
echT PressScienceComputer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2022.017532

ARTICLE

Parameter Estimation Based on Censored Data under Partially Accelerated
Life Testing for Hybrid Systems due to Unknown Failure Causes

Mustafa Kamal*

Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Dammam, 32256, Saudi
Arabia

*Corresponding Author: Mustafa Kamal. Email: m.kamal@seu.edu.sa; kamal19252003@gmail.com

Received: 18 May 2021 Accepted: 11 October 2021

ABSTRACT

In general, simple subsystems like series or parallel are integrated to produce a complex hybrid system. The
reliability of a system is determined by the reliability of its constituent components. It is often extremely difficult or
impossible to get specific information about the component that caused the system to fail. Unknown failure causes
are instances in which the actual cause of system failure is unknown. On the other side, thanks to current advanced
technology based on computers, automation, and simulation, products have become incredibly dependable and
trustworthy, and as a result, obtaining failure data for testing such exceptionally reliable items have become a very
costly and time-consuming procedure. Therefore, because of its capacity to produce rapid and adequate failure data
in a short period of time, accelerated life testing (ALT) is the most utilized approach in the field of product reliability
and life testing. Based on progressively hybrid censored (PrHC) data from a three-component parallel series hybrid
system that failed to owe to unknown causes, this paper investigates a challenging problem of parameter estimation
and reliability assessment under a step stress partially accelerated life-test (SSPALT). Failures of components are
considered to follow a power linear hazard rate (PLHR), which can be used when the failure rate displays linear,
decreasing, increasing or bathtub failure patterns. The Tempered random variable (TRV) model is considered to
reflect the effect of the high stress level used to induce early failure data. The maximum likelihood estimation
(MLE) approach is used to estimate the parameters of the PLHR distribution and the acceleration factor. A variance
covariance matrix (VCM) is then obtained to construct the approximate confidence intervals (ACIs). In addition,
studentized bootstrap confidence intervals (ST-B CIs) are also constructed and compared with ACIs in terms of
their respective interval lengths (ILs). Moreover, a simulation study is conducted to demonstrate the performance
of the estimation procedures and the methodology discussed in this paper. Finally, real failure data from the
air conditioning systems of an airplane is used to illustrate further the performance of the suggested estimation
technique.

KEYWORDS

Step stress partially accelerated life test; progressive hybrid censoring; data masking; power linear hazard rate
distribution; hybrid system

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2022.017532


1240 CMES, 2022, vol.130, no.3

1 Introduction

Computers, cellphones, and many other systems of competitive innovation and modernization
are getting increasingly complex, with numerous subsystems and sub-assemblies in each. Further-
more, these subsystems and subassemblies are made up of several components, making the life
testing procedure for such systems more complicated. The study of reliability and life testing of
systems, subsystems, or components is entirely depend on lifetime data, which is a combination
of two important pieces of information. The first is to determine the product’s failure time, and
the second is to determine the reasons for its failure. The failure times of the system can easily
be recorded, but the cause of the failure is not always recognized due to a variety of factors,
including a lack of adequate diagnosis, time and expense constraints for comprehensive failure
analysis, and numerous component failures with destructive consequences. As a result, in the
literature of reliability and life testing analysis, such data in which the true cause of system failure
is unknown and only a minimum random subset of the reasons that are responsible for system
failure can be recognized is referred to as masked data. See [1,2] for more details.

The overall quality of today’s products due to the existing advanced technology based on
computers, automation and simulation has been improved drastically, which makes them extremely
reliable and trustworthy. Consequently, gathering failure data for testing of such extremely reliable
products using ordinary reliability tests (ORTs) has become a very costly and time-consuming
process, making the use of ORTs impractical. Hence, ALTs are a more advanced approach for
obtaining fast failure data by testing items under higher stress than normal, and then, a life
stress relationship is used to get the product’s life characteristics under normal usage settings.
According to [3], stress loading in ALT may be performed in a variety of ways, although the
most commonly used stress loadings are constant, step, and progressive stress loadings. Many
scholars so far have looked at the ALT models, including [4–10]. Assuming a lognormal lifetime
distribution, Li et al. [5] proposed two types of Bayesian accelerated acceptance sampling plans for
illustrating product reliability based on the product’s operating characteristic curve under Type-I
censoring. The first plan addresses both producer and customer risks at the same time, whereas the
second exclusively considers consumer risk. Rahman et al. [9] used MLE methods for estimating
the parameters of Burr-X life distribution parameters assuming that failure under arithmetically
increasing stress levels of CSALT forms a geometric process. Ma et al. [10] proposed an optimum
hybrid accelerated test plan under many experimental design restrictions by combining ALT with
accelerated degradation testing and modeling the degradation process with an inverse Gaussian
process.

However, there are situations when these sorts of relationships are not possible. Because of
the prevalence of this issue in ALTs, PALTs are considered to be preferable option and are usually
implemented in two ways. The first is constant stress PALT, while the second is SSPALT. In
SSPALT, a sample of components or systems is first tested under normal usage circumstances
for a certain amount of time, and then systems or components that have not failed are allocated
to testing at accelerated conditions until all items fail or a predetermined censorship scheme is
met. SSPALT analysis has been considered by many authors since it was first suggested by [11,12]
as a TRV model. Bhattacharyya et al. [13] developed a tampered failure rate model using the
TRV model. Bai et al. [14–16] are others who considered SSPALT using the same concept of
the TRV model for different distributions and censoring schemes. Assuming the TRV model,
Zhang et al. [17] discussed the MLEs of the unknown parameters for the extended Weibull
distribution. Ismail et al. [18,19] investigated the MLEs of the parameters of the Weibull and
Burr Type-XII distributions, respectively, and compared the results based on two different PrHC
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schemes. Mahmoud et al. [20–22] deals with SSPALT based on an adaptive type PrHC scheme to
obtain estimates of parameters using MLEs and Bayesian estimates (BEs) of generalized Pareto,
two-parameter exponentiated Weibull and Lindley distributions, respectively.

A considerable number of studies have been carried out on parameter estimation using
mask data based on ORTs since it was first introduced by [1,2]. Considering different failure
distributions, Guess et al. [23–33] utilizes the MLE technique for estimating model parameters for
a single component or a series or parallel systems of two or three components, whereas Reiser
et al. [34–43] considered BE technique based on different priors. As it was discussed earlier, many
real-life systems or machines these days are made of hybrid structures which are a combination
of series and parallel subsystems. More complex systems can have many hybrid subsystems which
are generally connected in parallel-series, series-parallel, series-parallel-series, and parallel-series-
parallel configurations and so on. Peng et al. [44] developed a Bayesian approach for system
reliability evaluation and prediction in which pass-fail data, lifespan data, and deterioration data
are integrated coherently at multiple system levels. Yang et al. [45] developed an Adaptive Bayesian
Melding reliability evaluation technique for analyzing and assessing the reliability of a hierarchical
system with imperfect prior knowledge. They also expanded the concept to a broader multi-level
hierarchical structure by employing a more effective method of pooling inconsistent priors. Yang
et al. [46] proposed a Bayesian reliability approach for complex systems with dependent life metrics
and developed a likelihood decomposition method to convert the overall likelihood into a product
of explicit and implicit evidence-based likelihood functions. As of now, only a limited number
of research papers considering hybrid systems based on ORTs have been published. Considering
three component parallel-series and series-parallel systems, Wang et al. [47] obtained the MLEs
of the parameters based on masked data assuming constant and linear hazard rate of indepen-
dent components. Sha et al. [48] considered a hybrid system of three dependent components
and obtained the MLEs based on mask data assuming a bivariate exponential distribution. Cai
et al. [49] considered the same system as in [48] and derived the MLEs based copula function
under mask cause of failure. Recently, Rodrigues et al. [50,51] used more complex structures based
on four or five components and obtained MLEs and BEs under incomplete data.

Only a few studies on ALTs so far that focused on hybrid systems and masked data have been
published in available research. Reference [52] under SSALT, describes the procedure of obtaining
MLEs of the parameters of the Weibull distribution for a series system based on an expecta-
tion minimization algorithm assuming symmetric masking. Considering masked interval data in
SSALT, Fan et al. [53] obtained estimates of the parameters of the exponential distribution. Xu
et al. [54,55] described the general Bayesian analysis of the series system masked failure data
for the log-location-scale and Weibull distributions respectively under SSALT. Assuming the same
exponential hazard rate for a four components hybrid system, Shi et al. [56,57] obtained the MLEs
of unknown parameters of the model based on the masked data under SSPALT and CSPALT
respectively. Shi et al. [58] considered two different hybrid systems of three components and then
obtained MLEs of the modified Weibull distribution.

To the best of our knowledge so far, no article has been published that considers SSALT
for PLHR distribution for a hybrid system under masked data. Much of the sources listed above
considered hazard rates that are monotonic in nature, but there are cases where the hazard rate
is not monotonic. The primary goal of this work is to describe the SSPALT using a more
flexible PLHR that can be used when failure rates indicate non-monotonic characteristics for
hybrid systems. To illustrate the considered estimation procedure under SSPALT using PrHC
masked data, a three-component hybrid system is considered. The rest of the paper is organized
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as follows, Section 2 addresses the formulation of the SSPALT model for PrHC masked data
from a hybrid system and some useful assumptions. The MLEs and corresponding ACIs and
ST-B CIs of the parameters and acceleration factor are discussed in Section 3. In Section 4, we
conducted a simulation study to demonstrate the performance of the estimation procedures and
the methodology discussed in this paper. Section 5 addresses the suggested approach’s real-life
data applicability. Finally, we conclude our study in Section 6.

