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ABSTRACT

Health care data mining is noteworthy in disease diagnosis and recognition procedures. There exist several
potentials to further improve the performance of machine learning based-classification methods in healthcare data
analysis. The selection of a substantial subset of features is one of the feasible approaches to achieve improved
recognition results of classification methods in disease diagnosis prediction. In the present study, a novel combined
approach of feature generation using latent semantic analysis (LSA) and selection using ranker search (RAS) has
been proposed to improve the performance of classification methods in lymph disease diagnosis prediction. The
performance of the proposed combined approach (LSA-RAS) for feature generation and selection is validated
using three function-based and two tree-based classification methods. The performance of the LSA-RAS selected
features is comparedwith the original attributes and other subsets of attributes and features chosen by nine different
attributes and features selection approaches in the analysis of amost widely used benchmark and open access lymph
disease dataset. The LSA-RAS selected features improve the recognition accuracy of the classification methods
significantly in the diagnosis prediction of the lymph disease. The tree-based classification methods have better
recognition accuracy than the function-based classification methods. The best performance (recognition accuracy
of 93.91%) is achieved for the logistic model tree (LMT) classification method using the feature subset generated
by the proposed combined approach (LSA-RAS).
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1 Introduction

The machine learning approaches are playing a vital role in the development of computer-
aided diagnosis systems [1–3]. The highly efficient machine learning-based soft disease diagnosis
system provides an economical, non-invasive, and quick diagnostic facility for the patient. Such
a system also eases the effort of physicians in decision-making and interpretation of disease
diagnosis results. The lymphatic system improves the immune system, maintains the balance of
body fluids, removes the waste product, bacteria, and virus, and supports the absorption of
nutrients, etc. [4,5]. Any blockage and infection of the tissue in lymph vessels result in lymphoma,
lymphadenitis, and lymphedema, etc. [6]. Imaging techniques are used in the examination of lymph
nodes [7,8]. Moreover, the classification approaches of machine learning can be implemented
to improve the prediction accuracy of the initial status of the lymph node by modeling the
measurements of imaging techniques and physical observations.

Generally, the classification techniques of machine learning are the backbone of the soft
disease diagnosis system for the class recognition of the specific disease in diagnosis purposes by
analyzing preliminary observations and instrumental measurements [9–11]. The performance of the
classification methods has been affected by the size of the data, the number of attributes, nature of
attributes, noise and outliers in data, and uneven distribution of instances of different attributes,
etc. [12,13]. Consequently, addressing the earlier issues is crucial for the real-time diagnosis and
recognition of diseases by a machine learning-based system. Among the previous concerns, reduc-
ing the dimensionality (attributes) of a dataset is one of the significant steps for the disease
recognition performance improvement of the classification method [13–16]. The dimensionality of
any disease data set can be reduced in two ways (i) selecting a significant subset of attributes from
the original attribute set, and (ii) generating novel features by a transformation of the original
attributes of the dataset into new feature space and subsequently, selecting a significant subset
of features. In the present study, both of the earlier approaches of dimensionality reduction
have been implemented for efficient recognition of lymph disease. Moreover, a novel approach of
feature generation and selection has been implemented for the dimensionality reduction of the
lymph dataset and its effect on the recognition performance of five different classification methods
has been examined. Besides, some other feature generation methods like principal component
analysis (PCA), and attribute selection methods based on the genetic algorithm (GA), greedy
forward and backward search, random search, and rank search, etc. have been implemented for
performance comparison of the proposed approach.

1.1 Literature Survey
Classification approaches to machine learning have been implemented in the recognition of

lymph disease in past studies [17–28]. Mainly, single classification methods [19,22], in combina-
tion with the feature selection approach [17,20,21,24], and combination with other classification
methods [18,23,25,27,28] have been used in the analysis of the lymph disease dataset. Tab. 1
presents a short review of the classification approaches used in the analysis of the lymph disease
dataset. Based on category wise analysis of the classification methods, it is obvious that the tree-
based classification methods have been used mostly in the lymph disease recognition [17,22,28].
The maximum accuracy of 92.2% has been achieved using the selected features and random
forest (RF) classifier [17]. The artificial neural network (ANN) classification methods implemented
in some studies [24,25], like multi-layer perceptron (MLP) [24], and hybrids of radial basis
function neural network and evolutionary algorithm [25]. The hybrid ANN method achieved
improved recognition accuracy of 85.47% than MLP. The Bayesian classifiers [23,24] result in
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average recognition accuracy. Besides, in some recent studies, deep learning approaches have been
implemented in disease diagnosis, like convolutional long short-term memory neural network in
heartbeat classification [29], atrial fibrillation detection using adaptive residual network [30], and
arrhythmia classification using fully connected neural networks [31], etc.

Table 1: A review of previous approaches in lymph disease classification

Classification method Classification accuracy in % Ref.

Feature selection (Genetic algorithm (GA),
Principal component analysis, and Relief-F, etc. +
Random forest

75.5%–92.2% [17]

Data gravitation classification (DGC+), DGC, and
K nearest neighbour, etc.

75.99%–81.90% [18]

Differential evolution 73.93± 2.68%–80.79± 1.66% [19]
Evolutionary instance selection-rough set feature
selection, and fuzzy rough set theory, etc.

73.87%–82.65% [20]

Information gain, Relief (RLF), and Consistency
based subset evaluation (CNS), etc. + naïve Bayes
(NB) and C4.5

79.67%–83.24%–73.09% [21]

Functional tree, and Sequential minimal
optimization for training a support vector classifier

86.49% [22]

NB, Evolutional naïve Bayes-classification accuracy
(ENB-ACC), and SBC-ACC), etc.

78.40%–85.39% [23]

NB, multi-layer perceptron, and Feature selection
approach + J48

77.02%–84.46% [24]

Hybrid of radial basis function neural network and
co-operative co-evolutionary algorithm,
GA-RBFNN, and Decaying radius selection
clustering

85.47%, 83.04%, and 91.01% [25]

Forest method using nested dichotomies 82.16%–83.51% [26]
Artificial immune System based self-adaptive
attribute weighting naïve Bayes, naïve Bayes (NB),
and correlation based feature selection + naïve
Bayes (CFSWNB), etc.

78.78%–85.97% [27]

Super parent-one-dependence estimators, averaged
one-dependence estimators, and correlation feature
selection based weighted, etc.

85.39%–85.92% [28]

Latent semantic analysis (LSA)-ranker search
(RAS)-logistic model tree (LMT)

93.91% Present
study

1.2 Motivation and Contribution of Present Study
It is obvious from the literature survey that the selected feature improves the recognition

performance of the classification methods. The selection of an optimal set of features that can
result in the maximum lymph disease recognition accuracy is still an existing challenge. With
this motivation, an effective approach of feature generation (latent semantic analysis (LSA)) and
selection (ranker search (RAS)) has been proposed which results in the maximum lymph disease
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recognition accuracy of classification methods. The main findings of the present study include the
followings:

• An efficient approach of dimensionality reduction using the combination of feature gener-
ation and selection approaches.
• An effective recognition approach of lymph disease using the combination of an optimal
subset of selected features.
• Comprehensive performance comparison of the proposed feature generation and selection
method with other methods of attribute selection.
• Performance validation of the proposed approach using functions and tree-based classifi-
cation methods.
• The maximum recognition accuracy of the classification methods using the feature subset
selected with the proposed approach with methods in the reviewed literature.

