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ABSTRACT

In this paper, we introduce mon-symbolic method to obtain the generating functions of the hybrid class of
Hermite-associated Laguerre and its associated polynomials. We obtain the series definitions of these hybrid
special polynomials. Also, we derive the double lacunary generating functions of the Hermite-Laguerre polyno-
mials and the Hermite-Laguerre-Wright polynomials. Further, we find multiplicative and derivative operators
for the Hermite-Laguerre-Wright polynomials which helps to find the symbolic differential equation of the
Hermite-Laguerre-Wright polynomials. Some concluding remarks are also given.
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1 Introduction

Recently, it has been realized that the symbolic method of operational as well as umbral
nature provides powerful tool for the study of special functions [1,2]. Babusci et al. [3] devel-
oped the formalism of the symbolic method of operational nature for obtaining the generating
functions of the Laguerre polynomials. By using symbolic method, the properties of the Laguerre
polynomials could have accordingly been reduced to those of a Newton binomial containing an
operator treated, in all the manipulations, as an ordinary algebraic quantity. Then Dattoli et al. [4]
exploited symbolic method of umbral nature for obtaining the generating functions of the Hermite
polynomials.

The Hermite and Laguerre polynomials, being orthogonal polynomial sequences, arise in
various fields of engineering, mathematics and physics. The Hermite polynomials have applications
in signal processing, probability, combinatorics, numerical analysis, quantum mechanics, random
matrix theory, etc. These polynomials are also an example of Appell sequence, which obeys the
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umbral calculus. The Laguerre polynomials appear in quantum mechanics of the Morse potential,
solution of the Schrödinger equation for a one-electron atom, oscillator system in phase space
and 3D isotropic harmonic oscillator (see [5–8]), etc. The study of Laguerre polynomials becomes
more convenient when these are expressed in terms of Laguerre-Wright polynomials. The symbolic
method has emerged as a powerful tool to solve the problems involving certain special functions
related to different branches of engineering and sciences for example fluid mechanics, physics,
engineering and dynamical processes, etc. Most of the special functions do not show certain
characteristics by classical methods and hence the importance of symbolic and umbral techniques
are realized. These methods are widely used to establish numerous properties such as exponential
and ordinary lacunary generating functions, symbolic definitions, symbolic differential equations,
symbolic multiplicative and derivative operators etc. of known and new special functions and
to evaluate various types of integrals involving these functions. A remarkable application of
symbolic method is the convolution of two special functions to introduce and study new special
functions. Motivated by the importance and applications of the Hermite and Laguerre-Wright
polynomials and the usefulness of symbolic method, in this paper, we introduce and study the
Hermite-Laguerre-Wright polynomials using symbolic method.

It has been shown that the concept related to monomiality techniques of the classical and
generalized polynomials can be exploited to derive certain properties of families of polynomi-
als, including Hermite and Laguerre polynomials used in pure and applied mathematics see for
example [9,10].

The concept and formalism behind the monomiality principle and the symbolic methods can
be exploited to introduce certain generalized as well as hybrid special polynomials and functions
and to simplify the derivation of the properties of known and newly introduced special functions.
The key element of this work is the introduction of the mon-symbolic method, which is the
combination of monomiality techniques and symbolic method.

We recall that the ordinary Laguerre polynomials Ln(x) are defined by means of the following
series definition [11]:

Ln(x)= n!
n∑
r=0

(−x)r
r!2(n− r)!

. (1)

Babusci et al. have proved that the symbolic method of defining special functions can be
exploited for obtaining several properties of certain special functions, which cannot be easily
established by other well known methods [3]. So this method filled a huge vacuum in the study
of special functions.

Babusci defined a symbolic shift operator ĉz as [3]:

ĉαz : f (z) �→ f (z+α), (2)

which satisfies the property ĉαz ĉ
β
z = ĉβz ĉαz = ĉα+β

z . In particular ĉβz ĉ
−β
z = ĉ−β

z ĉβz = 1.

Clearly, for f (z)= 1
Γ (1+z) ,

ĉαz
1

Γ (1+ z)

∣∣∣∣
z=0

= 1
Γ (1+α)

. (3)
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In view of Eq. (1), the symbolic definition of Ln(x) is given as [3]:

Ln(x)= (1−xĉz)n
1

Γ (1+ z)

∣∣∣∣
z=0

. (4)

Interchanging the variables x→ y and y→−x in the definition of Laguerre-Wright polynomi-

als [3] the symbolic definition of the 2-variable Laguerre-Wright polynomials (2VLWP) Λ
(α,β)
n (x,y)

are as follows [3]:

Λ
(α,β)
n (x,y)= (y− ĉz

βx)n
1

Γ (1+ z)

∣∣∣∣
z=α

, (5)

which on simplifying, gives the following series definition for the 2VLWP Λ
(α,β)
n (x,y) [3]:

Λ
(α,β)
n (x,y)= n!

n∑
r=0

(−x)ryn−r
r! (n− r)!Γ (βr+α + 1)

. (6)

The 2-variable associated Laguerre polynomials (2VALP) L(α)
n (x,y) are specified by means of

the following series definition [12]:

L(α)
n (x,y)=

n∑
r=0

Γ (1+α+ n)(−x)ryn−r
r! (n− r)!Γ (1+α + r)

,

which in view of Eq. (6), gives [3]

L(α)
n (x,y)= Γ (1+α+ n)

n!
Λ(α)
n (x,y), (7)

where

Λ(α)
n (x,y):=Λ(α,1)

n (x,y). (8)

In view of Eqs. (5), (7) and (8), symbolic definition of the 2VALP L(α)
n (x,y) is as follows [3]:

L(α)
n (x,y)= Γ (1+α+ n)

n!
(y− ĉzx)n

1
Γ (1+ z)

∣∣∣∣
z=α

. (9)

For y=1, Eq. (5) gives the symbolic definition of the Laguerre-Wright polynomials (LWP)

Λ
(α,β)
n (x) in terms of operator ĉz is as follows:

Λ
(α,β)
n (x)= (1− ĉβz x)

n 1
Γ (1+ z)

|z=α , (10)

simplifying Eq. (10), we get the following series definition of LWP Λ
(α,β)
n (x):

Λ
(α,β)
n (x)= n!

n∑
r=0

(−x)r
r! (n− r)!Γ (βr+α + 1)

. (11)
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Next, we recall that the associated Laguerre polynomials (ALP) L(α)
n (x) are defined by the

following series definition [11]:

L(α)
n (x)=

n∑
r=0

Γ (1+α+ n)(−x)r
r! (n− r)!Γ (1+α+ r)

. (12)

In view of Eqs. (11) and (12), we have:

L(α)
n (x)= Γ (1+α + n)

n!
Λ(α)
n (x), (13)

where

Λ(α)
n (x):=Λ(α,1)

n (x), (14)

which in view of Eq. (10), gives:

Λ(α)
n (x)= (1− ĉzx)n

1
Γ (1+ z)

∣∣∣∣
z=α

. (15)

In view of Eqs. (13) and (15), the symbolic definition of the ALP L(α)
n (x) is given as:

L(α)
n (x)= Γ (1+α + n)

n!
(1− ĉzx)n

1
Γ (1+ z)

|z=α. (16)

The symbolic definition of the Bessel-Wright function Wβ,α(x) is given as [3]:

W (β,α)(x)= eĉ
β
z x 1

Γ (1+ z)

∣∣∣∣
z=α−1

, (17)

which on simplifying, gives the following series definition of Wβ,α(x) [13,14]:

W (β,α)(x)=
∞∑
r=0

xr

r!Γ (βr+α)
. (18)

The symbolic definition of the Mittag-Leffler function Eβ, α(x) is given as [3]:

Eβ,α(x)=
[

1

1−xĉβz

]
1

Γ (1+ z)

∣∣∣∣
z=α−1

, (19)

which on simplifying, gives the following series definition of Eβ, α(x) [13,14]:

Eβ,α(x)=
∞∑
r=0

xr

Γ (βr+α)
. (20)

The study of Hermite polynomials help to solve the classical boundary-value problems in the
parabolic regions, through the use of parabolic coordinates and in quantum mechanics as well as
in other areas of sciences. We recall that the 2-variable Hermite Kampe de Feriet polynomials
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(2VHKdFP) Hn(x, y) are defined by means of the following generating function and series
definition [15]:

∞∑
n=0

Hn(x,y)
tn

n!
= exp(xt+ yt2) (21)

and

Hn(x,y)= n!
[ n2 ]∑
k=0

xn−2kyk

k! (n− 2k)!
, (22)

respectively.

Next, we recall that the nth-order Bessel function Jn(x) is defined by the following series
definition [16]:

Jn(x)=
∞∑
r=0

(−1)r
(x
2

)n+2r

r!Γ (1+ n+ r)
. (23)

In view of Eq. (23) for n= 0, the 0th-order Bessel function Jn(x) is defined as [17]:

J0(2
√
x)=

∞∑
r=0

(−1)rxr

(r! )2
. (24)

According to the monomi ality principle proposed by Steffensen [18] and developed by
Dattoli [10], a polynomial set {pn(x)}∞n=0 is called quasi-monomial if there exist two operators

multiplicative operator M̂ and derivative operator P̂, respectively, such that [10]:

M̂{pn(x)} = pn+1(x) (25)

and

P̂{pn(x)} = npn−1(x). (26)

The multiplicative operator M̂ and derivative operator P̂ satisfy the following commutation
relation:

[P̂,M̂]= P̂M̂ − M̂P̂= 1̂,

thus, the operatorM̂and P̂ display a weyl group structure [10]. Several characteristics of polyno-
mial pn(x) can be obtained by using the operators M̂ and P̂.