2 Design and Assumptions of the Model

2.1 PLHR Distribution
In reliability and life testing experiments/studies, hazard rate is the most important function

since it plays a very important role in characterizing the aging process of the systems and hence
in classifying failure time distributions, more details can be seen in [59]. Commonly used hazard
rates are constant, linear and power hazard rates. However, distributions derived from these hazard
rates are very useful and popular in reliability and life testing theory when the failure rate depicts
monotonic properties, but they cannot be used to fit non-monotonic failure rates. Therefore,
in this paper, a more flexible PLHR distribution introduced by [60] that is derived from the
combination of linear and power hazard rates is considered. Different shapes of hazard rate and
density function of PLHR distribution with different values of parameters are given in Figs. 1
and 2, respectively. The Probability density function (PDF), cumulative distribution function
(CDF), reliability function (RF) and the hazard rate (HR) of PLHR distribution are given
respectively by the following equations:
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Figure 1: (Continued)
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Figure 1: Shapes of the HR function of PLHR distribution with different values of the parameters
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Figure 2: Shapes of the PDF of PLHR distribution using different values of the parameters

2.2 Basic Assumptions
In this paper, the following assumptions are made in order to describe the SSPALT model for

a hybrid structure under PrHC masked data:

1. Xξ , ξ = 1, 2 represents the two stress levels, i.e., X1 and X2 are normal and accelerated stress
level, respectively, used in SSPALT.

2. The system under consideration is a series parallel system containing three independent
components j = 1, 2, 3 which is described by Fig. 3 as follows:
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Figure 3: A series parallel hybrid system of three components

3. The lifetime Tξ i, ξ = 1, 2; i = 1, 2, . . . , n of system i tested under SSPALT are i.i.d. at both
normal and accelerated test conditions.

4. The data masking mechanism is statistically independent of the various stress conditions
used in the experiment and the actual cause of failure of the system.

5. The lifetime of jth component at normal stress X1, in the considered hybrid system follows
PLHR distribution and the corresponding PDF, CDF, SF and HR are given respectively
by Eqs. (1)–(4).

6. Let the total lifetime T of a component in hybrid system under SSPALT is explained by
TRV model and can be written as follows:

T =
{

X , if X < τ

τ +ϑ−1 (X − τ) , if X > τ
(5)

where X represents lifetime of the component at X1, τ is the time when items are switched from
X1 to X2 and is known as stress change time and ϑ > 1 is used to reflect the effect of stress change
and is known as acceleration factor. Now lifetime of the component at X2 by using Eqs. (1)–(5)
can be obtained as
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Definition 2.1: Masking Probability

Suppose there are n system that are tested in the experiment and tξ i represents observed value
of Tξ i, where ξ = 1, 2 represents the stress levels. Suppose also that tξ ij, i = 1, 2, 3, . . . , n; j = 1, 2, 3

are realizations of the life time Tξ ij of the jth component of the system i. Let ωξ iεΩξ i be a masked

event corresponding to the jth component of the system i that is one of the possible causes for
system failure. If ωi include only single component, e.g., ωi = {1}, then it can be said that the
failure cause of the system is exact, otherwise cause is called masked [1,47,56]. Let Cξ ij be the
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jth component that is the exact cause of failure of system i with masked event ωξ iεΩξ i, then the
masking probability can be defined as follows:

P
(
Ωξ i =ωξ i|tξ i < Tξ i < tξ i + dtξ i, Cξ ij = j

)
(10)

Now, using the Assumption 4, above expression for masking probability can be written as
follows:

P
(
Ωξ i =ωξ i|tξ i < Tξ i < tξ i + dtξ i, Cξ ij = j

)= P
(
Ωξ i =ωξ i|Cξ ij = j

)= ζξ i (11)

2.3 Formulation of the SSPALT with PrHC Mask Data
PrHC scheme was first proposed and applied by [61] in traditional life tests. In SSPALT,

suppose experiment is first started by randomly choosing n similar systems of three components
described in the Fig. 3 to be assigned to test at the normal stress level X1 with some predefined
progressive values of random removals patterns e1, e2 . . . , em, stress change time τ and a test
termination time t0. Now, test will progress by removing e1 systems randomly at the time t1 of
first failure. Similarly, e2 systems will be removed randomly at the time t2 of second failure and
so on. If, n1 is the number of total observed failures occurred at normal use condition X1 and
en1 is total systems removed at X1 before stress change time τ , then total remaining surviving
systems will be (n− nu − en1). At this point τ of the experiment, all the remaining (n− n1 − en1)

survival systems are removed from the test and are assigned to test at accelerated test condition
X2(> X1) with hybrid test termination time t0

∗ = min(tm,m,n, t0) following the same procedure as

it was on stress X1. If mth failure tm,m,n is observed before the pre-set time constraint t0, then
we will stop the test by removing all the remaining em = n − m − (e1 + e2 + · · · + em−1) test
systems from the experiment. If mth failure tm,m,n is not observed before t0, then test will be
terminated by removing all the remaining ed = n − d − (e1 + e2 + · · · + ed−1) test systems, where
d is the number system failures before t0. Let n2 be the total number of observed failures at
accelerated test condition X1 during time interval [τ , t0], for more details see [62,63]. In many
complicated systems these days, the cause that exactly responsible for system failure is not known.
Let Ωξ i = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} be the set of all the possible events that can be
a reason for the system failure and ωξ i be a subset (observed value) of the Ωξ i. If observed
subset ωξ i contains exactly one element, then cause of the system failure is known. In contrast,
if observed subset ωξ i contains more than one element, then the exact reason of system failure
is not known (or Masked). In this scenario, following two cases of failure data are observed in
general:

I :
(
tξ ,1,m,n,ωξ ,1,m,n

)
,
(
tξ ,2,m,n,ωξ ,2,m,n

)
, . . . ,

(
tξ ,n1,m,n,ωξ ,n1,m,n

)
< τ <

(
tξ ,n1+1,m,n,ωξ ,n1+1,m,n

)
. . .

(tξ ,m,m,n,ωξ ,m,m,n), if tξ ,m,m,n ≤ t0
II :
(
tξ ,1,m,n,ωξ ,1,m,n

)
,
(
tξ ,2,m,n,ωξ ,2,m,n

)
, . . . ,

(
tξ ,n1,m,n,ωξ ,n1,m,n

)
< τ <

(
tξ ,n1+1,m,n,ωξ ,n1+1,m,n

)
. . .

(tξ ,(n1+n2),m,n,ωξ ,m,m,n, if tξ ,m,m,n > t0

(12)

Now, using Eqs. (10), (12) and the PrHC masked data given in Eq. (16), we can write the
likelihood function for the hybrid system under SSPALT as follows:

L (ϑ ,γ ,κ)∝
n1∏

i=1

⎡
⎣
⎛
⎝∑

j∈ωξ i

ζξ ifξ ij

⎞
⎠ {R1 (ti)}ri

⎤
⎦ r∏

i=n1+1

⎡
⎣
⎛
⎝∑

j∈ωξ i

fξ ij

⎞
⎠ {R2 (ti)}ri

⎤
⎦ [R2 (t0)]r

∗
(13)
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where, ti = tξ ,i,m,n, r = m, r∗ = 0 for first data set and r = d = n1+n2, r∗ = n−d−(e1+e2+· · ·+ed−1)

for second data set given in Eq. (12).

Theorem 2.1: For a hybrid system consist of j independent components described in Fig. 3
having lifetime Tξ i with masking probability P

(

ξ i =ωξ i|Cξ ij = j

)
, the density function of the

hybrid system due to masked event ωξ iε
ξ i with exact failure component j at time tξ i is given by
following expression:

P
(
tξ i < Tξ i < tξ i + dtξ i,
ξ i =ωξ i

)= ∑
j∈ωξ i

ζξ ifξ ij (14)

Proof:

Probability that the system i is failed due to component j under mask occurrence ωξ i at time
tξ i can be obtained as follows [47,56]:

P
(
tξ i < Tξ i < tξ i + dtξ i,Ωξ i =ωξ i

)

=
3∑

j=1

P
(
tξ i < Tξ i < tξ i + dtξ i,Ωξ i =ωξ i, Cξ ij = j

)

=
3∑

j=1

P
(
tξ i < Tξ i < tξ i + dtξ i, Cξ ij = j

)
P
(
Ωξ i =ωξ i|tξ i < Tξ i < tξ i + dtξ i, Cξ ij = j

)

=
∑
j∈ωξ i

P
(
tξ i < Tξ i < tξ i + dtξ i, Cξ ij = j

)
P
(
Ωξ i =ωξ i|tξ i < Tξ i < tξ i + dtξ i, Cξ ij = j

)
(15)

Now, the lifetime Tξ i of the hybrid system i given in Fig. 3 is

Tξ i = min
[
Tξ i1, max

(
Tξ i2, Tξ i2

)]
And, therefore the RF of the system i can be obtained as follows:

P
(
Tξ i > tξ i

)= P
(
Tξ i1 > tξ i

)
P
[
max

(
Tξ i2, Tξ i3

)]
= P

(
Tξ i1 > tξ i

) [
1−P

(
Tξ i2 ≤ tξ i

)
P
(
Tξ i2 ≤ tξ i

)]= Rξ i1
(
tξ i
) [

1−Fξ i2(tξ i)Fξ i3(tξ i)
]

(16)

Similarly, the probability densities of hybrid system i which is failed due to component j at
time tξ i can be calculated as

Pξ i1 = P
(
tξ i < Tξ i < tξ i + dtξ i, Cξ j = 1

)= P
(
tξ i < Tξ i1 < tξ i + dtξ i

) [
1−P

(
Tξ i2 ≤ tξ i

)
P
(
Tξ i3 ≤ tξ i

)]
= fξ1

(
tξ i
) [

1−Fξ2
(
tξ i
)

Fξ3
(
tξ i
)]

dtξ i = hξ1
(
tξ i
)

Rξ1
(
tξ i
) [

1− (1−Rξ2
(
tξ i
)) (

1−Rξ3
(
tξ i
))]

dtξ i

Pξ i2 = P
(
tξ i < Tξ i < tξ i + dtξ i, Cξ j = 2

)= P
(
Tξ i1 > tξ i

)
P
(
tξ i < Tξ i2 < tξ i + dtξ i

)
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)
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)

fξ2
(
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)
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(
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) [
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(
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)]

dtξ i

Pξ i3 = P
(
tξ i < Tξ i < tξ i + dtξ i, Cξ j = 3

)= P
(
Tξ i1 > tξ i

)
P
(
Tξ i2 ≤ tξ i

)
P
(
tξ i < Tξ i3 < tξ i + dtξ i

)
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(
tξ i
)

Fξ2
(
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(
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)
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For simplifying notations, let denote⎧⎨
⎩

fξ i1 = hξ1
(
tξ i
)

Rξ1
(
tξ i
) [

1− (1−Rξ2
(
tξ i
)
)(1−Rξ3

(
tξ i
)
)
]= fξ1(tξ i)

[
1−Fξ2(tξ i)Fξ3(tξ i)

]
fξ i2 = Rξ1

(
tξ i
)

hξ2
(
tξ i
)

Rξ2
(
tξ i
) [

1−Rξ3
(
tξ i
)]= Rξ1

(
tξ i
)

fξ2(tξ i)Fξ3(tξ i)

fξ i3 = Rξ1
(
tξ i
) [

1−Rξ2
(
tξ i
)]

hξ3
(
tξ i
)

Rξ3
(
tξ i
)= Rξ1

(
tξ i
)

Fξ2(tξ i)fξ3(tξ i)

(17)

Now using Eqs. (11), (15), (17) and Assumption 4, we obtained following:

P
(
tξ i < Tξ i < tξ i + dtξ i, 
ξ i =ωξ i

)= ∑
j∈ωξ i

ζξ ifξ ij

which completes the proof.

Applying Eqs. (11), (14) and (16) in Eq. (13), we obtained the following form of the likelihood
function [56]:

L (ϑ ,γ ,κ)∝
n1∏

i=1

(
ti + γ tκi

)
exp

(
−1

2
t2
i −

γ

κ + 1
tκ+1
i

)[
1−

(
1− exp

(
−1

2
t2
i −

γ

κ + 1
tκ+1
i

))2
]

×
n1∏

i=1

[
exp

(
−1

2
t2
i −

γ

κ + 1
tκ+1
i

){
1−

(
1− exp

(
−1

2
t2
i −

γ

κ + 1
tκ+1
i

))2
}]ri

×
r∏

i=n1+1

[
ϑ
{
(τ +ϑ (ti − τ))+ γ (τ +ϑ (ti − τ))κ

}
exp

(
−1

2
(τ +ϑ (ti − τ))2 − γ

κ + 1
(τ +ϑ (ti − τ))κ+1

)

×
{

1−
(

1− exp
(
−1

2
(τ +ϑ (ti − τ))2 − γ

κ + 1
(τ +ϑ (ti − τ))κ+1

))2
}]

×
r∏

i=n1+1

[
exp

(
−1

2
(τ +ϑ (ti − τ))2 − γ

κ + 1
(τ +ϑ (ti − τ))κ+1

)

×
{

1−
(

1− exp
(
−1

2
(τ +ϑ (ti − τ))2 − γ

κ + 1
(τ +ϑ (ti − τ))κ+1

))2
}]ri

×
[

exp
(
−1

2
(τ +ϑ(t0 − τ))2 − γ

κ + 1
(τ +ϑ(t0 − τ))κ+1

)

×
{

1−
(

1− exp
(
−1

2
(τ +ϑ(t0 − τ))2 − γ

κ + 1
(τ +ϑ(t0 − τ))κ+1

))2
}]r∗

(18)

where, at use stress level X1, f1 (ti) and R1 (ti) are failure density function and reliability of the
system i respectively caused by each component and are obtained by using Eqs. (1), (3), (16), (17)
and Assumption 4 as follows, respectively:

f1 (ti)=
(
ti + γ tκi

)
exp

(
−1

2
t2
i −

γ

κ + 1
tκ+1
i

)[
1−

(
1− exp

(
−1

2
t2
i −

γ

κ + 1
tκ+1
i

))2
]

R1 (ti)= exp
(
−1

2
t2
i −

γ

κ + 1
tκ+1
i

){
1−

(
1− exp

(
−1

2
t2
i −

γ

κ + 1
tκ+1
i

))2
}
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similarly, at accelerated stress level X2, f2 (ti) and R2 (ti) are failure density function and reliability
of the system i respectively caused by each component and are obtained by using Eqs. (6), (8),
(16), (17) and Assumption 6 as follows, respectively:

f2 (ti)= ϑ
{
(τ +ϑ (ti − τ))+ γ (τ +ϑ (ti − τ))κ

}
exp

(
−1

2
(τ +ϑ (ti − τ))2 − γ

κ + 1
(τ +ϑ (ti − τ))κ+1

)

×
{

1−
(

1− exp
(
−1

2
(τ +ϑ (ti − τ))2 − γ

κ + 1
(τ +ϑ (ti − τ))κ+1

))2
}

R2 (ti)= exp
(
−1

2
(τ +ϑ (ti − τ))2 − γ

κ + 1
(τ +ϑ (ti − τ))κ+1

)

×
{

1−
(

1− exp
(
−1

2
(τ +ϑ (ti − τ))2 − γ

κ + 1
(τ +ϑ (ti − τ))κ+1

))2
}

3 Estimation of Model Parameters

3.1 Point Estimates
To obtain the estimates of parameters, the MLE technique is used. Now, taking log on both

sides of Eq. (18) and making some adjustments, the log likelihood function (or Score function)
l= L (ϑ ,γ ,κ) is derived in the form of following equation:

l∝ r∗ (r− nu) logφ0 + r∗ (r− nu) log
(

1− (1−φ0)
2
)
+

nu∑
i=1

log
(
ti + γ tκi

)+ nu∑
i=1

(1+ ri) log�1

+
nu∑

i=1

(1+ ri)log
(

1− (1−�1)
2
)
+

r∑
i=nu+1

logϑ +
r∑

i=nu+1

log
(
�2 + γ�κ

2

)+ r∑
i=nu+1

(1+ ri) logφ1

+
r∑

i=nu+1

(1+ ri)log
(

1− (1−φ1)
2
)

(19)

where, we assume exp
(
−1

2 t2
i − γ

κ+1 tκ+1
i

)
= �1; (τ +ϑ (ti − τ)) = �2; τ + ϑ (t0 − τ) = �0

exp
(
−1

2�2
2 − γ

κ+1�κ+1
2

)
= φ1 and exp

(
−1

2�2
0 − γ

κ+1�κ+1
0

)
= φ0 to make equations simple.