Details of the lymph disease dataset are available in Section 2, Section 3 presents the proposed
approach, analysis results are presented in Section 4, discussed in Section 5, and concluded in
Section 6.

2 Experimental Lymph Dataset

The lymphography dataset was accessed from the University of California Irvin’s (UCI)
machine learning repository [32]. A description of the lymphography dataset is available in Tab. 2.
It contains two instances of normal cases and eighty-one, sixty-one, and four instances of metas-
tases, malign lymph, and fibrosis cases of lymph disease, respectively. Fifteen nominal attributes
(lymphatics, block of afferent, and block of lymph c, etc.) and three numerical attributes (lymph
nodes diminish, lymph nodes enlarge, and number of nodes) of each of the instances have been
observed without missing values.

Table 2: Details of the lymph disease dataset

Attribute name Attribute type Label/value range of
attribute

Count of label of
attribute

Lymphatics Nominal Normal 2
Arched 67
Deformed 46
Displaced 33

Block of afferent Nominal No 66
Yes 82

Block of lymph c Nominal No 112
Yes 26

Block of lymph s Nominal No 141
Yes 7

By pass Nominal No 112
Yes 36

Extravasates Nominal No 73
Yes 75

(Continued)
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Table 2 (continued)

Attribute name Attribute type Label/value range of
attribute

Count of label of
attribute

Regeneration of Nominal No 138
Yes 10

Early uptake Nominal No 44
Yes 104

Changes in lymph Nominal Bean 6
Oval 77
Round 65

Defect in node Nominal No 3
Lacunar 49
Lacunar marginal 46
Lacunar central 50

Changes in node Nominal No 6
Lacunar 42
Lacunar marginal 75
Lacunar central 25

Changes in structure Nominal No 2
Grainy 14
Drop-like 19
Coarse 31
Diluted 28
Reticular 2
Stripped 7
Faint 45

Special forms Nominal No 28
Chalices 43
Vesicles 77

Dislocation of Nominal No 50
Yes 98

Exclusion of node Nominal No 31
Yes 117

Lymph nodes diminish Numeric 1.0–1.2 142
1.8–2.0 3
2.8–3.0 3

Lymph nodes enlarge Numeric 1.0–1.6 13
1.6–2.2 72
2.8–3.4 43
3.4–4.0 20

Number of nodes Numeric 1.0–2.2 94
2.2–3.3 18
3.3–4.5 10
4.5–5.7 8
5.7–6.8 8
6.8–8.0 10
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3 Feature Generation, Selection, and Classification

The LSA method generates an effective set of features by combining the original attributes.
The RAS selects an optimal subset of features from the LSA generated set. Subsequently, the
selected optimal subset of features results in the improved recognition accuracy of MLP, simple
linear logistic regression (SL), and sequential minimal optimization (SMO), functional tree (FT),
and logistic model tree (LMT) classification methods. Fig. 1 presents a schematic diagram of
the analysis and validation procedures. A PC (64-bit Windows 10, Intel(R) Core(TM) i5-4590
CPU@3.30 GHz, 8 GB RAM) was used in the implementation of attribute selection, feature
generation and selection, classification methods, and their combination in WEKA [33]. A short
description of attribute selection, feature generation, and selection, classification methods are as
follows.

Lymph diseases data set

An expert system for disease recognition

Evaluation 
of results

Lymph diseases recognition results

Feature generation and selection

CFSSE-GES CFSSE-GRS CFSSE-BF CFSSE-RKS CLSE-RDS

COSE-BF FSE-BF FSE-RKS PCA-RAS LSA-RAS

Classification 
approaches

SL SMO FT LMT MLP

Performance evaluation

TP rate FP rate Precision Recall F-measure

ROC area

Accuracy MAE RMSE
Analysis

time 

Kulczynski's measure
Folkes-Mallows

index
Kappa

coefficient

Figure 1: An overview of attribute selection, feature generation and selection, classification, and
performance evaluation methods of the lymph disease
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3.1 The Proposed LSA-RAS Approach of Feature Generation and Selection
The LSA measures the textual coherence of the nominal attributes. It is suitable for select-

ing an optimal subset of features, discarding the inappropriate features, and representation of
instances in a novel semantic space for better discrimination, etc. [34]. The details of the
LSA method are available in [34]. Firstly, the frequency (Tm,n = a) of each term (m) in the
documents (n) of the original dataset is used to calculate a term-document matrix Ti×j. Sub-
sequently, Ti×j is normalized as Ti×j → (log(Ti×j)/entropy of attribute) and analyzed with the

singular value decomposition as T = Ui×r × Sr×r × VT
j×r. Finally, some largest singular values

are selected in the approximation of the Ti×j as T = Ui×k × Sk×k × VT
j×k. The RAS approach

implements the combination of entropy, gain ratio, and reliefF methods [33] in the selection
of an optimal subset of the latent variables. Entropy is defined as Info(S) = −∑m

i=1 pi(log2(pi))
(the essential information for identification of an instance) [35]. The gain ratio is the ratio of
GainA = −

∑m
i=1 pi(log2(pi)) −

∑v
j=1 (|Sj|/|S|)× Info(Sj) and splitting information SplitinfA(S) =

−∑v
j=1 (|Sj|/|S|)× log2|Sj|/|S| [35]. The Manhattan norm of the nearest hit, and the nearest miss

was used in the reliefF method to update the initial weights of features in their selection [35].

3.2 Functions and Tree-Based Classification Approaches
Three functions-based classifiers (MLP, SL, and SMO) and two tree-based classifiers (FT, and

LMT) have been implemented to test the efficiency of the LSA-RAS selected feature subset and
other feature subsets in a 10-fold cross-validation.

3.2.1 MLP Classifier
It is a systematic arrangement of artificial neurons in different layers (input, hidden, and

output). The input of a neuron is defined as Y =∑
WnXn+ b by using the weights Wn and bias

b of attributes Xn [36]. In the present study, the sigmoid activation function O= 1/1+ exp(−Y )=
1/1+ exp

(− (∑
WnXn+ b

))
was used to compute the output of neurons in the hidden layer.

The linear activation function was used to calculate the output of neurons in the output layer.
The MLP uses a feed-forward back-propagation strategy to update the weights and bias of each
of the neurons till the error is minimized. The weight is updated using the error gradient (δj)

and learning rate (η) in delta rule as wij(p + 1) = wij(p) + �wij(p), where �wij(p) = ηδjxji, and
δj = (tj − oj) × oj × (1 − oj). Using a momentum term (α), the weight update (�wij) is defined
as �wij(p) = ηδjxji + α�wij(p − 1). The error (tj − oj) decreases with the number of training
epochs. The optimal MLP classifier was built using η = 0.3, α = 0.2, training epoch = 500, and
hidden layers= (attributes+ classes/2), etc. [33]. Moreover, the decaying value of η (dividing the
η with the current epoch number) was used to limit the divergence from the target. Normalized
values of the attributes and the classes (−1 to + 1) are used in the training and validation. A
nominal to binary filter was used for nominal attributes [33].