Some characteristics are as follows:

(i) If M̂ and P̂ have differential realizations, then the polynomial pn(x) satisfy the following
differential equation:

M̂P̂{pn(x)} = npn(x). (27)

(ii) Assuming here and in the following p0(x) = 1, then pn(x) can be explicitly constructed as:

pn(x)= M̂n{1} (28)
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which gives the series definition for pn(x).

(iii) Consequently the generating function of pn(x) can be obtained as:

exp(tM̂){1} =
∞∑
n=0

pn(x)
tn

n!
(|t|<∞).

By induction, Eq. (25) gives:

M̂rpn(x)= pn+r(x). (29)

We recall that the 2VHKdFP Hn(x, y) is quasi-monomial with respect to the following
multiplicative and derivative operators [10]:

M̂H = x+ 2yDx (30)

and

P̂H =Dx, (31)

respectively.

In view of Eq. (22), it can be easily verified that [10]:

Hn(ax,a2y)= anHn(x,y). (32)

Dattoli et al. [4] used the transition of 2VHKdFP Hn(x, y) from monomiality to umbral inter-
pretation. The newton binomial realizes the umbral image of 2VHKdFP Hn(x, y). Dattoli et al. [4]
have proved that the operational method become a fairly powerful tool once complimented with a
notation of umbral nature. The umbral approach to the 2VHKdFP Hn(x, y) is particularly useful
for a straightforward derivation of the relevant properties.

Dattoli redefined the 2VHKdFP Hn(x, y) using umbral approach of symbolic method as [4]:

Hn(x,y)= (x+ ĥy)nφ0, (33)

where ĥy denotes umbra, which acts on the vacuum φ0 in the following manner [4]:

ĥryφ0 = y
r
2 r!

Γ ( r2 + 1)

∣∣∣cos(rπ
2

)∣∣∣ , (34)

which for r=0, gives φ0 = 1. Thus Eq. (33) can be rewritten as:

Hn(x,y)= (x+ ĥy)n{1}. (35)

In view of Eqs. (28) and (35), we get the following symbolic multiplicative operator of
2VHKdFP:

M̂H = (x+ ĥy). (36)

The use of umbral formalism looks much promising to develop a new technique to study the
theory of special polynomials and special functions as well. Hybrid special functions as well as
polynomials and their applications has been recognized by Dattoli and his co-workers [2,9,12].
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We recall that the 2-variable Hermite-Laguerre polynomials (2VHLP) HLn(x, y) are defined
by means of the following series definition [9]:

HLn(x,y)= n!
n∑
r=0

(−1)rHr(x,y)

(r! )2(n− r)!
(37)

and the Hermite-Bessel-Wright function (HBWF) HWβ,α(x, y) is defined by means of the
following series definition [3]:

HW (β,α)(x,y)=
∞∑
r=0

Hr(x,y)
r!Γ (βr+α)

. (38)

Motivated by the work of Babusci and his co-authors on lacunary generating functions for
Laguerre polynomials [3] and application of the Laguerre polynomials [12,19,20], in this paper, we
introduce certain generating functions for the 2-variable Hermite-Laguerre polynomials and some
new families of polynomials. In Section 2, we introduce the Hermite-associated Laguerre poly-
nomials and obtain ordinary generating function via mon-symbolic approach. Further, we define
some new families of polynomials such as Hermite-Laguerre-Wright polynomials and find their
exponential and ordinary generating functions. In Section 3, we derive the double and the triple
lacunary 2-variable Hermite-Laguerre polynomials and find double lacunary generating functions
for the 2-variable Hermite-Laguerre polynomials and the Hermite-Laguerre-Wright polynomials.
In Section 4, we proposed an idea to find multiplicative and derivative operators for Hermite-
Laguerre-Wright polynomials which helps to find symbolic differential equation for the same
polynomials.

2 Generating Functions of the Hermite-Associated Laguerre and Hermite-Laguerre-Wright
Polynomials

The most interesting example to understand the flexibility and usefulness of the symbolic
method is derivation of generating functions of special polynomials and special functions as well.
In this paper, we consider two types of generating functions, namely exponential and ordinary.

In this section, we introduce the Hermite-associated Laguerre polynomials and the Hermite-
Laguerre-Wright polynomials by using the mon-symbolic method. Also, we obtain certain gener-
ating functions of these polynomials.