Now, differentiating Eq. (19) partially with respect to model parameter ϑ ,γ and κ, we
obtained following likelihood equations:

∂l

∂ϑ
=− (t0 − τ) r∗ (r− nu)

(
�0 + γ�κ

0

)⎧⎨⎩1+ 2 (1−φ0)φ0(
1− (1−φ0)

2
)
⎫⎬
⎭+ (r− nu)

ϑ
+

r∑
i=nu+1

(ti − τ)
(
1+ γ κ�κ−1

2

)
(
�2 + γ�κ

2

)

−
r∑

i=nu+1

(ti − τ) (1+ ri)
(
�2 + γ�κ

2

)⎧⎨⎩1+ 2 (1−φ1)φ1(
1− (1−φ1)

2
)
⎫⎬
⎭= 0 (20)
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∂l

∂γ
=−r∗ (r− nu)�κ+1

0

κ + 1

⎧⎨
⎩1− 2 (1−φ0)φ0(

1− (1−φ0)
2
)
⎫⎬
⎭−

nu∑
i=1

(1+ ri) tκ+1
i

κ + 1

⎧⎨
⎩1− 2 (1−�1)�1(

1− (1−�1)
2
)
⎫⎬
⎭

+
nu∑

i=1

tκi(
ti + γ tκi

) + r∑
i=nu+1

�κ
2(

�2 + γ�κ
2

) − r∑
i=nu+1

(1+ ri)�κ+1
2

κ + 1

⎧⎨
⎩1− 2 (1−φ1)φ1(

1− (1−φ1)
2
)
⎫⎬
⎭= 0 (21)

∂l

∂κ
= r∗ (r− nu) γ�κ+1

0 (1− (κ + 1) log�0)

(κ + 1)2

⎧⎨
⎩1− 2 (1−φ0)(

1− (1−φ0)
2
)
⎫⎬
⎭+

nu∑
i=1

γ tκi logti(
ti + γ tκi

)

+
nu∑

i=1

(1+ ri) γ tκ+1
i (1− (κ + 1) logti)

(κ + 1)2

⎧⎨
⎩1− 2 (1−�1)(

1− (1−�1)
2
)
⎫⎬
⎭+

r∑
i=nu+1

γ�κ
2 log�2(

�2 + γ�κ
2

)

+
r∑

i=nu+1

(1+ ri)γ�κ+1
2 (1− (κ + 1) log�2)

(κ + 1)2

⎧⎨
⎩1− 2(1−φ1)(

1− (1−φ1)
2
)
⎫⎬
⎭= 0 (22)

The MLEs ϑ̂ , γ̂ and κ̂ of the parameters ϑ ,γ and κ can be obtained by solving Eqs. (20)–(22)
simultaneously but these equations are very complex non-linear equations to be solved analytically.
In fact, above equations cannot be solved analytically, therefore Newton–Raphson technique is
used to solve these equations numerically.

3.2 Interval Estimates
3.2.1 ACIs

One of the best redeeming features of MLE is due to its large sample properties. For large sets
of data, the distribution of MLEs of the parameters is approximately normal. As it is discussed
in the last subsection, the likelihood equations for finding MLEs are virtually impossible to solve
in close form and, hence the exact distribution of the MLEs is nearly impossible to find for
a complex situation such as the one we are dealing with. Therefore, we utilized the asymptotic
properties of MLEs to construct the ACIs. The distribution of MLEs ϑ̂ , γ̂ and κ̂ of the unknown
parameters ϑ ,γ and κ is asymptotically normal and can be described as follows:⎛
⎝ϑ̂

γ̂

κ̂

⎞
⎠=

⎛
⎝
⎛
⎝ϑ

γ

κ

⎞
⎠ , V̂

⎞
⎠ (23)

where, V̂ is asymptotic variance covariance which can be calculated by inverting observed infor-
mation matrix F and replacing parameters ϑ ,γ and κ with their corresponding MLEs ϑ̂ , γ̂ and
κ̂ as follows:

V̂ =
⎛
⎝V̂11 V̂12 V̂13

V̂21 V̂22 V̂23

V̂31 V̂32 V̂33

⎞
⎠= F−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− ∂2l

∂ϑ2 − ∂2l

∂ϑ∂γ
− ∂2l

∂ϑ∂κ

− ∂2l

∂γ ∂ϑ
− ∂2l

∂γ 2 − ∂2l

∂γ ∂κ

− ∂2l

∂κ∂ϑ
− ∂2l

∂κ∂γ
− ∂2l

∂κ2

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

(24)
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where the elements of F are given in Appendix A. Now 100(1−α)% ACIs for model parameters
ϑ ,γ and κ can be obtained as follows:

ϑ̂ ± zα/2

√
V̂11; γ̂ ± zα/2

√
V̂22; κ̂ ± zα/2

√
V̂22 (25)

where, V̂11 = var(ϑ̂), V̂11 = var(γ̂ ), V̂11 = var(κ̂) and zα/2 represent (1 − α/2) quantile of standard
normal distribution.

3.2.2 Bootstrap CIs
This subsection deals with the bootstrap re-sampling approach for constructing parameters

CIs in which the original data is assumed to be a population and then several samples are
generated using the original data to create the CIs, for more details see [64–66]. We use the
following algorithm to construct ST-B CIs [56]:

1. Find the MLEs �̂=
(
ϑ̂ , γ̂ , κ̂

)
of the parameters �= (ϑ ,γ ,κ) based on PrHC masked data

generated from PLHR distribution under SSPALT which is obtained by following the Steps
1–6 in Section 4.

2. Now using MLEs �̂ =
(
ϑ̂ , γ̂ , κ̂

)
and PrHC masked data in Step 1, generate following

bootstrap sample:

(
I : t∗ξ ,1,m,n,ω∗

ξ ,1,m,n

)
,
(

t∗ξ ,1,m,n,ω∗
ξ ,1,m,n

)
, . . . ,

(
t∗ξ ,n1,m,n,ω∗

ξ ,n1,m,n
)
< τ <

(
t∗ξ ,n1,m,n,ω∗

ξ ,n1,m,n
)
. . .

(t∗ξ ,m,m,n,ω∗
ξ ,m,m,n), if t∗ξ ,m,m,n ≤ t0(

II :
(

t∗ξ ,1,m,n,ω∗
ξ ,1,m,n

)
,
(

t∗ξ ,1,m,n,ω∗
ξ ,1,m,n

)
, . . . ,

(
t∗ξ ,n1,m,n,ω∗

ξ ,n1,m,n
)
< τ <

(
t∗ξ ,n1,m,n,ω∗

ξ ,n1,m,n
)
. . .(

t∗ξ ,(n1+n2),,m,n,ω∗
ξ ,(n1+n2),m,n

)
, if t∗ξ ,m,m,n > t0

)

3. Using bootstrap sample obtained in Step 2, find estimate �̂
∗ =

(
ϑ̂∗, γ̂ ∗, κ̂∗

)
.

4. Repeat above 3 steps N times, say for example N = 5000 and obtain a set{
�̂
∗
i , i = 1, 2, . . .N

}
of bootstrap estimates and the corresponding statistics

T
∗
i =

(
�̂
∗
i − �̂i

)/√
var(�̂∗

i ), i = 1, 2, . . .N .

5. Compute 100(1−α)% ST-B CIs now, therefore can be constructed for �̂ as[
�̂+T

∗
i(1−α/2)

√
var
(
�̂∗
)

, �̂+T
∗
i(α/2)

√
var
(
�̂∗
)]
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4 Simulation Study

Here in this section of the paper, we are going to perform a simulation study to investigate
and compare the performance of estimates for the hybrid system under SSPALT for PrHC masked
data by utilizing the Monte Carlo simulation technique. The performance of MLEs assessed with
their respective mean square errors (MSEs) and relative absolute biases (RABs). 95% ACIs are
also constructed and their performance is investigated in terms of their respective ILs. First, we
generated the hybrid progressive censored data from the considered distribution under SSPALT
following some of the steps given in [58,64,67] and the complete steps of the algorithm are
given as:

1. Specify the values of [τ , n, m, t0, (e1, e2, . . . , em)] and the values of the parameters ϑ ,γ ,κ.

2. To obtain a random censored sample of size r, first generate a random sample of size r
from uniform distribution U(0, 1), suppose these generated samples are (U1,U2, . . . ,Ur).

3. Specify, Xi = U1/(i+∑r
m=n−i+1 em

i for given values of censoring scheme (e1, e2, . . . , em), where,
i = 1, 2, . . . r, fore case I, r = m, and r = d, for Case II.

4. Define Ui,m,n = 1−∏r
m=n−i+1 em in order to generate progressive censored sample of size r

from uniform distribution as U1,m,n,U2,m,n . . .Ur,m,n.

5. Set Un1,m,n < F1(τ ) ≤ Un1+1,m,n, in order to find sample of size n1 from PLHR distri-
bution at normal stress level for fixed values of parameters γ ,κ and ϑ using the expression
log(1−Ui,m,n)+ 1

2 t2
i + γ

κ+1 tκ+1
i = 0.

6. Similarly, find a sample at accelerated condition for fixed values of parameters ϑ ,γ ,κ, τ
using the following equation log(1−Ui,m,n)+ 1

2 (τ +ϑ(ti − τ))2 + γ
κ+1 (τ +ϑ(ti − τ))κ+1 = 0.

7. Following above steps, we generated the desired PrHC masked data from PLHR distribu-
tion in the form of Eq. (12).

8. Now, using the data obtained in Step 7, compute MLEs �̂ =
(
ϑ̂ , γ̂ , κ̂

)
of the parameters

�= (ϑ ,γ ,κ) by solving Eqs. (20)–(22) and their respective MSEs and RABs.

9. Replicate Steps 2–9, 10,000 times, and obtain average MLEs, MSEs and RABs of the
parameters.

10. Compute the 95% ACIs for the parameters of PLHR distribution and acceleration factor.

11. For different values of [τ , n, m, t0, (e1, e2, . . . , em)], ϑ ,γ ,κ and test schemes, the above
procedure from Steps 1 to 10 should be repeated.

In our study, we used four different censoring schemes generated from six different com-
binations of n and m with different fixed values of τ and t0. The censoring schemes, initially
fixed values of parameters and the values of τ , n, m, t0 that we used in this paper are given in
Table 1. Averages of MLEs based on 10,000 replications described in simulation study and their
respective MSEs and RABs are reported in Tables 2 and 3. 95% ACIs and ST-B CIs along with
their expected interval length are reported in Tables 4 and 5.