3.2.2 SL Classifier
It implements regression function and boosting algorithm (LogitBoost) [37] in class recogni-

tion of an instance. The LogitBoost algorithm starts with the weight initialization as wij = 1/n,
where i = 1, 2, 3 . . .n and j represents the number of classes. Thereafter, the working response
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(zij) and weights (wij) are updated on each iteration as zij = (y∗ij− pj(xi))/(pj(xi)(1− pj(xi))), and
wij = pj(xi)(1− pj(xi)), respectively. Next, weighted least square regression zij and wij are used

in fmj(x). The value of Fj(x) =
∑M

m=1 fmj(x) and fmj(x), are set as Fj(x)← Fj(x) + fmj(x), and

fmj(x)← ((j− 1)/j)
(
fmj(x)− (1/j)

∑J
k=1 fmk(x)

)
. Finally, the class probability pj(xi) is updated as

pj(xi) = eFj(x)/
∑J

k=1 eFk(x) to compute the classifier argmax Fj(x). The SL classifier was imple-
mented using the following parameters: heuristic stop = 50, maximum boosting iterations = 500,
and β = 0 (value of weight trimming), etc. [33]. The heuristic stop criterion was used to terminate
the iteration of LogitBoost after achieving the error minima to reduce the analysis time of the
lymph dataset. Due to the variations among the attributes in the lymph dataset, the weight
trimming was not implemented.

3.2.3 SMO
SMO [36] is used in the training of the support vector machine (SVM) classifier. The

decision function of binary SVM is defined as f (x) = wTx + b, where the class y = +1
for f (x) ≥ 0, and y = −1 for f (x) < 0. Considering the inner product of the input vec-
tors, the earlier decision function is defined as f (x) = ∑m

i=1 αiy(i)〈xi,x〉 + b. For computa-
tional simplicity, the kernel function can be used for the inner product of the vectors as
f (x) =∑m

i=1 αiyik(xi,xj)+ b. SMO is used to obtain the solution of the dual problem of SVM

max W(α) =∑m
i=1 αi−

∑m
i−1

∑m
j=1 y(i)y(j)αiαj〈x(i),x(j)〉/2, under constraint of 0 ≤ αi ≤ C for i =

1, 2, 3 . . .m and
∑m

i=1 αiy(i)= 0. The optimal value of αi, αj and threshold b are obtained as
αj = H if αj > H, αj if L ≤ αj ≤ H, and L if αj < L. The SMO classifier was built using the

polynomial kernel function (k(xi,xi)= (xi.xj + c)d), tolerance parameter equal to 0.01, complexity

parameter equal to 1, and ε = 1× 10−12, etc. [33]. The nominal attributes were converted to binary
form and normalized before training and validation of SVM.

3.2.4 FT Classifier
FT [38] uses logistic regression functions at the inner nodes and/or leaves and a constructor

function (generalized linear model (GLM)) to build the decision tree. GLM combines the original
attributes to generate the novel attributes. Firstly, the constructor function is used to build the
initial model. In the second step, the model is mapped to new attributes of dimension equal to the
number of classes in the dataset. The new attributes represent the class belonging probability of
an instance computed by using the constructor function. A merit function is used to evaluate the
attribute with the original attributes. The FT was built using the following parameters: boosting
iterations equal to 150, number of instances equal to 15 for the splitting of nodes, and β = 0,
etc. [33].
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3.2.5 LMT Classifier
LMT is a combination of linear logistic regression (low variance high bias) and tree induction

(high variance low bias) classification methods [39]. Logistic regression functions are generated at
every node of the tree using the LogitBoost algorithm. An information gain criterion was used for
the splitting of the tree, and after the complete formation of the tree, the CART algorithm was
used for its pruning. The heuristic cross-validation was used to control the number of iterations of
LogitBoost to avoid data overfitting. The additive logistic regression of the LogitBoost algorithm
for each class Mi is defined as LM(x) =∑n

i=1 βixi + β0. The posterior probability of leaf node

is defined as P(M/x)= exp(LM(x))/
∑D

M=1′ exp(LM ′(x)). The optimal performance of LMT was
achieved in a number of instances equal to 15 of the splitting of nodes, boosting iterations equal
to 150, and β = 0 (weight trimming value), etc. [33].

3.3 Additional Attributes and Feature Selection Methods
Nine feature selection methods (Tab. 3) have been used in the performance comparison

analysis. The correlation-based feature selection genetic search (CFS-GES) method combines two
approaches, correlation-based feature selection (CFS) and genetic search (GES). The CFS imple-
ments a correlation measure to select the feature which is highly correlated with the class and less
correlated with the other features.

Table 3: Attribute and feature selection methods, and selected attributes and features

Attribute selection and
feature extraction and
selection method

Abbreviations
used

Number of selected
attributes/features
out of 18

Selected attributes/features

Correlation based feature
selection (CFS) genetic
search

CFSSE-GES 10 lymphatics, block_of_afferent,
regeneration_of, early_uptake_in,
lym_nodes_diminish, changes_in_lymph,
changes_in_node, special_forms,
dislocation_of, no_of_nodes_in

CFS-greedy stepwise CFSSE-GRS 10 lymphatics, block_of_afferent,
regeneration_of, early_uptake_in,
lym_nodes_diminish, lym_nodes_enlarge,
changes_in_lymph, changes_in_node,
special_forms, no_of_nodes_in

CFS-best first CFSSE-BF 10 lymphatics, block_of_afferent,
regeneration_of
early_uptake_in, lym_nodes_diminish,
lym_nodes_enlarge, changes_in_lymph,
changes_in_node, special_forms,
no_of_nodes_in

CFS-rank search CFSSE-RKS 11 lymphatics, block_of_afferent,
block_of_lymph_s, regeneration_of,
early_uptake_in, lym_nodes_diminish,
lym_nodes_enlarge, changes_in_lymph,
changes_in_node
special_forms, no_of_nodes_in

(Continued)
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Table 3 (continued)

Attribute selection and
feature extraction and
selection method

Abbreviations
used

Number of selected
attributes/features
out of 18

Selected attributes/features

Classifier subset
evaluation random search

CLSE-RDS 9 block_of_afferent, block_of_lymph_c,
block_of_lymph_s, extravasates,
changes_in_lym
defect_in_node, changes_in_node,
special_forms, no_of_nodes_in

Consistency subset
evaluation best first

COSE-BF 9 lymphatics, block_of_afferent,
block_of_lymph_c, changes_in_lymph,
defect_in_node, changes_in_node,
changes_in_stru, special_forms
exclusion_of_no

Filtered subset evaluation
best first

FSE-BF 10 lymphatics, block_of_afferent,
regeneration_of
early_uptake_in, lym_nodes_diminish,
lym_nodes_enlarge, changes_in_lymph,
changes_in_node, special_forms,
no_of_nodes_in

Filtered subset evaluation
rank search

FSE-RKS 11 lymphatics, block_of_afferent,
block_of_lymph_s
regeneration_of, early_uptake_in,
lym_nodes_diminish, lym_nodes_enlarge,
changes_in_lymph, changes_in_node,
special_forms, no_of_nodes_in

Principal component
analysis ranker search

PCA-RAS 25 Principal components (PC1-PC25)

Latent semantic analysis
ranker search

LSA-RAS 13 Latent variables (LV1-LV13)

On the basis of the earlier correlation values, a merit measure Ms of feature subset is defined
as Ms = krcf /

√
k+ (k+ 1)rff (rcf and rff denotes an average feature-class and feature-feature

correlation) [33]. The GES method basically implements a simple genetic algorithm in searching
for an optimal set of attributes. Selection, crossover, and mutation operators have been used in
GA to adopt the process of evolution of nature [36]. The GES method was built using the initial
population of 20 features, cross-over probability equal to 0.6, the number of generations equal to
20, and mutation probability equal to 0.033 [33]. The GES method was used for the ranking of
the attributes in combination with CFS (Tab. 3). The attributes are selected either in the forward
or backward direction using the greedy stepwise (GRS) method. The best subset of the attribute
is selected by including attributes step by step till the merit of the feature subset increases. A
forward selection approach is implemented in the selection of an optimal subset of attributes. The
GRS method was used in combination with the CFS method in attribute ranking and selection
of an optimal subset of attributes (Tab. 3).

