiting surface resembles the physical surface in NURBS.

In this work we consider the quadrilateral subdivision surfaces proposed by Catmull–Clark.
The Catmull–Clark subdivision scheme is an extension of bicubic uniform B-splines. Catmull–
Clark subdivision algorithm subdivides each quadrilateral element into four sub-quadrilateral
elements (1–4 splitting) as shown in Fig. 1. After continuous subdivision operation, the ultimate
surface is obtained.
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Figure 1: Catmull–Clark subdivision process

Let us set the original mesh subdivision level as k, and then subdivide it into k + 1 level.
The vertices on the k level mesh are weighted on their patches to obtain new vertices on the
k + 1 level mesh, which are represented by the symbol “V”. Four new vertices are inserted at
the midpoints of four edges at every element for the k level mesh, which are represented by the
symbol “E”. In addition, a new vertex is inserted at the center of every element for the k level
mesh, which is represented by the symbol “F”. An edge passing through a “V” vertex on the
k level mesh is called this vertex’s adjacent edge. The number of adjacent edges to a vertex is
called a valence nv of this vertex. If nv = 4, the vertex is called a regular vertex as shown in
Fig. 2 (blue point), otherwise it is called an irregular vertex as shown in Fig. 2 (red point), and
the symbol “u” denotes the valence nv of Point 1.
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Figure 2: The regular and irregular points of Catmull–Clark subdivision surface

A quadrilateral mesh can be divided into four sub-elements by inserting a new point in
the middle of each edge and inside the element, which are called “E” and “F”, respectively. In
addition, the position of original points called “V” is moved to construct smooth surface flexibly.

The coordinates of these vertices “V”, “E” and “F” on the k + 1 level mesh generated after
one subdivision are obtained from that on the k level mesh by interpolation operation, as follows:
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where α = 3
2v , β = 1

4v and γ = 1 − α − β. Similar to h-refinement characteristic of NURBS,
the same surface model can be obtained by fitting any level of subdivision mesh, which is
consistent with the limit subdivision model. Thus, it eliminates the need of a limit mesh for
numerical analysis. The characteristics of geometric control points (regular points attached to
four quadrilateral elements or irregular points) determine the characteristics of the mesh, which
determines the selection of fitting technology. A cell containing only regular points is called a
regular cell, otherwise it is called an irregular cell. For regular elements, there are direct explicit
basis functions for surface fitting and physical field interpolation. However, for irregular element,
there is no explicit basis function, thereby requiring special construction.

The idea of limit subdivision is used to subdivide the irregular elements locally and repeatedly
through the following steps: (1) introducing subdivision matrices to establish the relationship
between the hierarchical sub units and the parent units, (2) obtaining the eigenvector and
eigenvalue of the matrix by Fourier transformation of the subdivision matrix, (3) storing the infor-
mation of the hierarchical regular sub units by using the subdivision matrix, the picking matrix
and the regular unit, and (4) building the base function of the original irregular parent unit 3.
After constructing the basis function of the irregular element, the surface model corresponding to
the whole mesh can be constructed by the fitting operation, and the model has C2 continuity at
the regular point and C1 continuity at the irregular point.

In each regular quadrilateral there are sixteen quartic non-zero basis functions associated with
its and neighbouring quadrilateral vertices, as shown in Fig. 3. Hence, the surface coordinates Xe

within the quadrilateral e can be determined through

Xe (θ1, θ2)=
16∑
i=1

B (θ1, θ2)Xi (2)

where Xi denotes the coordinate of the i-th adjacent vertex, the parameter field satisfies
{(θ1, θ2) | θ1 ∈ (0, 1) , θ2 ∈ (0, 1)}, B(θ1, θ2) represents a bicubic B-spline basis function, please
see [54] for detailed expression.

As shown in Fig. 4, the local subdivision process of irregular cells can be used to devise
an algorithm for obtaining subdivision basis functions Bir for quadrilateral patches that contain
irregular vertices, as follows:

Xe (θ1, θ2)=
2v+8∑
i=1

Bir (θ1, θ2)X
ir
i (3)

where Xir
i denotes the coordinate of the i-th adjacent vertex, Bir(θ1, θ2) denotes the basis function

for irregular elements, please see [54] for detailed expression.
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Figure 3: The Cartesian coordinates of the fitting element and the parameter field

1

2 3

4

56
7

8

9

10

1/2

1/4

1/8

�

2Local segmentation

ex

1

11
�

1

2�

1

3�
2

1�
2

2�

2

3�3
1�

3
2�

3
3�

2 1v �
2 8v �

2 7

1

v �

2 6v �

2 5v � 2 4v � 2 3v � 2 2v �

�2

Figure 4: Local segmentation

3 IGABEM for Heat Conduction with Subdivision Surface

3.1 Governing Equation of Heat Conduction
The governing differential equation of steady-state heat conduction in isotropic media with

variable coefficient and internal heat source is expressed as follows:

∂

∂xi

[
k (x)

∂T (x)

∂xi

]
+Q (x)= 0 (x ∈�) (4)

where k(x) is the thermal conductivity, Q(x) is the heat source value at the point x, the boundary
condition is expressed as follows:

T (x)=T (x) (x ∈�T ) (5)

q (x)=−k (x)
∂T (x)

∂n (x)
= q (x)

(
x ∈�q

)
(6)

where �T represents a constant temperature boundary, �q represents a constant temperature flux
boundary, and n(x) is the outer normal vector at point x.
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By introducing weight function G̃ and using weighted residual operation, we can get the new
expression of Eq. (4):∫

�

G̃
∂

∂xi

(
k

∂T
∂xi

)
d�+

∫
�

G̃Qd�= 0 (7)

For the first term, by using the integral by parts method and Gauss divergence theorem, we
can get the following formula:∫

�

G̃
∂
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k

∂T
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)
=
∫

�

G̃k
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nid� −
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+
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∂G̃
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∂k
∂xi

d�+
∫

�

kT
∂
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(
∂G̃
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)
d� (8)

The fundamental solution G̃ satisfies the following expression:

∇2G̃+ ς (x,y)= 0 (9)

and∫
�

kT
∂

∂xi

(
∂G̃
∂xi

)
d�=−kT (10)

By substituting Eq. (10) into Eq. (8), we can obtain the following integral equation containing
the source term:

c (x) T̂ (x)+
(
H∗T̂

)
(x)=− (G∗q

)
(x)+ (G̃Q) (x)+ (VT̃) (x) (11)

where the coefficient c(x) = 1 when the source point x is located in the domain, and c(x) = 0.5
when the source point is on the boundary of structure. The integrals in the above formula are
expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
H∗T̂

)
(x) :=

∫
�

H (x,y) T̂ (y)d� (y)

(G∗q) (x) :=
∫

�

G (x,y)q (y)d� (y)(
G̃Q

)
(x) :=

∫
�

G (x, ỹ)Q (̃y)d�(̃y)(
VT̃

)
(x) :=

∫
�

V (x, ỹ) T̂ (̃y)d�(̃y)

(12)

where T̂ = kT is the normalized temperature, the fundamental solution V is expressed as

V = ∂G
∂xi

∂k̃
∂xi

(13)
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T̂ (̃y) and k̃ (̃y) are normalized temperature and thermal conductivity, and expressed as{
T̂ (̃y)= k (̃y)T (̃y)

k̃ (̃y)= lnk (̃y)
(14)

By observing Eq. (11), we notice that the second and third terms are boundary integrals, but
the last two terms are domain integrals. Although direct domain discretization methods can be
used, the advantage of dimensionality reduction of BEM cannot be retained. Hence, in this work,
the source term is not considered, and the RBF method is used to transform the domain integral
caused by thermal conductivity into the boundary integral.

3.2 Transformation of Domain Integral Caused by Thermal Conductivity

The second domain integral in Eq. (11) contains the unknown variable T̂ (̃y). The radial basis
function is used to approximate the variable, as follows:

T̂ (̃y)=
N∑
i=1

βifi (r)+ γ0 +
2∑
i=1

γĩyi+
2∑
i=1

2∑
j=i

γij̃yĩyj = f̃ (̃y) v (15)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

βi = 0

N∑
i=1

βixi1 =
N∑
i=1

βixi2 = 0

N∑
i=1

βixi1x
i
1 =

N∑
i=1

βixi2x
i
2 =

N∑
i=1

βixi1x
i
2 = 0

(16)

where fi(r) is the radial basis function at the i-th collocation point with r = |̃y − xi|, and xi is
the coordinates of the i-th collocation point. The row vector f̃ (̃y) consists of the value of the
radial basis function at ỹ and the coordinates of the point ỹ. The column vector v contains the
coefficient of radial basis functions and coordinates in Eq. (15), and is expressed as

v= [β1 β2 · · · βN γ0 γ1 γ2 γ11 γ12 γ22
]T (17)

The commonly used radial basis functions are shown in Tab. 1. In this work, the third one
is used for the solution of RBF.

Table 1: Types of radial basis functions

NTYP 1 2 3 4 5 6 7 8

R
(
1+R2) 12 (

1+R2)− 1
2

(
1+R2)− 5

2
(
1+R2)− 7

2 (1 +R)−1 e–R e−R2
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How to determine the coefficients β and γ is particularly important. It is difficult to obtain
these coefficients directly. However, through a series of transformation operations, we can get the
implicit expression of these coefficients. When the point ỹ is set as collocation points in Eq. (15),
by assembling them into matrix vector formulation, the following formula is obtained:

fv= T̂ (18)

where

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 11 f 12 · · · f 1N 1 x11 x12 x11x
1
2 x11x

1
1 x12x

1
2

f 21 f 22 · · · f 2N 1 x21 x22 x21x
2
2 x21x

2
1 x22x

2
2

...
...