Fig. 4 presents the plots of simulated samples and the histograms of the parameters to verify
the convergence of the parameters. For this demonstration, plots are made using the Scheme 1
simulation results. The graphs indicate that the parameters are converging, and the histograms
reveal that they are asymptotically normal over large number of simulation runs. As a result,
the simulation study is consistent with the statistical assumptions for parameter estimation. The
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step-by-step process of the proposed estimation method is demonstrated through a flow chart
given in Fig. 5.

Table 1: PrHC schemes, combinations of (n, m) and (τ , t0) with fixed values of parameters ϑ ,γ ,κ

Censoring scheme Values of parameters Values of τ , t0, and p (n, m)

1: r1 = r2 = . . .=
rm−1 = 0, rm = n−m

ϑ = 1.6, γ = 1.1,
κ = 1.2

(τ = 0.75, t0 = 1.0,
p = 0.20)
(τ = 1.0, t0 = 1.25,
p = 0.20)
(τ = 1.25, t0 = 1.5,
p = 0.20)

(60, 35), (60, 45),
(70, 35), (70, 45),
(80, 35), (80, 45)

2: r1 = n−m, r2 =
. . .= rm−1 = rm = 0

ϑ = 1.6, γ = 1.1,
κ = 1.2

(τ = 0.75, t0 = 1.0,
p = 0.20)
(τ = 1.0, t0 = 1.25,
p = 0.20)
(τ = 1.25, t0 = 1.5,
p = 0.20)

(60, 35), (60, 45),
(70, 35), (70, 45),
(80, 35), (80, 45)

3: r1 = r2 = . . .=
rm−6 = 0,
rm−5 = rm−4 = . . .=
rm−1 = 1,
rm = n−m− 5

ϑ = 1.6, γ = 1.1,
κ = 1.2

(τ = 0.75, t0 = 1.0,
p = 0.20)
(τ = 1.0, t0 = 1.2,
p = 0.20)
(τ = 1.25, t0 = 1.5,
p = 0.20)

(60, 35), (60, 45),
(70, 35), (70, 45),
(80, 35), (80, 45)

4: r1 = r2 = . . .= rm =
(n−m)

m

ϑ = 1.6, γ = 1.1,
κ = 1.2

(τ = 0.75, t0 = 1.0,
p = 0.20)
(τ = 1.0, t0 = 1.25,
p = 0.20)
(τ = 1.25, t0 = 1.5,
p = 0.20)

(60, 35), (60, 45),
(70, 35), (70, 45),
(80, 35), (80, 45)

Table 2: The MLEs of parameters of with their respective MSEs and RABs with Schemes 1
and 2

(n, m) ϑ γ κ

MLE MSE RAB MLE MSE RAB MLE MSE RAB

CS 1 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 0.75, t0 = 1.0)

(60, 35) 1.483 0.73 0.359 0.933 0.047 0.002 0.983 0.023 0.001
(60, 45) 1.532 0.662 0.286 0.982 0.116 0.014 1.032 0.046 0.002
(70, 35) 1.625 0.53 0.173 1.075 0.248 0.057 1.125 0.177 0.028
(70, 45) 1.647 0.499 0.151 1.097 0.279 0.071 1.147 0.208 0.038
(80, 35) 1.623 0.53 0.173 1.071 0.244 0.057 1.126 0.178 0.028
(80, 45) 1.544 0.645 0.27 0.994 0.132 0.018 1.044 0.062 0.004

(Continued)
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Table 2 (continued).

(n, m) ϑ γ κ

MLE MSE RAB MLE MSE RAB MLE MSE RAB

CS 1 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.0, t0 = 1.25)

(60, 35) 1.626 0.529 0.172 1.076 0.249 0.058 1.126 0.178 0.028
(60, 45) 1.995 0.008 0.099 1.045 0.77 0.411 1.495 0.699 0.327
(70, 35) 1.731 0.381 0.084 1.181 0.397 0.133 1.231 0.326 0.086
(70, 45) 1.627 0.528 0.171 1.077 0.25 0.058 1.127 0.179 0.029
(80, 35) 1.626 0.529 0.172 1.076 0.249 0.058 1.126 0.178 0.028
(80, 45) 1.65 0.495 0.149 1.1 0.282 0.073 1.15 0.212 0.039

CS 1 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.25, t0 = 1.5)

(60, 35) 1.627 0.528 0.171 1.077 0.25 0.058 1.127 0.179 0.029
(60, 45) 1.73 0.382 0.084 1.18 0.396 0.133 1.23 0.326 0.086
(70, 35) 1.626 0.529 0.172 1.076 0.249 0.058 1.126 0.179 0.025
(70, 45) 1.627 0.527 0.171 1.077 0.251 0.058 1.127 0.18 0.029
(80, 35) 1.624 0.532 0.174 1.074 0.246 0.056 1.124 0.176 0.027
(80, 45) 1.647 0.499 0.151 1.097 0.279 0.071 1.147 0.208 0.038

CS 2 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 0.75, t0 = 1.0)

(60, 35) 1.627 0.527 0.171 1.077 0.251 0.058 1.127 0.18 0.029
(60, 45) 1.627 0.528 0.172 1.077 0.25 0.058 1.127 0.179 0.028
(70, 35) 1.543 0.646 0.27 0.993 0.132 0.018 1.043 0.061 0.004
(70, 45) 1.624 0.532 0.175 1.074 0.245 0.056 1.124 0.175 0.027
(80, 35) 1.626 0.53 0.173 1.076 0.248 0.057 1.126 0.177 0.028
(80, 45) 1.625 0.53 0.173 1.075 0.248 0.057 1.125 0.177 0.028

CS 2 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.0, t0 = 1.25)

(60, 35) 1.628 0.527 0.171 1.078 0.251 0.058 1.128 0.18 0.029
(60, 45) 1.627 0.527 0.171 1.077 0.251 0.058 1.127 0.18 0.029
(70, 35) 1.625 0.53 0.173 1.075 0.248 0.057 1.125 0.177 0.028
(70, 45) 1.648 0.498 0.151 1.098 0.279 0.071 1.148 0.209 0.038
(80, 35) 1.613 0.547 0.186 1.063 0.231 0.05 1.113 0.16 0.023
(80, 45) 1.625 0.531 0.173 1.075 0.247 0.057 1.125 0.176 0.028

CS 2 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.25, t0 = 1.5)

(60, 35) 1.628 0.526 0.17 1.078 0.251 0.059 1.128 0.181 0.029
(60, 45) 1.648 0.497 0.15 1.098 0.281 0.072 1.148 0.21 0.038
(70, 35) 1.544 0.645 0.27 0.994 0.132 0.018 1.044 0.062 0.004
(70, 45) 1.626 0.529 0.172 1.076 0.248 0.057 1.126 0.178 0.028
(80, 35) 1.652 0.492 0.147 1.102 0.285 0.074 1.152 0.215 0.04
(80, 45) 1.544 0.645 0.27 0.994 0.132 0.018 1.044 0.062 0.004
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Table 3: The MLEs of parameters of with their respective MSEs and RABs with Schemes 3
and 4

(n, m) ϑ γ κ

MLE MSE RAB MLE MSE RAB MLE MSE RAB

CS 3 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 0.75, t0 = 1.0)

(60, 35) 1.628 0.526 0.17 1.078 0.252 0.059 1.128 0.181 0.029
(60, 45) 1.629 0.525 0.169 1.079 0.253 0.059 1.129 0.182 0.029
(70, 35) 1.627 0.527 0.171 1.077 0.25 0.058 1.127 0.18 0.029
(70, 45) 1.626 0.529 0.172 1.076 0.249 0.058 1.126 0.178 0.028
(80, 35) 1.626 0.529 0.172 1.076 0.249 0.058 1.126 0.178 0.028
(80, 45) 1.625 0.53 0.173 1.075 0.248 0.057 1.125 0.177 0.028

CS 3 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.0, t0 = 1.25)

(60, 35) 1.625 0.531 0.173 1.075 0.247 0.057 1.125 0.176 0.028
(60, 45) 1.626 0.529 0.172 1.076 0.249 0.053 1.126 0.178 0.028
(70, 35) 1.645 0.502 0.153 1.095 0.276 0.07 1.145 0.205 0.037
(70, 45) 1.977 0.033 0.001 1.427 0.745 0.389 1.477 0.674 0.308
(80, 35) 1.648 0.498 0.151 1.098 0.28 0.071 1.148 0.209 0.038
(80, 45) 1.645 0.502 0.153 1.095 0.276 0.07 1.145 0.205 0.037

CS 3 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.25, t0 = 1.5)

(60, 35) 1.649 0.497 0.15 1.099 0.281 0.072 1.149 0.21 0.038
(60, 45) 1.625 0.531 0.173 1.075 0.247 0.057 1.125 0.176 0.028
(70, 35) 1.636 0.515 0.162 1.086 0.262 0.063 1.136 0.192 0.032
(70, 45) 1.625 0.531 0.173 1.075 0.247 0.057 1.125 0.176 0.028
(80, 35) 1.646 0.501 0.153 1.096 0.276 0.07 1.146 0.206 0.037
(80, 45) 1.625 0.531 0.173 1.075 0.247 0.057 1.125 0.177 0.028