Redundant attributes are discarded using a threshold value of −1.80 [33]. A hill-climbing
approach with a backtracking search approach was used in the selection of optimal attributes
in the best first (BF) method. A forward search approach and search termination threshold
value equal to 5 was used in the BF method in the present analysis [33]. BF method was used
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in combination with CFS, consistency subset evaluation, and filtered subset evaluation methods
(Tab. 3). The rank search (RKS) approach uses a forward selection search method to generate an
optimal subset of the attribute of maximum merit. The attributes are included one by one with
the best attribute in each step to generate an optimal subset of attributes. Attribute evaluator (gain
ratio with starting point equal to 0 and the step size equal to 1) was used to evaluate the attribute
subset in each step after including an attribute until the merit of the attribute subset increases [21].
The RKS method was combined with the CFS and filtered subset evaluation (FSE) methods
for the attribute ranking and selection (Tab. 3). Classifier subset evaluation (CLSE) implements a
classification method in the selection of an optimal subset of attributes. The CLSE uses a ZeroR
classification approach to compute the merit of the feature subset. For the numeric class, ZeroR
predicts the mean of the numeric class and mode for the nominal class. This concept is used to
compute the merit of an attribute subset in CLSE [33]. The random search (RDS) uses a random
search approach to select an optimal subset of attributes. The RDS selects a random subset of
attributes in finding the optimal subset. Another parameter used in the RDS method was a seed
equal to 1 to generate a random number, and 25% of the search space [33]. The RDS was used
in combination with the CLSE (Tab. 3). Consistency subset evaluation (COSE) selects an optimal
subset of attributes on the basis of its level of consistency in class. The consistency (Cs) of a

subset of the attribute is defined as Cs = 1 −
{∑J

i=1 |Di| − |Mi|
}
/N (N represents the number

of instances in the dataset, s denotes the attribute subset, J stand for different combinations of
attributes, and |Di| and |Mi| denote the frequency and the cardinality of the majority class of ith

attribute value combination, respectively) [21]. The COSE was used in combination with the BF
method (Tab. 3). Filtered subset evaluation (FSE) is a combined approach of CFS and a random
subsample filter used in the selection of an optimal subset of attributes. Basically, an initial subset
of features is selected casually by the random subsample filter and used as the input of the CFS
method. A spread value is always defined in the FSE to control the effect of least and most
recurrent classes [40,41]. The FSE was used in combination with the BF and RKS method to
select an optimal subset of features (Tab. 3). The principal component analysis (PCA) method
doesn’t select the attributes directly; nonetheless, it first transforms the original attributes in a
novel principal component (PC) space and then selects a significant subset of the attributes using
some ranking method. Basically, the original attributes are projected along the PC directions to
obtain the novel subset of features. The PC component matrix PCmxk of an original data matrix
Omxk (m instances and n attributes) is achieved as Omxk = PCmxkLTmxk +Rmxn [36]. The loading

matrix LTmxk denotes the significance of the attributes in the formation of the PC components.
The RAS method is combined with the PCA to select an ideal subset of PC components [33].

3.4 Performance Assessment Measures of Classification Approaches
Performance of classification approaches is evaluated on the basis of the average value

of true positive (TP) rate, false positive (FP) rate, precision, recall, Kulczynski’s measure
(arithmetic mean of precision and recall), Folkes-Mallows index (geometrical mean of pre-
cision and recall), F-measure (harmonic mean of precision and recall), Kappa coefficient,
receiver operating characteristic (ROC) area, and analysis time. The Kappa coefficient is com-
puted using the number of instances in a row (xi.), column (xj), and diagonal (xii) of
the confusion matrix of the classification method and the total number of instances in
the dataset (N) as k =

(
N

∑k
i=1 xii−

∑k
i=1 xi.x.i

)
/
(
N2−∑k

i=1 xi.x.i
)

[40]. The TP, FP, false

negative (FN), and true negative (TN) are used to compute the ROC area as ROCarea =
1+ (TP/TP+FN)− (FP/FP+TN)/2 [18].
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4 Validation Results of the Proposed Approach and Comparative Analysis Results

Tab. 3 summarizes the attributes and features selected by the different approaches. It is
obvious that the CFSSE-RKS method selects a maximum number of attributes (11 out of 18) and
PCA-RAS generates a maximum number of features. CFSSE-GES, CFSSE-GRS, and CFSSE-
BF methods select a similar number of attributes (Tab. 3). The different attributes subsets are
selected by the CFSSE-GES, and CFSSE-GRS methods, while the attribute subset selected by
the CFSSE-GRS and CFSSE-BF is the same. It is also noticeable that the PCA-RAS and LSA-
RAS methods select the optimal subset of features considering the contributions of all attributes,
while the rest of the methods in Tab. 3 select an optimal subset of attributes. The parametric
details of the attributes/feature selection methods and the merits/ranking of the selected subset of
the attributes/features are summarized in Tab. 4. The performance of classification methods using
selected subsets of attributes/features is summarized in Tab. 5. Tab. 6 presents the performance
evaluation metrics of classification methods.

Table 4: Merits and ranking values of selected attributes and features

Approach Parameters Merits/ranking values, and rank

Merit value Selected attributes subset

CFSSE-GES Population size: 20
Number of
generations: 20
Probability of
crossover: 0.6
Probability of
mutation: 0.033
Report frequency: 20
Random number
seed: 1

0.4132 1, 2, 7, 8, 9, 11, 13, 15, 18
0.4132 1, 2, 7, 8, 9, 11, 13, 15, 18
0.3909 1, 2, 7, 8, 9, 11, 13, 15
0.3948 1, 2, 5, 8, 9, 11, 13, 15, 18
0.4047 2, 7, 8, 9, 13, 15, 18
0.4037 1, 2, 7, 9, 11, 13, 15, 18
0.4132 1, 2, 7, 8, 9, 11, 13, 15, 18
0.4083 1, 2, 7, 8, 9, 11, 13, 18
0.4132 1, 2, 7, 8, 9, 11, 13, 15, 18
0.4044 1, 2, 5, 7, 8, 9, 11, 13, 15, 18
0.4232 1, 2, 7, 8, 9, 11, 13, 15, 16, 18

Merit of best subset (first ten attributes): 0.414

Ranking value Attribute number Attribute

CFSSE-GRS Greedy Stepwise
(forwards).
Start set: no attributes
Threshold: −1.79

0.281 13 changes_in_node
0.331 18 no_of_nodes_in
0.364 9 lym_nodes_diminish
0.385 2 block_of_afferent
0.390 8 early_uptake_in
0.399 7 regeneration_of
0.406 1 lymphatics
0.412 15 special_forms
0.413 11 changes_in_lymph
0.414 10 lym_nodes_enlarge

(Continued)
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Table 4 (continued)

Approach Parameters Merits/ranking values, and rank

CFSSE-BF Search direction:
forward
Stale search after 5
node expansions
Total number of
subsets evaluated: 172