In view of Eqs. (15) and (36), we introduce the 1-parameter Hermite-Laguerre-Wright poly-

nomials (1PHLWP) HΛ
(α)
n (x,y) by means of the following symbolic definition:

HΛ(α)
n (x,y) :=Λ(α)

n (x+ ĥy)= (1− ĉzH)n
1

Γ (1+ z)

∣∣∣∣
z=α

, (39)

where

ĉzH := ĉz(x+ ĥy). (40)

Since, in view of Eqs. (35) and (40), we have:

ĉαzH
1

Γ (1+ z)

∣∣∣∣
z=0

= (ĉz(x+ ĥy))α
1

Γ (1+ z)

∣∣∣∣
z=0

= Hα(x,y)
Γ (α+ 1)

(41)
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and

ĉαz ĉ
β
zH

1
Γ (1+ z)

|z=0 = ĉα+β
z Hβ(x,y)

1
Γ (1+ z)

|z=0.

Binomially expanding the right hand side of Eq. (39) and then using Eqs. (35) and (40), we
have:

HΛ(α)
n (x,y)=

n∑
r=0

⎛
⎝nr
⎞
⎠ (−1)rĉrzHr(x,y)

1
Γ (1+ z)

|z=α.

Simplifying, we get the following series definition of the 1PHLWP HΛ
(α)
n (x,y):

HΛ(α)
n (x,y)= n!

n∑
r=0

(−1)rHr(x,y)
r! (n− r)!Γ (r+α + 1)

. (42)

Now, in view of Eq. (39), we define the Hermite-associated Laguerre polynomials (HALP)

HL
(α)
n (x,y) by replacing x with (x+ ĥy) in Eq. (13) as:

HL(α)
n (x,y)= Γ (1+α + n)

n! H
Λ(α)
n (x,y). (43)

Next, we define the Hermite-Laguerre-Wright polynomials (HLWP) HΛ
(α,β)
n (x,y) by replacing

x with (x+ ĥy) in Eq. (10) as:

HΛ
(α,β)
n (x,y)= (1− ĉβz (x+ ĥy))n

1
Γ (1+ z)

∣∣∣∣
z=α

, (44)

which on using Eq. (35), gives the following series definition of HΛ
(α,β)
n (x,y):

HΛ
(α,β)
n (x,y)= n!

n∑
r=0

(−1)rHr(x,y)
r! (n− r)!Γ (βr+α+ 1)

. (45)

In view of Eqs. (42) and (45), it is clear that:

HΛ(α,1)
n (x,y)=HΛ(α)

n (x,y). (46)

In the recent years, Dattoli used the monomiality principle to find the generating functions for
some special polynomials and special functions as well [9,10,12]. Also, Babusci et al. [3] used the
concept of symbolic method to find the generating function of the Laguerre Polynomials. In this
paper, we combine the symbolic method with the monomiality technique to obtain the generating

functions of the HALP HL
(α)
n (x,y) and the HLWP HΛ

(α,β)
n (x,y).

Now, we establish following result for the ordinary generating function of the HALP

HL
(α)
n (x,y):
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Theorem 2.1 The ordinary generating function for HALP HL
(α)
n (x,y) is given by:

∞∑
n=0,H

L(α)
n (x,y)tn= 1

(1− t)(α+1) e
−xt
1−t+ yt2

(1−t)2 . (47)

Proof. From Eq. (43), we have:

∞∑
n=0H

L(α)
n (x,y)tn =

∞∑
n=0

Γ (1+α+ n)
n! H

Λ(α)
n (x,y)tn, (48)

which on using Eqs. (44) and (46) in the right hand side, it gives:

∞∑
n=0H

L(α)
n (x,y)tn =

∞∑
n=0

Γ (1+α+ n)
n!

(1− ĉz(x+ ĥy))n
1

Γ (1+ z)
|z=αtn. (49)

Using the following relation between Gamma function and pochhammer symbol:

(α)n = Γ (α+ n)
Γ (α)

(50)

in Eq. (49), we find:

∞∑
n=0H

L(α)
n (x,y)tn = Γ (1+α)

∞∑
n=0

(α + 1)n
n!

(t− tĉz(x+ ĥy))n
1

Γ (1+ z)

∣∣∣∣
z=α

,

which on using the following series expansion:

∞∑
n=0

(α)n
tn

n!
= 1

(1− t)α
, (|t|< 1) (51)

gives:

∞∑
n=0H

L(α)
n (x,y)tn = Γ (1+α)

1

(1− (t− tĉz(x+ ĥy)))
α+1

1
Γ (1+ z)

∣∣∣∣
z=α

.

Again, using Eqs. (50) and (51), we have:

∞∑
n=0H

L(α)
n (x,y)tn = Γ (1+α)

1

(1− t)α+1

∞∑
n=0

Γ (α+ 1+ n)
Γ (α+ 1)

( −t
1− t

)n
ĉnz(x+ ĥy)n

1
Γ (1+ z)

∣∣∣∣
z=α

1
n!
.