...
...

...
...

...
...

...

f N1 f N2 · · · f NN 1 xN1 xN2 xN1 x
N
2 xN1 x

N
1 xN2 x

N
2

1 1 · · · 1 0 0 0 0 0 0

x11 x21 · · · xN1 0 0 0 0 0 0

x12 x22 · · · xN2 0 0 0 0 0 0

x11x
1
2 x21x

2
2 · · · xN1 x

N
2 0 0 0 0 0 0

x11x
1
1 x21x

2
1 · · · xN1 x

N
1 0 0 0 0 0 0

x12x
1
2 x22x

2
2 · · · xN2 x

N
2 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

and

T̂= [T̂1 T̂2 · · · T̂N 0 · · · 0
]T

(20)

where f ij = fj (r) with r= |xi− xj |, and T̂i denotes the temperature at the i-th collocation point.

It is worth noting that the matrix f is reversible when the collocation points are not repeated.
Thus, the coefficient vector v can be expressed as

v= f−1T̂ (21)

Upon substitution of Eq. (21) into Eq. (15), we arrive at

T̂ (̃y)= f̃ (̃y) f−1T̂=ΦT̂=
N+6∑
i=1

φiT̂i (22)

in which

Φ= f̃ (̃y) f−1 = [φ1,φ2, . . . ,φN+6] (23)

By substituting Eq. (22) into the last term of Eq. (12) and using the radial integration
method, the following boundary integral formula can be derived

(
VT̃

)
(x) :=

∫
�

V (x, ỹ) T̂ (̃y)d�(̃y)=
N+6∑
i=1

T̂i

∫
�

1
rα (Y,x)

∂r
∂n
Fi (Y,x)d� (Y) (24)
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where

Fi (Y,x)=
∫ r(Y,x)

0
V (x, ỹ)φi (̃y) rα (x, ỹ)dr (̃y) (25)

We can find that the domain integral in Eq. (24) is successfully transformed into the boundary
integral.

3.3 Discretization of IGABEM with Subdivision Surface
The boundary of domain is defined through the union of discretization elements, as follows:

� =
Ne⋃
e=1

�e, �i ∩�j = 0, i �= j (26)

In this work, the set of discretization elements {�e}Ne
e=1 is defined by the tessellation of the

Catmull–Clark subdivision surface. The variables for physics field are discretized with subdivision
basis functions

T̂e =
2v+8∑
n=1

Bn (θ1, θ2) T̂
e
n

qe =
2v+8∑
n=1

Bn (θ1, θ2)q
e
n (27)

where the coefficients T̂e
n and qen represent nodal coefficients of the normalized temperature and

its normal derivatives respectively. Using the tessellation (26) and the approximations (27) we can
obtain the following system of linear algebraic equations after collecting the equations for all
collocation points and expressing them in matrix forms

H∗T̃−G∗q= yb+VT̃ (28)

where H* and G* are coefficient matrix of IGABEM with subdivision surface. V is the coefficient
matrix obtained by Eq. (24), and yb is a known column vector formed by domain integral caused
by heat source.

By substituting boundary conditions into Eq. (28), a system of linear algebraic equations can
be obtained

Bx= y (29)

The collocation approach is used to generate the linear system of equations of BEM. In this
work, the collocation points are chosen as a series of points on the physical surface mapped from
the nodes of the control mesh, or see [54] for detailed content. It should be noticed that when
the heat flux q on boundary is known, the unknown variables x is the normalized temperature.
By using the first term of Eq. (14), we can obtain the solution of real temperature.
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4 Numerical Examples

4.1 A Cube with Cylindrical Hole
In this section, we consider a cube with cylindrical hole. Catmull–Clark subdivision surface

scheme is used to construct a smooth model. The initial model is shown in Fig. 5a. The size of
the cube is 0.5 m × 0.5 m × 0.5 m, and the radius of the cylinder in the middle of the cube is
r = 0.125 m. Fig. 5b shows the model after subdivision once and Fig. 5c shows the model after
subdivision twice. It is worth noting that although the control meshes at different subdivision levels
are different, the surfaces obtained by fitting are the same and consistent with the limit subdivision
mesh model. The temperature of the fluid in the cylinder is Tf = 293 K, and the convective heat
transfer coefficient h = 1000 W/(m2· K) between the fluid and structure. The right surface of the
structure with the maximum coordinate value in positive y-axis is subjected to constant heat flux
q = 50000 W/m2. The other five surfaces are adiabatic. Material density ρ = 7800 kg/m3, specific
heat capacity cp = 460 J/(kg · K), and thermal conductivity k = 500 W/(m · K).