Merit of best subset (1, 2, 7, 8, 9, 10, 11, 13,
15, 18): 0.414

CFSSE-RKS Start set: no attributes
Step size: 1

Merit of best subset (1, 2, 4, 7, 8, 9, 10, 11,
13, 15, 18): 0.4

CLSE-RDS Start set: no attributes
Number of iterations:
65536 (25.0% of the
search space)

Merit of best subset (2, 3, 4, 6, 11, 12, 13,
15, 18): 0.453

COSE-BF Start set: no attributes
Search direction:
forward
Stale search after 5
node expansions
Total number of
subsets evaluated: 166

Merit of best subset (1, 2, 3, 11, 12, 13, 14,
15, 17): 1

FSE-BF Start set: no attributes
Search direction:
forward
Stale search after 5
node expansions
Total number of
subsets evaluated: 172

Merit of best subset (1, 2, 7, 8, 9, 10, 11, 13,
15, 18): 0.414

FSE-RKS Attribute evaluator:
gain ratio
Start point: no
attribute
Step size: 1

Merit of best subset (1, 2, 4, 7, 8, 9, 10, 11,
13, 15, 18): 0.4

Ranking
value

Principal
component

Eigen
value

Cumulative
variance

PCA-RAS Threshold: −1.79 0.87 PC1 4.79 0.13
0.77 PC2 3.79 0.23
0.69 PC3 3.27 0.31
0.62 PC4 2.54 0.38
0.57–0.1 PC5–25 2.03–0.41 0.43–0.95

(Continued)
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Table 4 (continued)

Approach Parameters Merits/ranking values, and rank

Ranking value Latent variable Singular value

LSA-RAS Start set: no attributes
Threshold:−1.79

0.76114 LV1 58.4074
0.05955 LV2 16.33678
0.02665 LV3 10.9288
0.01914 LV4 9.26279
0.02–0.01 LV5-13 7.96–5.46

Notes: attribute no. 1: lymphatics, 2: block_of_afferent, 3: block_of_lymph_c, 4: block_of_lymph_s, 5: by_pass, 6: extrava sates,
7:regeneration_of, 8: early_uptake_in, 9: lym_nodes_diminish, 10: lym_nodes_enlar, 11: changes_in_lym, 12: d efect_in_node,
13:changes_in_node, 14: changes_in_stru, 15: special_forms, 16: dislocation_of, and 17: exclusion_of_no, 18: no_of_nodes_in.

Table 5: Performance of the classification methods using different features subsets in the lymph
disease recognition

Method Results Original
attributes

Selected attributes, and generated and selected features subsets

CFSSE-
GES

CFSSE-
GRS

CFSSE-
BF

CFSSE-
RKS

CLSE-
RDS

COSE-
BF

FSE-
BF

FSE-
RKS

PCA-
RAS

LSA-
RAS

MLP CC 84.46 81.08 81.76 81.76 81.76 82.43 81.76 84.46 81.76 85.81 93.24
MAE 0.08 0.10 0.09 0.09 0.10 0.09 0.10 0.08 0.10 0.07 0.04
RMSE 0.26 0.28 0.27 0.27 0.27 0.26 0.28 0.26 0.27 0.24 0.15
k 0.70 0.64 0.65 0.65 0.64 0.66 0.65 0.70 0.64 0.72 0.87

SL CC 83.11 80.41 83.78 83.78 82.43 81.76 83.78 83.11 82.43 89.86 92.57
MAE 0.10 0.12 0.10 0.10 0.10 0.11 0.11 0.10 0.10 0.08 0.05
RMSE 0.27 0.27 0.25 0.25 0.25 0.27 0.25 0.27 0.25 0.20 0.18
k 0.68 0.63 0.69 0.69 0.66 0.64 0.69 0.68 0.66 0.81 0.86

SMO CC 86.49 83.11 85.81 85.81 85.81 81.76 85.14 86.49 85.81 86.49 92.57
MAE 0.26 0.26 0.26 0.26 0.26 0.27 0.26 0.26 0.26 0.26 0.26
RMSE 0.33 0.33 0.33 0.33 0.33 0.34 0.33 0.33 0.33 0.33 0.32
k 0.74 0.68 0.73 0.73 0.73 0.64 0.71 0.74 0.73 0.74 0.86

FT CC 86.49 86.49 85.14 85.14 84.46 77.70 85.14 86.49 84.46 84.46 93.24
MAE 0.08 0.08 0.08 0.08 0.09 0.12 0.08 0.08 0.09 0.08 0.03
RMSE 0.26 0.26 0.26 0.26 0.26 0.30 0.26 0.26 0.26 0.28 0.18
k 0.74 0.74 0.72 0.72 0.70 0.57 0.72 0.74 0.70 0.70 0.87

LMT CC 83.11 80.41 83.78 83.78 82.43 81.76 83.78 83.11 82.43 89.86 93.92
MAE 0.10 0.12 0.10 0.10 0.10 0.11 0.11 0.10 0.10 0.08 0.03
RMSE 0.27 0.27 0.25 0.25 0.25 0.27 0.25 0.27 0.25 0.20 0.17
k 0.68 0.63 0.69 0.69 0.66 0.64 0.69 0.68 0.66 0.81 0.89

Note: CC-correct classification rate, MAE-mean absolute error, RMSE-root means square error, and k-Kappa coefficient.

The LSA-RAS generated feature subset results in the maximum accuracy of classification
methods (Tab. 5). Among the three functions-based classification methods, the maximum classifi-
cation accuracy (93.24%) and the minimum value of mean absolute error (MAE) (0.04) have been
achieved for the MLP. The LMT classifier achieved higher accuracy (93.92%) and the maximum
value of the kappa coefficient (0.89) than the FT method.
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Table 6: Evaluation metrics of classification methods using selected attribute and features subsets
in the lymph disease recognition

Classification
method

Attributes/features
subsets

TP
rate

FP
rate

Precision Recall F-measure ROC
area

Kulczynski’s
measure

Folkes-Mallows
index

MLP Original attributes 0.845 0.157 0.837 0.845 0.834 0.920 0.841 0.841
CFSSE-GES 0.811 0.174 0.805 0.811 0.805 0.912 0.808 0.808
CFSSE-GRS 0.818 0.173 0.811 0.818 0.808 0.915 0.815 0.814
CFSSE-BF 0.818 0.173 0.811 0.818 0.808 0.915 0.815 0.814
CFSSE-RKS 0.818 0.179 0.810 0.818 0.807 0.905 0.814 0.814
CLSE-RDS 0.824 0.170 0.796 0.824 0.809 0.916 0.810 0.810
COSE-BF 0.818 0.175 0.816 0.818 0.810 0.892 0.817 0.817
FSE-BF 0.845 0.157 0.837 0.845 0.834 0.920 0.841 0.841
FSE-RKS 0.818 0.179 0.810 0.818 0.807 0.905 0.814 0.814
PCA-RAS 0.858 0.136 0.842 0.858 0.848 0.948 0.850 0.850
LSA-RAS 0.932 0.065 0.895 0.932 0.913 0.993 0.914 0.913