Using Eq. (35) in the right hand side of the above equation, we have:

∞∑
n=0H

L(α)
n (x,y)tn = 1

(1− t)α+1

∞∑
n=0

( −t
1− t

)nHn(x,y)
n!

,

which on using Eqs. (21) and (32) gives assertion (47).

Next, we establish following result for the exponential generating function of the HLWP

HΛ
(α,β)
n (x,y):
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Theorem 2.2 The exponential generating function for HLWP HΛ
(α,β)
n (x,y) is given by:

∞∑
n=0

tn

n!H
Λ

(α,β)
n (x,y)= etHW (β,α+1)(−tx, t2y). (52)

Proof. Using Eq. (44), we have:

∞∑
n=0

tn
n!HΛ

(α,β)
n (x,y)=

∞∑
n=0

tn
n!(1− ĉβz (x+ ĥy))

n 1
Γ (1+z)

∣∣∣
z=α

= e(1−ĉ
β
z (x+ĥy))t 1

Γ (1+z)
∣∣∣
z=α

.
(53)

From [t, ĉβz (x+ ĥy)t]= 0 and Weyl decoupling identity given by [21]:

eÂ+B̂ = eÂeB̂e
−k
2 , k= [Â, B̂] (k ∈C), (54)

We find:
∞∑
n=0

tn

n!H
Λ

(α,β)
n (x,y)= ete−ĉ

β
z t(x+ĥy) 1

Γ (1+ z)

∣∣∣∣
z=α

. (55)

Now, expanding the second exponential in the right hand side of the above equation, Eq. (55)
yields:

∞∑
n=0

tn

n!H
Λ

(α,β)
n (x,y)= et

∞∑
r=0

ĉβrz (−t)r(x+ ĥy)
r

r!
1

Γ (1+ z)

∣∣∣∣
z=α

,

which on simplifying, gives:

∞∑
n=0

tn

n!H
Λ

(α,β)
n (x,y)= et

∞∑
r=0

(−t)rHr(x,y)
r!Γ (βr+α+ 1)

. (56)

Using Eq. (32) in Eq. (56), we have:

∞∑
n=0

tn

n!H
Λ

(α,β)
n (x,y)= et

∞∑
r=0

Hr(−xt,yt2)
r!Γ (βr+α+ 1)

, (57)

which in view of Eq. (38), yields assertion (52).

Since, in view of Eqs. (43) and (46), HΛ
(α,1)
n (x,y)
n! := HL

(α)
n (x,y)

Γ (1+α+n) .

Therefore, from Theorem 2.2, we get the following result.

Corollary 2.1 The ordinary generating function for the polynomial HL
(α)
n (x,y)

Γ (1+α+n) is given by:

∞∑
n=0

tn HL
(α)
n (x,y)

Γ (1+α+ n)
= etHW (1,α+1)(−tx, t2y). (58)



CMES, 2022, vol.130, no.2 913

Now, we proceed to obtain the ordinary generating function for the HLWP HΛ
(α,β)
n (x,y). For

obtaining the ordinary generating function for the HLWP HΛ
(α,β)
n (x,y), we define the Hermite-

Mittag-Leffler function (HMLF) HEβ,α(x, y) by replacing x with (x+ ĥy) in Eq. (19) as:

HEβ,α(x,y)=
[

1

1− ĉβz (x+ ĥy)

]
1

Γ (1+ z)

∣∣∣∣
z=α−1

, (59)

which on simplifying and then using Eq. (35), gives the following series definition for the
HEβ,α(x, y):

HEβ,α(x,y)=
∞∑
r=0

Hr(x,y)
Γ (βr+α)

. (60)

Now, we establish following result for the ordinary generating function of the HLWP

HΛ
(α,β)
n (x,y):

Theorem 2.3 The ordinary generating function for HLWP HΛ
(α,β)
n (x,y) is given by:

∞∑
n=0

tnHΛ
(α,β)
n (x,y)= 1

(1− t)H
Eβ,α+1

(
−xt
1− t

,
yt2

(1− t)2

)
. (61)

Proof. From Eq. (44), we have:

∞∑
n=0

tnHΛ
(α,β)
n (x,y)=

∞∑
n=0

tn(1− ĉβz (x+ ĥy))n
1

Γ (1+ z)
|z=α, (62)

which on using Eq. (51) for α = 1, gives:

∞∑
n=0

tnHΛ
(α,β)
n (x,y)= 1

1− t+ ĉβz t(x+ ĥy)

1
Γ (1+ z)

|z=α,

= 1

(1− t)
[
1+ ĉβz t(x+ĥy)

1−t

] 1
Γ (1+ z)

|z=α. (63)

In view of Eq. (51) for α = 1, we find:

∞∑
n=0

tnHΛ
(α,β)
n (x,y)= 1

(1− t)

∞∑
r=0

ĉβrz

( −t
1− t

)r
(x+ ĥy)r

1
Γ (1+ z)

|z=α.