CS 4 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 0.75, t0 = 1.0)

(60, 35) 1.647 0.499 0.151 1.097 0.279 0.071 1.147 0.208 0.038
(60, 45) 1.627 0.528 0.172 1.077 0.25 0.058 1.127 0.179 0.028
(70, 35) 1.543 0.646 0.27 0.993 0.132 0.018 1.043 0.061 0.004
(70, 45) 1.624 0.532 0.175 1.074 0.245 0.056 1.124 0.175 0.027
(80, 35) 1.542 0.662 0.286 0.982 0.116 0.014 1.032 0.046 0.002
(80, 45) 1.635 0.53 0.173 1.075 0.248 0.057 1.125 0.177 0.028

CS 4 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.0, t0 = 1.25)

(60, 35) 1.627 0.527 0.171 1.077 0.251 0.058 1.127 0.18 0.029
(60, 45) 1.731 0.381 0.084 1.181 0.397 0.133 1.231 0.326 0.086
(70, 35) 1.625 0.530 0.173 1.075 0.248 0.057 1.125 0.177 0.028
(70, 45) 1.578 0.498 0.151 1.098 0.279 0.071 1.148 0.209 0.038
(80, 35) 1.613 0.547 0.186 1.063 0.231 0.05 1.113 0.16 0.023
(80, 45) 1.595 0.228 0.099 1.075 0.247 0.057 1.125 0.176 0.028

(Continued)
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Table 3 (continued).

(n, m) ϑ γ κ

MLE MSE RAB MLE MSE RAB MLE MSE RAB

CS 4 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.25, t0 = 1.5)

(60, 35) 1.652 0.492 0.147 1.102 0.285 0.074 1.152 0.215 0.04
(60, 45) 1.627 0.527 0.171 1.077 0.25 0.058 1.127 0.18 0.029
(70, 35) 1.625 0.531 0.173 1.075 0.247 0.057 1.125 0.176 0.028
(70, 45) 1.626 0.529 0.172 1.076 0.249 0.053 1.126 0.178 0.028
(80, 35) 1.613 0.447 0.186 1.063 0.231 0.05 1.113 0.16 0.023
(80, 45) 1.574 0.345 0.127 0.994 0.132 0.018 1.044 0.062 0.004

Table 4: Lower (L) and Upper (U) limits and corresponding ILs of 95% ACIs and ST-B CIs with
Schemes 1 and 2

(n, m) ϑ γ κ

ACI (L, U, IL) ACI (L, U, IL) ACI (L, U, IL) BCI (L, U, IL) BCI (L, U, IL) BCI (L, U, IL)

CS 1 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 0.75, t0 = 1.0)

(60, 35) 1.439, 2.527,
1.048

0.886, 0.937,
0.351

0.982, 0.984,
0.202

0.417, 2.399,
1.006

0.841, 0.89,
0.337

0.941, 0.943,
0.192

(60, 45) 0.673, 2.391,
1.718

0.866, 1.008,
0.442

1.028, 1.036,
0.192

0.64, 2.27,
1.649

0.822, 0.957,
0.424

0.985, 0.993,
0.183

(70, 35) 1.151, 2.139,
0.909

0.819, 1.244,
0.425

1.063, 1.227,
0.169

1.094, 2.031,
0.872

0.778, 1.181,
0.408

1.019, 1.176,
0.161

(70, 45) 0.859, 2.135,
0.976

0.818, 1.25,
0.432

1.062, 1.232,
0.171

0.817, 2.027,
0.937

0.777, 1.187,
0.415

1.018, 1.181,
0.163

(80, 35) 0.872, 2.174,
1.102

0.827, 1.188,
0.361

1.064, 1.188,
0.143

0.829, 2.064,
1.058

0.785, 1.128,
0.346

1.02, 1.139,
0.136

(80, 45) 1.165, 2.265,
0.9

0.82, 1.24,
0.421

1.057, 1.215,
0.167

1.107, 2.056,
0.864

0.779, 1.177,
0.404

1.013, 1.165,
0.159

CS 1 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.0, t0 = 1.25)

(60, 35) 1.444, 2.016,
1.152

0.784, 1.487,
0.725

1.022, 1.438,
0.206

1.373, 1.914,
1.106

0.744, 1.412,
0.696

0.98, 1.378,
0.196

(60, 45) 1.164, 2.132,
0.978

0.817, 1.253,
0.457

1.062, 1.234,
0.176

1.106, 2.024,
0.939

0.776, 1.19,
0.439

1.018, 1.183,
0.167

(70, 35) 1.165, 2.165,
0.9

0.82, 1.24,
0.421

1.057, 1.215,
0.167

1.107, 2.056,
0.864

0.779, 1.177,
0.404

1.013, 1.165,
0.159

(70, 45) 1.151, 2.139,
0.909

0.819, 1.244,
0.425

1.063, 1.227,
0.169

1.094, 2.031,
0.872

0.778, 1.181,
0.408

1.019, 1.176,
0.161

(80, 35) 1.116, 2.156,
1.046

0.824, 1.221,
0.397

1.064, 1.208,
0.145

1.061, 2.047,
1.004

0.782, 1.159,
0.381

1.02, 1.158,
0.138

(80, 45) 1.083, 2.171,
1.083

0.826, 1.2,
0.334

1.063, 1.191,
0.135

1.029, 2.061,
1.039

0.784, 1.139,
0.321

1.019, 1.142,
0.128

(Continued)
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Table 4 (continued).

(n, m) ϑ γ κ

ACI (L, U, IL) ACI (L, U, IL) ACI (L, U, IL) BCI (L, U, IL) BCI (L, U, IL) BCI (L, U, IL)

CS 1 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.25, t0 = 1.5)

(60, 35) 1.086, 2.17,
1.084

0.826, 1.202,
0.376

1.064, 1.192,
0.184

1.032, 2.06,
1.04

0.784, 1.141,
0.361

1.02, 1.143,
0.175

(60, 45) 1.089, 2.169,
1.082

0.826, 1.204,
0.378

1.064, 1.194,
0.137

1.035, 2.059,
1.038

0.784, 1.143,
0.363

1.02, 1.145,
0.13

(70, 35) 1.083, 2.171,
1.088

0.827, 1.2,
0.373

1.063, 1.191,
0.128

1.029, 2.061,
1.044

0.785, 1.139,
0.358

1.019, 1.142,
0.122

(70, 45) 1.078, 2.174,
1.096

0.827, 1.198,
0.371

1.064, 1.188,
0.124

1.025, 2.064,
1.052

0.785, 1.137,
0.356

1.02, 1.139,
0.118

(80, 35) 1.078, 2.174,
1.096

0.827, 1.198,
0.371

1.064, 1.188,
0.136

1.025, 2.064,
1.052

0.785, 1.137,
0.356

1.02, 1.139,
0.129

(80, 45) 1.074, 2.176,
1.134

0.827, 1.196,
0.394

1.064, 1.186,
0.127

1.021, 2.066,
1.088

0.785, 1.136,
0.378

1.02, 1.137,
0.121

CS 2 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 0.75, t0 = 1.0)

(60, 35) 1.162, 2.134,
1.297

0.819, 1.251,
0.432

1.062, 1.234,
0.172

1.105, 2.026,
1.245

0.778, 1.188,
0.415

1.018, 1.183,
0.163

(60, 45) 1.078, 2.174,
1.062

0.827, 1.198,
0.371

1.064, 1.188,
0.124

1.025, 2.064,
1.019

0.785, 1.137,
0.356

1.02, 1.139,
0.118

(70, 35) 1.083, 2.171,
1.088

0.826, 1.2,
0.374

1.063, 1.191,
0.128

1.029, 2.061,
1.044

0.784, 1.139,
0.359

1.019, 1.142,
0.122

(70, 45) 1.078, 2.174,
1.096

0.827, 1.198,
0.371

1.064, 1.188,
0.124

1.025, 2.064,
1.052

0.785, 1.137,
0.356

1.02, 1.139,
0.118

(80, 35) 1.074, 2.176,
1.102

0.827, 1.196,
0.369

1.064, 1.186,
0.122

1.021, 2.066,
1.058

0.785, 1.136,
0.354

1.02, 1.137,
0.116

(80, 45) 1.081, 2.173,
1.083

0.827, 1.2,
0.373

1.064, 1.19,
0.126

1.028, 2.063,
1.039

0.785, 1.139,
0.358

1.02, 1.141,
0.12

CS 2 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.0, t0 = 1.25)

(60, 35) 1.027, 2.199,
1.172

0.832, 1.168,
0.336

1.063, 1.163,
0.165

0.976, 2.088,
1.125

0.79, 1.109,
0.322

1.019, 1.115,
0.157

(60, 45) 1.162, 2.134,
0.972

0.818, 1.252,
0.434

1.062, 1.234,
0.157

1.105, 2.026,
0.933

0.777, 1.189,
0.417

1.018, 1.183,
0.149

(70, 35) 1.17, 2.13,
0.969

0.818, 1.256,
0.438

1.062, 1.238,
0.172

1.112, 2.022,
0.93

0.777, 1.193,
0.42

1.018, 1.187,
0.163

(70, 45) 1.975, 1.979,
1.108

0.682, 2.515,
0.233

0.587, 2.367,
0.148

1.877, 1.879,
1.063

0.648, 2.388,
0.224

0.563, 2.269,
0.141

(80, 35) 1.072, 2.178,
1.106

0.828, 1.195,
0.367

1.064, 1.186,
0.127

1.019, 2.068,
1.061

0.786, 1.135,
0.352

1.02, 1.137,
0.121

(80, 45) 1.078, 2.174,
1.096

0.827, 1.198,
0.371

1.064, 1.188,
0.124

1.025, 2.064,
1.052

0.785, 1.137,
0.356

1.02, 1.139,
0.118

(Continued)
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Table 4 (continued).