SL Original attributes 0.831 0.163 0.832 0.831 0.831 0.893 0.832 0.831
CFSSE-GES 0.804 0.189 0.805 0.804 0.804 0.885 0.805 0.804
CFSSE-GRS 0.838 0.162 0.839 0.838 0.837 0.914 0.839 0.838
CFSSE-BF 0.838 0.162 0.839 0.838 0.837 0.914 0.839 0.838
CFSSE-RKS 0.824 0.175 0.825 0.824 0.823 0.912 0.825 0.824
CLSE-RDS 0.818 0.178 0.816 0.818 0.809 0.892 0.817 0.817
COSE-BF 0.838 0.154 0.836 0.838 0.837 0.905 0.837 0.837
FSE-BF 0.831 0.163 0.832 0.831 0.831 0.893 0.832 0.831
FSE-RKS 0.824 0.175 0.825 0.824 0.823 0.912 0.825 0.824
PCA-RAS 0.899 0.108 0.904 0.899 0.898 0.950 0.902 0.901
LSA-RAS 0.926 0.057 0.927 0.926 0.920 0.970 0.927 0.926

SMO Original attributes 0.865 0.135 0.869 0.865 0.864 0.869 0.867 0.867
CFSSE-GES 0.831 0.166 0.833 0.831 0.830 0.844 0.832 0.832
CFSSE-GRS 0.858 0.148 0.861 0.858 0.856 0.869 0.860 0.859
CFSSE-BF 0.858 0.148 0.861 0.858 0.856 0.869 0.860 0.859
CFSSE-RKS 0.858 0.148 0.861 0.858 0.856 0.869 0.860 0.859
CLSE-RDS 0.818 0.178 0.790 0.818 0.803 0.844 0.804 0.804
COSE-BF 0.851 0.151 0.858 0.851 0.846 0.861 0.855 0.854
FSE-BF 0.865 0.135 0.869 0.865 0.864 0.869 0.867 0.867
FSE-RKS 0.858 0.148 0.861 0.858 0.856 0.869 0.860 0.859
PCA-RAS 0.865 0.143 0.856 0.865 0.858 0.866 0.861 0.860
LSA-RAS 0.926 0.072 0.912 0.926 0.918 0.936 0.919 0.919

FT Original attributes 0.865 0.136 0.866 0.865 0.864 0.890 0.866 0.865
CFSSE-GES 0.865 0.128 0.865 0.865 0.864 0.871 0.865 0.865
CFSSE-GRS 0.851 0.137 0.851 0.851 0.851 0.886 0.851 0.851
CFSSE-BF 0.851 0.137 0.851 0.851 0.851 0.886 0.851 0.851
CFSSE-RKS 0.845 0.157 0.846 0.845 0.844 0.849 0.846 0.845
CLSE-RDS 0.777 0.197 0.768 0.777 0.772 0.841 0.773 0.772
COSE-BF 0.851 0.142 0.853 0.851 0.850 0.907 0.852 0.852
FSE-BF 0.865 0.136 0.866 0.865 0.864 0.890 0.866 0.865
FSE-RKS 0.845 0.157 0.846 0.845 0.844 0.849 0.846 0.845
PCA-RAS 0.845 0.154 0.846 0.845 0.844 0.857 0.846 0.845
LSA-RAS 0.932 0.047 0.940 0.932 0.934 0.964 0.936 0.936

LMT Original attributes 0.831 0.163 0.832 0.831 0.831 0.893 0.832 0.831
CFSSE-GES 0.804 0.189 0.805 0.804 0.804 0.885 0.805 0.804
CFSSE-GRS 0.838 0.162 0.839 0.838 0.837 0.914 0.839 0.838
CFSSE-BF 0.838 0.162 0.839 0.838 0.837 0.914 0.839 0.838
CFSSE-RKS 0.824 0.175 0.825 0.824 0.823 0.912 0.825 0.824
CLSE-RDS 0.818 0.178 0.816 0.818 0.809 0.892 0.817 0.817
COSE-BF 0.838 0.154 0.836 0.838 0.837 0.905 0.837 0.837
FSE-BF 0.831 0.163 0.832 0.831 0.831 0.893 0.832 0.831
FSE-RKS 0.824 0.175 0.825 0.824 0.823 0.912 0.825 0.824
PCA-RAS 0.899 0.108 0.904 0.899 0.898 0.950 0.902 0.901
LSA-RAS 0.939 0.039 0.946 0.939 0.940 0.970 0.943 0.943
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The LSA-RAS selected feature subset results in the improvement of 10.81% in the classi-
fication accuracy of the LMT classifier than the original attributes. Moreover, the accuracy of
classification methods using most of the selected attribute subset except PCA-RAS and LSA-RAS
selected feature subset is lower or comparable than using the original attributes. The LSA-RAS
selected feature subset results in improved evaluation measures (maximum value of average the TP
rate, Precision, Recall, F-measure, ROC area, Kulczynski’s measure, and Folkes-Mallows index,
and the minimum average value of FP rate) of each of the classification methods than other
selected attribute subsets, selected feature subset, and original attributes. Furthermore, the LMT
classification method using the LSA-RAS selected feature subset has the best values of earlier
evaluation metrics than the rest of the classification method. A detailed class confusion matrix of
each of the classification methods using the best performing LSA-RAS selected feature subset is
summarized in Tab. 7. The MLP classification recognizes 138 out of 148 instances of lymph dis-
ease correctly. The maximum number of instances (80 out of 81) of metastases class is identified
correctly (accuracy of 98.77%). Fig. 2 presents the error curve of the MLP method using three
attribute subsets and one feature subset.

Table 7: The class confusion matrix in recognition of the lymph diseases using the LSA-RAS
features subset

Total Normal Metastases Malign lymph Fibrosis Total

MLP

Normal 0 2 0 0 2
Metastases 0 80 1 0 81
Malign lymph 0 3 58 0 61
Fibrosis 0 0 4 0 4
Total 0 85 63 0 93.24%

SMO

Normal 0 2 0 0 2
Metastases 0 80 1 0 81
Malign lymph 0 5 55 1 61
Fibrosis 0 0 2 2 4
Total 0 87 58 3 92.57%

SL

Normal 0 2 0 0 2
Metastases 2 77 2 0 81
Malign lymph 0 2 59 0 61
Fibrosis 0 0 3 1 4
Total 2 81 64 1 92.57%

FT

Normal 0 2 0 0 2
Metastases 3 77 1 0 81
Malign lymph 0 2 59 0 61
Fibrosis 0 0 2 2 4
Total 3 81 62 2 93.24%

(Continued)
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Table 7 (continued)

Total Normal Metastases Malign lymph Fibrosis Total

LMT

Normal 0 2 0 0 2
Metastases 3 77 1 0 81
Malign lymph 0 1 60 0 61
Fibrosis 0 0 2 2 4
Total 3 79 63 2 93.92%

Figure 2: Classification error curve of MLP using (a) CFSSE-GES, (b) CLSE-RDS, (c) FSE-RKS,
and (d) LSA-RAS selected attribute and feature subsets

The classification error in Fig. 2 is denoted by the square symbol. It is obvious that the
LSA-RAS feature subset results in the minimum classification error (10) of MLP than rest three
attribute subsets (Fig. 2d). It is analogous to the confusion matrix of MLP in Tab. 7. The CFSSE-
GES selected attribute subset results in the maximum error of MLP (Fig. 2a). The error curve
of the SL is presented in Fig. 3. The SL classification recognizes 137 out of 148 instances of
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lymph disease correctly. The maximum number of instances (59 out of 61) of malign lymph
class is identified correctly (accuracy of 96.72%, Tab. 7). The LSA-RAS selected feature subset
results in the minimum classification error (11) of the SL than rest three attribute subsets (Fig. 3d)
which is similar to the confusion matrix of SL in Tab. 7. The maximum error of SL has been
obtained for the CFSSE-GES selected attribute subset (Fig. 3a). Fig. 4 presents the error curve
of the SMO classification method. Like SL, the SMO classification method also recognizes 137
out of 148 instances of lymph disease correctly though there is some difference in the confusion
matrix (Tab. 7). The maximum number of instances (80 out of 81) of metastases class is identi-
fied correctly (accuracy of 98.77%, Tab. 7). The LSA-RAS selected feature subset results in the
minimum classification error (11) of SMO than rest three attribute subsets (Fig. 4d) (analogous
to the confusion matrix of SL in Tab. 7).