Using Eqs. (32) and (35) in the above equation, we have:

∞∑
n=0

tnHΛ
(α,β)
n (x,y)= 1

(1− t)

∞∑
r=0

Hr

(
−xt
1−t ,

yt2

(1−t)2
)

Γ (βr+α + 1)
,

which in view of Eq. (60), gives assertion (61).
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Now, we list the following examples of the special polynomials introduced or discussed in this
paper.

In the next section, we obtain the lacunary generating functions of the Hermite-Laguerre

polynomials HLn(x, y) and the HLWP HΛ
(α,β)
n (x,y).

3 Lacunary Generating Functions

Babusci et al. redefined the Laguerre polynomials of degrees 2n and 3n(n ∈ N) by means of
the series definitions and obtained the generating functions for these polynomials by using the
symbolic method [3]. The generating functions of the Laguerre polynomials of degrees 2n and
3n(n∈ N) are named double and triple lacunary generating functions, respectively. Recently, Dattoli
et al. [4] obtained the double lacunary generating function of the 2VHKdFP Hn(x, y).

In this section, we define the 2-variable Hermite-Laguerre polynomials HL2n(x, y) and HL3n(x,
y) by using the symbolic method. Also, we obtain double lacunary generating functions for the
2VHLP and the HLWP.

In the case when α = 0 in Eq. (43), the associated Laguerre polynomials L(α)
n (x) reduce to

the Laguerre polynomials Ln(x) as follows:

HLn(x,y)=HΛ(0)
n (x,y),

which in view of Eqs. (39) and (40), gives the following symbolic definition of the 2VHLP
HLn(x,y):

HLn(x,y)= (1− ĉzH)n
1

Γ (1+ z)

∣∣∣∣
z=0

. (64)

Now, we give the following theorem for the 2-variable Hermite-Laguerre polynomials HL2n(x,
y) and HL3n(x, y).

Theorem 3.1 The series definition for HL2n(x, y) and HL3n(x, y) are given by:

HL2n(x,y)=
n∑
r=0

⎛
⎝nr
⎞
⎠ (−1)rHχ(r)

n (x,y) (65)

and

HL3n(x,y)=
n∑

k,r=0

⎛
⎝nr
⎞
⎠
⎛
⎝nk
⎞
⎠ (−1)k+rHχn

(k+r)(x,y). (66)

Proof. In view of Eq. (64), we have:

HL2n(x,y)= (1− ĉzH)2n
1

Γ (1+ z)

∣∣∣∣
z=0

, (67)
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which on simplifying, gives:

HL2n(x,y)=(1− ĉzH)
n
(1− ĉzH)

n 1
Γ (1+z)

∣∣∣
z=0

=
n∑
r=0

⎛
⎝nr
⎞
⎠ (−1)r(x+ ĥy)

r
(1− ĉzH)

n 1
Γ (1+z)

∣∣∣
z=r

.

Using Eq. (39) in the right hand side of the above equation, we find:

HL2n(x,y)=
n∑
r=0

⎛
⎝nr
⎞
⎠ (−1)r(x+ ĥy)rHΛ(r)

n (x,y). (68)

Therefore, in view of Eqs. (35) and (42), we have:

(x+ ĥy)rHΛ(r)
n (x,y)= n!

n∑
k=0

(−1)kHr+k(x,y)
k! (n− k)!Γ (k+ r+ 1)

.

If we denote xrΛ(r)
n (x) by the polynomial χ

(r)
n (x), then by replacing x with (x+ ĥy), we find:

Hχ(r)
n (x,y)= (x+ ĥy)rHΛ(r)

n (x,y), (69)

which on using Eq. (39), gives the following symbolic definition of the Hχ
(r)
n (x,y):

Hχ(r)
n (x,y)= (x+ ĥy)r(1− ĉzH)n

1
Γ (1+ z)

|z=r. (70)

Thus, using Eq. (69) in Eq. (68), we get the assertion (65).

By the same way, we can prove it for HL3n(x, y), given by (66).

Now, we proceed to obtain the double lacunary generating function of the 2VHLP HLn(x, y).
For this, we denote the product of two 2VHKdFP Hn(x, y) and Hn(z, w), by H2

n (x,y; z,w) which
are called Bi-Hermite polynomials.

Thus, in view of Eq. (33), we have:

H2
n (x,y; z,w):=Hn(x,y)Hn(z,w)

H2
n (x,y; z,w)= [(x+ ĥy)(z+ ĥw)]nφ0,yφ0,w.