Figure 5: The cube model constructed by Catmull–Clark subdivision surface method. (a) Initial
mesh (b) subdivision once (c) subdivision twice

Since there is no analytical solution to the problem, we compare the results of this algorithm
proposed in this work with that of Fluent. In Fig. 6a, the coordinates of the computing points
is (0.25, y, 0), and y ∈ [−0.25, 0.25]. The symbol “CC-IGABEM” denotes the numerical solution
obtained from IGABEM with Catmull–Clark subdivision surfaces. In Fig. 6b, the computing
points with z= 0.25 are located on the circumference of the circular hole, where θ denotes the
angle between the vertical line from the computing point to the axis of the cylinder inside the
structure and the x-axis. It can be seen that the results of the developed algorithm are consistent
with those of fluent, which verifies the correctness of the algorithm.

We consider a problem with variable heat conduction coefficients. The thermal conductivity
of the material is not a constant value, but satisfies k= (400 + 200r) W/(m · K). The distribution
of temperature on structural surface for constant coefficient and variable coefficient is shown in
Figs. 7a and 7b, respectively. It can be seen that the temperature field is symmetric along xoy
and zoy planes, respectively. The right surface in contact with the constant heat flux has a higher
temperature value than the left surface.
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Figure 6: The temperature at several computing points obtained by using fluent and IGABEM
with subdivision surface. (a) results at the points (0.25, y, 0) (b) results at the points z= 0.25

Figure 7: Distribution of temperature on structural surface. (a) Temperature distribution for
constant thermal conductivity (b) temperature distribution for variable thermal conductivity

The value of the temperature at the computing points in Fig. 6a for homogeneous and
heterogeneous materials are plotted in Fig. 8. For these two different conditions, there is a small
difference between the calculation results, which shows that the variable heat conductivity has an
impact on the calculation results, and also demonstrates the ability of the algorithm in this paper
for variable coefficient problems.

4.2 Example of Dumbbell Model
Consider a dumbbell model shown in Fig. 9a. The top and bottom of the dumbbell is a

hexahedron with a side length 0.08 m and height 0.08 m. The middle part of the dumbbell
structure is a cylinder with a radius 0.04 m and height 0.16 m.

The top surface is subjected to constant heat flux q = 50000 W/m2. The bottom of the
structure contacts a heat source with Tf = 293 K, and the convective heat transfer coefficient
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h= 1000 W/(m2· K). The other surfaces are adiabatic. Herein, material density is ρ = 7800 kg/m3,
heat capacity ratio is cp = 460 J/(kg · K), the thermal conductivity is k= 500 W/(m · K).

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

345

350

355

360

365

370

375

380

385

Y coordinate/m

Homogeneous material
Heterogeneous materials

Figure 8: Distribution of temperature on structural surface

Figure 9: Initial cube and subdivision model of columnar body. (a) Initial mesh (b) subdivision
once (c) subdivision twice

As shown in Fig. 9, the initial mesh in Fig. 9a is subdivided into denser grids, such as
primary subdivision mesh in Fig. 9b and secondary subdivision mesh in Fig. 9c. Fig. 10 shows
the distribution of temperature on the structural surface with constant thermal conductivity and
variable thermal conductivity, respectively. The thermal conductivity of the material in Fig. 10b
satisfies k = (400 + 200r) W /(m · K). The variable r denotes the distance from the point to the
z-axis, which is the axis of symmetry in vertical direction. The temperature distribution decreases
gradually along the z-axis. Although the temperature profiles corresponding to different thermal
conductivities are very similar, the temperature values represented by the profiles show differences,
as listed in Tab. 2.
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Figure 10: Temperature field with the change of thermal conductivity of columnar body. (a) Tem-
perature distribution for constant thermal conductivity (b) temperature distribution for variable
thermal conductivity

Table 2: The surface temperature changes along the z direction

Z-axis coordinates 0.01 0.04 0.07 0.10 0.13 0.16 0.19 0.22 0.25

Constant 402.29 406.27 411.49 420.47 432.11 444.17 456.23 467.87 476.83
r = 0.01 402.35 406.77 411.94 421.12 432.95 445.14 457.12 468.75 477.52

5 Conclusions

In this work, we present a novel framework for solving three-dimensional steady-state heat
conduction problems with IGABEM. The Catmull–Clark subdivision surface method is used to
construct a smooth geometric model and discretizing boundary integral equations. The radial
integration method is incorporated to transform the domain integral caused by variable coefficient
into the boundary integral. The numerical simulation can be conducted directly from CAD model
without needing a meshing procedure. The numerical results validate the accuracy of the method
and demonstrate its ability of integrating CAD and numerical analysis. In the future, we will
extend the algorithm to transient heat conduction problems.
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