Figure 3: Classification error curve of SL using (a) CFSSE-GES, (b) CLSE-RDS, (c) FSE-RKS,
and (d) LSA-RAS selected attribute and feature subsets
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Figure 4: Classification error curve of SMO using (a) CFSSE-GES, (b) CLSE-RDS, (c) FSE-RKS,
and (d) LSA-RAS selected attribute and feature subsets

The CLSE-RDS selected attribute subset results in the maximum error of the SMO (Fig. 4a).
The error curve of the FT classification method using CFSSE-GES, CLSE-RDS, and FSE-RKS
selected attribute subsets, and LSA-RAS selected feature subset is presented in Fig. 5. The FT
classification method identifies 138 out of 148 instances of lymph disease correctly (confusion
matrix in Tab. 7). The maximum number of instances (59 out of 61) of malign lymph class is
identified correctly (accuracy of 96.72%). The LSA-RAS selected feature subset results in the min-
imum classification error (10) of the FT classifier than the rest three attributes subsets (Fig. 5d)
(similar to the confusion matrix of FT in Tab. 7). CFSSE-GES and FSE-BF have the maximum
and similar errors (Figs. 5a and 5c). Fig. 6 presents the error curve of the LMT classification
method. The error curve in Fig. 6d represents that 139 out of 148 instances have been correctly
identified by the LMT method using the LSA-RAS selected feature subset. It is analogous to
the confusion matrix of the LMT method in Tab. 7. The maximum number of instances (60
out of 61) of malign lymph class is identified correctly (accuracy of 98.36%). The CFSSE-GES
selected attribute subset results in the maximum error of the LMT (Fig. 6a). The LSA-RAS
selected feature subset results in the improved value of the area under ROC of the classification
methods than any other selected attribute subset, feature subset, and original attributes (Tab. 6).
Furthermore, the maximum average area under the ROC was achieved for the LMT using the
LSA-RAS selected feature subset.
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Figure 5: Classification error curve of FT using (a) CFSSE-GES, (b) CLSE-RDS, (c) FSE-RKS,
and (d) LSA-RAS selected attribute and feature subsets

Figure 6: Classification error curve of LMT using (a) CFSSE-GES, (b) CLSE-RDS, (c) FSE-RKS,
and (d) LSA-RAS selected attribute and feature subsets
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The class-wise area under the ROC curve of LMT using the LSA-RAS selected feature subset
is demonstrated in Fig. 7. It is obvious that the three positive classes (metastases, malign lymph
class, fibrosis) of the lymph disease have an area under ROC ≥ 0.96. The minimum ROC area
(0.43) was obtained for the normal class of the lymph disease while the fibrosis class of the lymph
has the maximum ROC area (0.998). Fig. 8 represents the cost/benefit curve of LMT using the
LSA-RAS selected feature subset of normal and three classes of lymph. The cost/benefit curve
represents the error rate on the Y-axis and the probability of belonging to the positive class on the
X-axis. The normal and fibrosis classes of lymph have higher error (100%, and 50%, respectively),
consequently, the cost curve has a positive slope. The rest of the two classes metastases and malign
have a lower error rate. The analysis time of each of the classification methods using the original
attributes, selected attributes, and selected features are presented in Fig. 9. The MLP classification
method has a maximum analysis time of 2.29 s using the FSE-BF selected attribute subset and
the SMO method has a minimum analysis time of 0.01 s using the FSE RKS selected attribute
subset. Moreover, the MLP has the maximum average analysis time of 0.793 s and the SMO has
a minimum average analysis time of 0.037 s using original attributes and selected attributes, and
selected features.

Figure 7: The area under the ROC curve of LMT using LSA-RAS selected feature subset for (a)
normal, (b) metastases, (c) malign lymph, and (d) fibrosis classes of lymph diseases
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Figure 8: Cost/Benefit curve of LMT using LSA-RAS selected feature subset for (a) normal, (b)
metastases, (c) malign lymph, and (d) fibrosis classes of lymph diseases

Figure 9: Analysis time of classification methods using original attributes and selected attributes,
and selected and generated feature subsets
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5 Discussions of Validation and Comparative Analysis Results

The PCA-RAS and LSA-RAS methods consider the contribution of all attributes in the
generation and selection of an optimal subset of novel features. This is the reason for the better
performance of classification methods in lymph disease recognition using the PCA-RAS and LSA-
RAS selected feature subset than the original attributes and other selected subset of attributes.
Though the better performance of the LSA-RAS selected feature than the PCA-RAS selected
feature, in-class recognition is due to the majority of the nominal attribute (15 out of 18) in the
lymph disease dataset.

The PCA minimizes the correlation and maximizes the variance of the three original numer-
ical attributes, while the LSA measures the textual coherence of most of the nominal attributes
effectively and generates novel latent variables that result in a significant improvement in the
accuracy of classification methods. The deprived performances of the eight attribute selection
methods (Tab. 3) in class recognition of the lymph diseases are due to the selection of a few
significant attributes of the original data. It may cause the loss of the class identity information on
the discarded attributes and hence the substandard recognition performance of the classification
methods using the selected attributes than the original attribute, and the PCA-RAS and LSA-RAS
selected feature subsets. Analysis results in Figs. 2–8 and Tabs. 2–7 confirm the better performance
of the tree-based than the function-based classification methods using the LSA-RAS selected
feature subset. Specifically, the LMT achieved the best recognition accuracy than the rest of
the classification methods and the performance of the FT is comparable to MLP and better
than the SL and SMO methods. Using the efficient LSA-RAS selected feature subset is the
reason for the improved recognition accuracy of each of the classification methods. The improved
performance of classification methods in recognition of lymph disease in combination with the
feature selection methods is also discussed in some past studies summarized in Tab. 1, like the
performance improvement of RF using GA, PCA, and ReliefF, etc. (maximum accuracy of 92.2%
using GA selected feature subset) [17]; the maximum accuracy of 82.65% of classification method
using the rough set selected feature subset [20]; improved accuracy of NB and C4.5 classification
methods using information gain (IG), relief, and consistency-based subset evaluation (CNS), etc.
(maximum accuracy of 83.24%) [21]; improved accuracy of NB, MLP, and J48 classification
method using the IG, gain ratio, and symmetrical, etc. (maximum accuracy of 84.46%) [24];
and improved accuracy (84.94± 8.42%) of the NB method using the artificial immune system
self-adaptive attribute weighting method [27], etc.