(71)

Now, we define the Bi-Hermite-Bessel function H2J0(x, y; z, w) as:

H2J0(x,y; z,w)= J0

(
2
√

(x+ ĥy)(z+ ĥw)

)
φ0,yφ0,w,

which on using Eq. (24), gives:

H2J0(x,y; z,w)=
∞∑
r=0

(−1)r[(x+ ĥy)(z+ ĥw)]
r

(r! )2
φ0,yφ0,w.
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In view of Eq. (33), we get the following series definition of H2J0(x, y; z, w):

H2J0(x,y; z,w)=
∞∑
r=0

(−1)rHr(x,y)Hr(z,w)

(r! )2
. (72)

Now, we are in a position to state the following theorem:

Theorem 3.2 The double lacunary generating function for 2VHLP HLn(x, y) is given by:

∞∑
n=0

tn

n!H
L2n(x,y)= etH2J0(x,y; 2t, t), (73)

where H2J0(x, y; 2t, t) denotes the Bi-Hermite-Bessel function.

Proof. In view of Eq. (67), we have:

∞∑
n=0

tn

n!H
L2n(x,y)=

∞∑
n=0

tn

n!
(1− ĉz(x+ ĥy))2n

1
Γ (1+ z)

|z=0,

which becomes:
∞∑
n=0

tn

n!H
L2n(x,y)= et(1−ĉz(x+ĥy))

2 1
Γ (1+ z)

|z=0. (74)

Simplifying the above equation, we find:

∞∑
n=0

tn
n!HL2n(x,y)=ete−2ĉz(x+ĥy)t+ĉz2(x+ĥy)2t 1

Γ (1+z) |z=0.

Using Eq. (21) in the above equation, we obtain:

∞∑
n=0

tn

n!H
L2n(x,y)= et

∞∑
r=0

ĉrz
r!
Hr(−2(x+ ĥy)t, (x+ ĥy)2t)

1
Γ (1+ z)

|z=0,

which on using Eqs. (32) and (35), it gives:

∞∑
n=0

tn

n!H
L2n(x,y)= et

∞∑
r=0

(−1)rHr(x,y)Hr(2t, t)
r!2

. (75)

In view of Eqs. (72) and (75), we get assertion (73).

Similarly, to obtain the double lacunary generating function for the HLWP HΛ
(α,β)
n (x,y), we

define the Bi-Hermite-Wright function (BHWF) H2Wβ,α(x, y; z, w) as:

H2W (β,α)(x,y; z,w)=W (β,α)((x+ ĥy)(z+ ĥw))φ0,yφ0,w.

Using Eq. (18) in the right hand side of the above equation, we have:

H2W (β,α)(x,y; z,w)=
∞∑
r=0

[(x+ ĥy)(z+ ĥw)]
r

r!Γ (βr+α)
φ0,yφ0,w,
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which on using Eq. (33), gives the following series definition of H2W (β,α)(x,y; z,w):

H2W (β,α)(x,y; z,w)=
∞∑
r=0

Hr(x,y)Hr(z,w)

r!Γ (βr+α)
. (76)

We, now state the following theorem:

Theorem 3.3 The double lacunary generating function for HLWP HΛ
(α,β)
n (x,y) is given by

∞∑
n=0

tn

n!H
Λ2n

(α,β)(x,y)= etH2W (β,α+1)(x,y;−2t, t). (77)

Proof. Using Eq. (44), we have

∞∑
n=0

tn

n!H
	

(α,β)

2n (x,y)=
∞∑
n=0

tn

n!
(1− ĉz

β
(x+ ĥy))

2n 1

(1+ z)

∣∣∣∣
z=α

,

which can be written as:
∞∑
n=0

tn
n!HΛ2n

(α,β)(x,y)=et(1−ĉβz (x+ĥy))
2

1
Γ (1+z) |z=α

= ete((−2t)ĉβz (x+ĥy)+tĉ2βz (x+ĥy)2) 1
Γ (1+z) |z=α ,

which on using Eq. (21), gives:

∞∑
n=0

tn

n!H
Λ2n

(α,β)(x,y)= et
∞∑
r=0

(ĉβz )
r

r!
Hr(−2t(x+ ĥy), t(x+ ĥy)2)

1
Γ (1+ z)

|z=α. (78)

In view of Eqs. (32) and (35), we have:

∞∑
n=0

tn

n!H
Λ2n

(α,β)(x,y)= et
∞∑
r=0

Hr(x,y)Hr(−2t, t)
r!Γ (βr+α + 1)

. (79)

Using Eq. (76) in the right hand side of (79), we get assertion (77).

In the next section, we introduce the symbolic multiplicative and derivative operators and

establish the symbolic differential equation for HLWP HΛ
(α,β)
n (x,y) by using the monomiality

method.