(n, m) ϑ γ κ

ACI (L, U, IL) ACI (L, U, IL) ACI (L, U, IL) BCI (L, U, IL) BCI (L, U, IL) BCI (L, U, IL)

CS 2 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.25, t0 = 1.5)

(60, 35) 1.164, 2.132,
0.978

0.817, 1.253,
0.457

1.062, 1.234,
0.176

1.106, 2.024,
0.939

0.776, 1.19,
0.439

1.018, 1.183,
0.167

(60, 45) 1.151, 2.139,
0.909

0.819, 1.244,
0.425

1.063, 1.227,
0.169

1.094, 2.031,
0.872

0.778, 1.181,
0.408

1.019, 1.176,
0.161

(70, 35) 1.116, 2.156,
1.046

0.824, 1.221,
0.397

1.064, 1.208,
0.145

1.061, 2.047,
1.004

0.782, 1.159,
0.381

1.02, 1.158,
0.138

(70, 45) 1.083, 2.171,
1.083

0.826, 1.2,
0.334

1.063, 1.191,
0.135

1.029, 2.061,
1.039

0.784, 1.139,
0.321

1.019, 1.142,
0.128

(80, 35) 1.072, 2.178,
1.117

0.828, 1.195,
0.369

1.064, 1.186,
0.128

1.019, 2.068,
1.072

0.786, 1.135,
0.354

1.02, 1.137,
0.122

(80, 45) 1.078, 2.174,
1.087

0.827, 1.198,
0.372

1.063, 1.189,
0.123

1.025, 2.064,
1.043

0.785, 1.137,
0.357

1.019, 1.14,
0.117

Table 5: Lower (L) and Upper (U) limits and corresponding ILs of 95% ACIs and ST-B CIs with
Schemes 3 and 4

(n, m) ϑ γ κ

ACI (L, U, IL) BCI (L, U, IL) ACI (L, U, IL) BCI (L, U, IL) ACI (L, U, IL) BCI (L, U, IL)

CS 3 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 0.75, t0 = 1.0)

(60, 35) 1.261, 2.04,
1.141

0.785, 1.483,
0.718

1.016, 1.424,
0.204

1.389, 1.937,
1.095

0.745, 1.408,
0.689

0.974, 1.365,
0.194

(60, 45) 1.178, 2.158,
0.968

0.818, 1.249,
0.453

1.056, 1.222,
0.174

1.12, 2.049,
0.929

0.777, 1.186,
0.435

1.012, 1.171,
0.165

(70, 35) 1.165, 2.765,
0.9

0.82, 1.24,
0.421

1.057, 1.215,
0.167

1.107, 2.056,
0.864

0.779, 1.177,
0.404

1.013, 1.165,
0.159

(70, 45) 1.13, 2.182,
1.036

0.825, 1.217,
0.393

1.058, 1.196,
0.144

1.074, 2.072,
0.994

0.783, 1.156,
0.377

1.014, 1.146,
0.137

(80, 35) 1.168, 2.164,
0.988

0.821, 1.241,
0.394

1.057, 1.217,
0.164

1.11, 2.055,
0.948

0.78, 1.178,
0.378

1.013, 1.167,
0.156

(80, 45) 1.173, 2.161,
0.969

0.819, 1.246,
0.415

1.056, 1.22,
0.166

1.115, 2.052,
0.93

0.778, 1.183,
0.398

1.012, 1.169,
0.158

CS 3 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.0, t0 = 1.25)

(60, 35) 0.738, 2.388,
1.623

0.863, 1.025,
0.264

1.03, 1.042,
0.214

0.702, 2.267,
1.558

0.819, 0.973,
0.253

0.987, 0.999,
0.203

(60, 45) 1.085, 2.204,
1.117

0.829, 1.191,
0.32

1.058, 1.174,
0.199

1.031, 2.093,
1.072

0.787, 1.131,
0.307

1.014, 1.125,
0.189

(70, 35) 1.082, 2.205,
1.12

0.829, 1.189,
0.353

1.057, 1.173,
0.194

1.029, 2.094,
1.075

0.787, 1.129,
0.339

1.013, 1.124,
0.184

(70, 45) 1.027, 2.199,
1.172

0.832, 1.168,
0.336

1.063, 1.163,
0.165

0.976, 2.088,
1.125

0.79, 1.109,
0.322

1.019, 1.115,
0.157

(Continued)
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Table 5 (continued).

(n, m) ϑ γ κ

ACI (L, U, IL) BCI (L, U, IL) ACI (L, U, IL) BCI (L, U, IL) ACI (L, U, IL) BCI (L, U, IL)

CS 3 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.0, t0 = 1.25)

(80, 35) 1.162, 2.134,
0.972

0.818, 1.252,
0.434

1.062, 1.234,
0.157

1.105, 2.026,
0.933

0.777, 1.189,
0.417

1.018, 1.183,
0.149

(80, 45) 1.17, 2.13,
0.969

0.818, 1.256,
0.438

1.062, 1.238,
0.172

1.112, 2.022,
0.93

0.777, 1.193,
0.42

1.018, 1.187,
0.163

CS 3 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.25, t0 = 1.5)

(60, 35) 1.082, 2.205,
1.12

0.829, 1.189,
0.353

1.057, 1.173,
0.194

1.029, 2.094,
1.075

0.787, 1.129,
0.339

1.013, 1.124,
0.184

(60, 45) 1.162, 2.134,
0.972

0.818, 1.252,
0.434

1.062, 1.234,
0.157

1.105, 2.026,
0.933

0.777, 1.189,
0.417

1.018, 1.183,
0.149

(70, 35) 1.17, 2.13,
0.969

0.818, 1.256,
0.438

1.062, 1.238,
0.172

1.112, 2.022,
0.93

0.777, 1.193,
0.42

1.018, 1.187,
0.163

(70, 45) 1.168, 2.164,
0.988

0.821, 1.241,
0.394

1.057, 1.217,
0.164

1.11, 2.055,
0.948

0.78, 1.178,
0.378

1.013, 1.167,
0.156

(80, 35) 1.151, 2.139,
0.909

0.819, 1.244,
0.425

1.063, 1.227,
0.169

1.094, 2.031,
0.872

0.778, 1.181,
0.408

1.019, 1.176,
0.161

(80, 45) 1.085, 2.204,
1.095

0.829, 1.191,
0.364

1.058, 1.174,
0.121

1.031, 2.093,
1.051

0.787, 1.131,
0.349

1.014, 1.125,
0.115

CS 4 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 0.75, t0 = 1.0)

(60, 35) 1.085, 2.204,
1.117

0.829, 1.191,
0.32

1.058, 1.174,
0.199

1.031, 2.093,
1.072

0.787, 1.131,
0.307

1.014, 1.125,
0.189

(60, 45) 1.178, 2.158,
0.968

0.818, 1.249,
0.453

1.056, 1.222,
0.174

1.12, 2.049,
0.929

0.777, 1.186,
0.435

1.012, 1.171,
0.165

(70, 35) 1.165, 2.133,
0.996

0.818, 1.254,
0.426

1.063, 1.235,
0.163

1.107, 2.025,
0.956

0.777, 1.191,
0.409

1.019, 1.184,
0.155

(70, 45) 0.929, 2.359,
1.63

0.862, 1.028,
0.266

1.036, 1.052,
0.156

0.883, 2.24,
1.564

0.818, 0.976,
0.255

0.993, 1.008,
0.148

(80, 35) 1.074, 2.176,
1.12

0.827, 1.196,
0.369

1.064, 1.186,
0.132

1.021, 2.066,
1.075

0.785, 1.136,
0.354

1.02, 1.137,
0.125

(80, 45) 1.075, 2.177,
1.113

0.828, 1.197,
0.369

1.065, 1.187,
0.147

1.022, 2.067,
1.068

0.786, 1.137,
0.354

1.021, 1.138,
0.14

CS 4 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.0, t0 = 1.25)

(60, 35) 1.725, 2.165,
0.97

0.82, 1.24,
0.421

1.057, 1.215,
0.167

1.107, 2.056,
0.864

0.779, 1.177,
0.404

1.013, 1.165,
0.179

(60, 45) 1.192, 2.152,
1.185

0.818, 1.257,
0.446

1.055, 1.231,
0.19

1.133, 2.043,
1.137

0.777, 1.194,
0.428

1.011, 1.18,
0.181

(70, 35) 1.173, 2.161,
0.969

0.819, 1.246,
0.415

1.056, 1.22,
0.166

1.115, 2.052,
0.93

0.778, 1.183,
0.398

1.012, 1.169,
0.158

(70, 45) 1.074, 2.176,
1.12

0.827, 1.196,
0.369

1.064, 1.186,
0.132

1.021, 2.066,
1.075

0.785, 1.136,
0.354

1.02, 1.137,
0.125

(80, 35) 0.725, 2.361,
1.102

0.861, 1.027,
0.369

1.036, 1.05,
0.129

0.689, 2.242,
1.058

0.818, 0.975,
0.354

0.993, 1.007,
0.123

(80, 45) 1.069, 2.179,
1.11

0.829, 1.192,
0.363

1.064, 1.184,
0.126

1.016, 2.069,
1.065

0.787, 1.132,
0.348

1.02, 1.135,
0.12
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Table 5 (continued).