The LSA or the combination of the LSA with RAS in lymph disease recognition is not
implemented before in the previously published research. Though, the LSA method has been
implemented in different applications [41–45], including topic modeling [41], remote sensing
image fusion [42], patient-physician communication [43], essay evaluation [44], and psychosis
prediction [45], etc. The semantic information is obtained by combining the likelihood of the
co-occurrence in the LSA. Also, the latent variables attempt to link the nominal attributes of
the instance to their respective class maximally, which causes the improved performance of the
classification methods. The improved performance of the RAS method in feature selection is due
to its characteristics to combine the entropy, gain-ratio, and relief criteria. The combination of
the earlier three criteria reduces the redundancy in the selected feature subset. Some of them
have been used independently in the feature selection of the lymph dataset [17,21,24], like reliefF
(accuracy of 84.2%) [17], information gain, and reliefF (accuracy of 82.63%, and 81.47%) [21],
and information gain, gain ratio, and reliefF (accuracy of 77.02%–80.40%) [24], etc. Among the
three functions-based classification methods, the MLP results in the maximum accuracy, using
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the LSA-RAS selected feature subset. The tree-based LMT achieved the maximum recognition
accuracy, using a similar feature subset. The best accuracy of the tree-based classification method
and improved accuracy of the function-based classification method is also confirmed in the earlier
studies [17,22,24–26], like the best recognition accuracy of 92.2% of random forest method [17],
maximum accuracy of 86.49% of SMO and FT methods using the original attributes of lymph
dataset [22], the accuracy of 84.46% of MLP, using chi-square selected and original attributes [24],
the training accuracy of 85.47% of hybrid radial basis function neural network [25], and the
maximum accuracy of 83.51% of ensembles of decision trees [26], etc.

The better performance of the tree-based classification methods; LMT and FT are due to
the less number of adjustable parameters after using a significant subset of features selected
by the LSA-RAS method, a reduced amount of noise of original attributes in latent variables,
and negligible influence of noise, etc. The improved performance of the MLP method is due to
the reduced uncertainty of the input and output by using the LSA-RAS selected feature subset.
Among the implemented feature selection methods in the recognition of the lymph disease in
the previous study [17,20,21,24,27], the best accuracy has been achieved for the combination
of the GA and random forest classification methods [17]. The proposed approach LSA-RAS-
LMT in the present study achieved the maximum recognition accuracy of the lymph disease than
previously published reports. A significant improvement in the accuracy of the LMT (10.81%),
SL (9.46), and ML (8.78%) has been achieved (Tab. 5). The analysis time of the LSA-RAS-LMT
approach in the present analysis of the lymph dataset was 2.09 s (Fig. 9). It is in between the
analysis time 0.02 s–11.77 s of [20] and, 0.0004 s–0.0051 s (Linux cluster node (Inter(R) Xeon(R)
@3.33 GHz, and 3 GB memory) [28]. The area under the ROC of the LSA-RAS-LMT approach
in the present analysis is equal to 0.97 (Tab. 6). It is higher than the area under ROC of other
approaches [17,19,23,27], like 0.843-0.954 [17], 80.48 [19], 91.3757± 3.25–91.8005± 3.61 [23], and
92.99± 4.15–95.01± 4.87 [27]. The LSA-RAS-LMT method has the maximum value of the kappa
coefficient (0.89) (Tab. 5) in the present analysis. It is also higher than the earlier achieved value
of the kappa coefficient [17,18], like 0.512–0.879 [17] and 0.500–0.629 [18].

Moreover, the LSA-RAS approach has been validated in the recognition of other benchmark
diseases (primary tumor, breast cancer, audiology, fertility, and post-operative patient) [32]. The
performance of classification approaches is summarized in Tab. 8. It is obvious that the LSA-
selected features subset results in improved accuracy of each of the classification methods than
the original attributes. Specifically, a major improvement in accuracy of MLP in the primary
tumor (55.45%), SL and SMO in the post-operative patient (26.61%), and FT (53.39%) and LMT
(48.95%) in primary tumor has been noticed. The LMT classifier has an improved recognition
performance in the analysis of most of the disease datasets. Deep neural networks such as con-
volutional and recurrent neural networks are used mainly in the preprocessing and classification
of the image, text, and continuous data successfully in the past studies [11,12,29–31]. Though
the lymph and other disease datasets selected in the present study contains the discrete values of
numeric and nominal attributes, therefore, the direct implementation of the deep neural networks
and its comparison with the proposed approach is not feasible. However, there is a need to explore
the possibility in the future research.
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Table 8: Performance of the classification methods in recognition of other diseases

Dataset Classification
method

Original attributes LSA-RAS selected features

Performance measures Performance measures

CC MAE RMSE k CC MAE RMSE k

Primary
tumor

MLP 38.36 0.06 0.20 0.31 93.81 0.02 0.08 0.93
SL 48.67 0.06 0.18 0.41 93.81 0.01 0.07 0.93
SMO 46.90 0.08 0.20 0.39 60.18 0.08 0.20 0.53
FT 43.66 0.06 0.21 0.37 97.05 0.00 0.05 0.97
LMT 48.68 0.06 0.18 0.41 97.63 0.00 0.05 0.97

Breast cancer
Wisconsin

MLP 95.27 0.05 0.20 0.90 96.28 0.05 0.17 0.92
SL 95.99 0.05 0.17 0.91 96.42 0.05 0.17 0.42
SMO 95.89 0.05 0.17 0.91 96.42 0.05 0.17 0.42
FT 95.79 0.05 0.17 0.91 96.71 0.03 0.17 0.93
LMT 95.99 0.05 0.17 0.91 96.41 0.05 0.17 0.92

Audiology MLP 83.19 0.02 0.10 0.80 86.28 0.02 0.09 0.84
SL 84.07 0.01 0.10 0.81 89.38 0.01 0.08 0.88
SMO 81.86 0.08 0.20 0.79 86.19 0.02 0.10 0.84
FT 84.51 0.02 0.10 0.82 90.26 0.01 0.08 0.89
LMT 84.07 0.01 0.10 0.81 90.71 0.01 0.08 0.89

Fertility MLP 88 0.14 0.33 0.34 93 0.07 0.25 0.63
SL 88 0.5 0.3 0.0 91 0.14 0.26 0.48
SMO 88 0.12 0.35 0.0 89 0.12 0.35 0.0
FT 86 0.18 0.37 0.03 92 0.13 0.26 0.59
LMT 88 0.49 0.49 0.11 91 0.14 0.26 0.48

Post-
operative
patient

MLP 55.56 0.30 0.49 0.09 97.78 0.03 0.11 0.95
SL 71.11 0.44 0.47 0.0 97.79 0.04 0.11 0.95
SMO 67.78 0.30 0.39 0.06 97.78 0.23 0.29 0.95
FT 64.44 0.29 0.44 0.12 97.78 0.01 0.10 0.95
LMT 71.11 0.44 0.47 0.0 97.79 0.03 0.10 0.95

Note: CC-correct classification rate in %, RMSE-root means square error, MAE-mean absolute error, and k-Kappa coefficient.

6 Conclusions and Research Scope

In the present study, a competent feature generation and selection method (LSA-RAS) of
lymph disease recognition has been implemented and validated. The LSA-RAS method results in
the improved accuracy of different classification methods. The tree-based methods achieved better
performance than the function-based classification methods using the LSA-RAS selected feature
subset. Furthermore, hybrids approach (LSA-RAS-LMT) using the combination of feature gener-
ation and selection, and classification methods achieved the maximum recognition accuracy and
improved the value of other evaluation metrics than other approaches available in the published
literature. The LSA-RAS-LMT approach is efficient in the recognition of the lymph disease and
analogous disease datasets. Future research will focus on further improvement in the accuracy of
the classification methods for lymph disease recognition.
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