(n, m) ϑ γ κ

ACI (L, U, IL) BCI (L, U, IL) ACI (L, U, IL) BCI (L, U, IL) ACI (L, U, IL) BCI (L, U, IL)

CS 4 with (ϑ = 1.6,γ = 1.1,κ = 1.2) and (τ = 1.25, t0 = 1.5)

(60, 35) 1.178, 2.158,
0.968

0.818, 1.249,
0.453

1.056, 1.222,
0.174

1.12, 2.049,
0.929

0.777, 1.186,
0.435

1.012, 1.171,
0.165

(60, 45) 1.17, 2.13,
0.969

0.818, 1.256,
0.438

1.062, 1.238,
0.172

1.112, 2.022,
0.93

0.777, 1.193,
0.42

1.018, 1.187,
0.163

(70, 35) 1.162, 2.134,
0.972

0.818, 1.252,
0.434

1.062, 1.234,
0.157

1.105, 2.026,
0.933

0.777, 1.189,
0.417

1.018, 1.183,
0.149

(70, 45) 1.083, 2.171,
1.068

0.826, 1.2,
0.374

1.063, 1.191,
0.128

1.029, 2.061,
1.025

0.784, 1.139,
0.359

1.019, 1.142,
0.122

(80, 35) 1.081, 2.173,
1.092

0.827, 1.2,
0.373

1.064, 1.19,
0.126

1.028, 2.063,
1.048

0.785, 1.139,
0.358

1.02, 1.141,
0.12

(80, 45) 1.074, 2.176,
1.136

0.827, 1.196,
0.466

1.064, 1.186,
0.114

1.021, 2.066,
1.57

0.785, 1.136,
0.447

1.02, 1.137,
0.108
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Figure 4: The plot of simulated samples and histogram of the parameters (ϑ ,γ ,κ) respectively
with Scheme 1
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Figure 5: The flow chart to demonstrate the proposed estimation method

From the results listed in Tables 2 and 3, it can be observed that, for fixed τ and t0, the
MSEs and RABs of the model parameters are decreasing in most of the test schemes as a result
of an increase in the values of n and m and MLEs ϑ̂ , γ̂ and κ̂ of the model parameters ϑ ,γ
and κ are getting more closer to their respective real values and this is reasonable because when
sample data is large, we can expect more precise estimates. A decreasing pattern in the values
of MSEs and RABs can also be observed as n and m increases simultaneously in all cases for
fixed values of n, τ and t0. For fixed n and m, the MSEs and RABs are also getting smaller as
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the values of τ and t0 getting larger and MLEs are approaching to their respective real values
and this is also very much possible because with a larger experimental time, we can expect more
failures and hence sample size will be larger in that case. Results reported in Tables 4 and 5 shows
that expected lengths of both 95% ACIs and ST-B CIs are getting shorter with increasing values
of n and m, for fixed values of τ and t0 in almost all cases except for ϑ which is quite acceptable
since ϑ is not a parameter of the distribution under study instead it is acceleration factor. It is
also observed that both 95% ACIs and ST-B CIs are getting shorter when the values of n and m
increases simultaneously. As a comparison between 95% ACIs and ST-B CIs, it is observed that
the ST-B CIs provides more narrower expected ILs in almost every case. Therefore, now based on
the above findings, we can conclude that the proposed model and methods of estimation in this
paper have performed very well, and hence all the statistical assumptions for fitting the model and
regarding the estimation are satisfactory.

5 Real Data Application

In this section, an actual data set is utilized to further illustrate the performance of the
suggested estimation technique and to demonstrate the application of the PLHR distribution in
practice in the field of reliability engineering. The R statistical programming language is used for
computation. The dataset reported in Table 6 is an uncensored dataset consisting of real failure
times of an airplane’s air conditioning systems (in hours) was first discussed by [68].

Table 6: Failure times of the air conditioning system of an airplane (in hours)

1 3 5 7 11 11 11 12 14 14 14 16 16 20 21

23 42 47 52 62 71 71 87 90 95 120 120 225 246 261

The Kolmogorov-Smirnov (K-S) goodness of fit test is used to fit the PLHR distribution
to real data. The K-S test is used to compare a given data sample with a reference continuous
probability distribution. It is based on the K-S distance, which is the absolute maximum distance
between the sample’s empirical distribution function and the reference distribution’s cumulative
distribution function and its corresponding p-value. In this current example, the K-S distance was
determined to be 0.14146 with a p-value of 0.5856, which is greater than 0.05. Fig. 6 displays the
plots of the empirical CDF vs. fitted CDF of PLHR distribution and histogram of data vs. fitted
PDF of PLHR distribution. Consequently, it is evident from the K-S distance, p-value and Fig. 6
that the PHLR distribution and considered sample data tabulated in Table 6 both have the same
probability distribution. Therefore, given data can be used as an illustration for our model.

Now under SSPALT, for illustrative purposes, let’s consider the stress change time τ to be
24, the test termination time t0 to be 130, and the sample size m to be 20 with respect to the
progressive censoring scheme (e1 = e2 = . . . = e6 = 0, e7 = 1, e8 = 0, e9 = e10 = 1, e11 = 0, e12 =
e13 = 1, e14 = 0, e15 = 1, e16 = e17 = 0, e18 = e19 = 0, e20 = 1). So, utilizing the data provided in
Table 6 with 0% masking, we have the following PrHC data reported in Table 7 on normal and
accelerated stress.

For PrHC data in Table 7 with 0% masking under SSPALT, the MLEs of the parameters
with initial values γ = 0.042003 and κ = −0.3054115 which are the estimates of the parameters
based on the complete data. And the initial value of the acceleration factor ϑ is set to be 1.2.
The MLEs with their corresponding standard errors are reported in Table 9.
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Figure 6: Plot of empirical CDF vs. PLHR CDF and histogram of data vs. fitted PDF of the
PLHR distribution

Table 7: PrHC data of air conditioning systems with 0% masking at each stress level

Normal Stress level: 1 3 5 7 11 11 12 14 16 20 23

Accelerated Stress level: 42 47 52 71 71 87 90 95 120 120

Now, to demonstrate the effect of masking, at each stress level, 20% of failed systems are
chosen at random to be masked. So, utilizing the data provided in Table 7 with 20% masking, the
data obtained after masking with the PrHC scheme under SSPALT at each stress level is reported
in the Table 8 as follows:

Table 8: PrHC data of air conditioning systems with 20% masking at each stress level

Normal Stress level: 1 3 5 7 11 12 14 16 23

Accelerated Stress level: 42 47 52 71 71 87 90 95

For PrHC data in Table 8 with 20% masking under SSPALT, we choose the same initial values
of γ ,κ and ϑ as it was in the case of 0% masking. The MLEs with their corresponding standard
errors are obtained and reported in Table 9.

From Table 9, it can be observed that the ML estimates are more accurate with smaller
standard errors when the sample size is large or the masking proportion is 0%, than the estimates
under a smaller sample size or the masking level is 20%.
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Table 9: MLEs of parameters with their corresponding standard errors based on real data set

Data type γ κ ϑ

Estimate Standard error Estimate Standard error Estimate Standard error

PrHC with 0%
masking

0.035045 0.0011069 −0.254216 0.0041549 1.245230 0.0037102

PrHC with
20% masking

0.0371531 0.0275630 −0.3201362 0.0102856 1.2712872 0.0210763

6 Conclusions

In this article, the SSPALT model has been developed for PrHC data to analyse the lifetime
of a hybrid system of tree components under mask causes of failure. Assuming that the failure of
components independently follows PLHR distribution, estimates of the parameters of PLHR dis-
tribution and the acceleration factor are then obtained using the MLE technique. The performance
of MLEs is investigated through their respective MSEs and RABs. 95% ACIs and ST-B CIs are
also constructed and their performance is investigated in terms of their respective ILs. A simula-
tion study has also been conducted to investigate and compare the performance of estimates for
the hybrid system under SSPALT for PrHC masked data by utilizing the Monte Carlo simulation
technique. Additionally, a real-world data application for an airplane’s air conditioning systems
was utilized to demonstrate the proposed approach. As a comparison between 95% ACIs and ST-
B CIs, it is observed that the ST-B CIs provide narrower expected ILs in almost every case. Based
on the findings, it can be concluded that the proposed model and method of estimation performed
well. Hence all the statistical assumptions for fitting the model and regarding the estimation are
satisfactory. As a future research project, the present study may be extended to more complex
systems using the Bayesian estimation technique with different censored data.

Data Availability: The data used in this paper is available in the paper.
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