4 Monomiality Principle and Symbolic Differential Equation

In this section, we develop the theory of symbolic multiplicative and derivative operators for

the HLWP HΛ
(α,β)
n (x,y), which helps to find the symbolic differential equation for the HLWP

HΛ
(α,β)
n (x,y).

We obtain the following symbolic-differential recurrence relation for HLWP HΛ
(α,β)
n (x,y):
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Theorem 4.1 The HLWP HΛ
(α,β)
n (x,y) satisfies the following recurrence relation:

HΛ
(α,β)

n−1 (x,y)−xĉzHβΛ
(α,β)

n−1 (x,y)− 2yDxĉzHβΛ
(α,β)

n−1 (x,y)=HΛ
(α,β)
n (x,y). (80)

Proof. Using Eqs. (30) and (36) in Eq. (44), we have:

HΛ
(α,β)

n−1 (x,y)= (1− ĉβz (x+ 2yDx))
n−1 1

Γ (1+ z)

∣∣∣∣
z=α

. (81)

Operating (1− ĉβz (x+ 2yDx)) on both sides of Eq. (81), and then using Eqs. (36) and (44),
we obtain:

(1− ĉβz (x+ 2yDx))HΛ
(α,β)

n−1 (x,y)=HΛ
(α,β)
n (x,y), (82)

which on simplifying, gives assertion (80).

Now, we obtain the symbolic multiplicative and derivative operators for the HLWP

HΛ
(α,β)
n (x,y).

Theorem 4.2 The HLWP HΛ
(α,β)
n (x,y) is quasi-monomial with respect to the following

symbolic multiplicative and derivative operators:

MΛ = (1− ĉβz (x+ 2yDx)) (83a)

and

PΛ =−ĉ−β
z Dx, (83b)

respectively.

Proof. Using Eqs. (30) and (36) in Eq. (44), we have:

HΛ
(α,β)
n (x,y)= (1− ĉβz (x+ 2yDx))

n 1
Γ (1+ z)

∣∣∣∣
z=α

, (84)

Now, operating (1− ĉβz (x+ 2yDx)) in the both sides of Eq. (84), we have:

(1− ĉβz (x+ 2yDx))HΛ
(α,β)
n (x,y)= (1− ĉβz (x+ 2yDx))

n+1 1
Γ (1+ z)

∣∣∣∣
z=α

, (85)

which on using (84), gives:

(1− ĉβz (x+ 2yDx))HΛ
(α,β)
n (x,y)=HΛ

(α,β)

n+1 (x,y). (86)

In view of Eqs. (25) and (86), we obtain assertion (83a).

Now, differentiating Eq. (45) partially with respect to x, we have:

DxHΛ
(α,β)
n (x,y)= n!

n∑
r=1

(−1)rHr−1(x,y)
(r− 1)! (n− r)!Γ (βr+α + 1)

. (87)
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Replacing r by r+ 1 and operating ĉ−β
z on both sides of the above equation, we have:

ĉ−β
z DxHΛ

(α,β)
n (x,y)=−n(n− 1)!

n−1∑
r=0

(−1)rHr(x,y)
r! (n− 1− r)!Γ (βr+α + 1)

. (88)

Using Eq. (45), we get:

ĉ−β
z DxHΛ

(α,β)
n (x,y)=−nHΛ

(α,β)

n−1 (x,y), (89)

which in view of Eq. (26), we get assertion (83b).

Further, we establish the following theorem for the HLWP HΛ
(α,β)
n (x,y):

Theorem 4.3 The HLWP HΛ
(α,β)
n (x,y) satisfies the following symbolic differential equation:

2yD2
xHΛ

(α,β)
n (x,y)+ (x− ĉ−β

z )DxHΛ
(α,β)
n (x,y)− nHΛ

(α,β)
n (x,y)= 0. (90)

Proof. Using multiplicative and derivative operators given by Eqs. (83) and (84) in Eq. (27),
we find:

−(1− ĉβz (x+ 2yDx))ĉ−β
z Dx{HΛ

(α,β)
n (x,y)} = nHΛ

(α,β)
n (x,y), (91)

which on simplification, gives assertion (90).

5 Concluding Remarks

It has been realized that the symbolic method serves as a useful tool to introduce several
special polynomials and their lacunary forms. In this paper, we used the symbolic method to
find the generating functions of different polynomials. In this section, we define the 2-parameter,
2-variable Laguerre polynomials (2P2VLP) by using symbolic approach.

We introduce the 2-parameter, 2-variable Laguerre polynomials (2P2VLP) L(α,β)
n (x,y) by

means of the symbolic definition.

In view of Eqs. (13) and (14), we define the 2P2VLP L(α,β)
n (x,y) as:

L(α,β)
n (x,y)= Γ (1+α + n)

n!
Λ

(α,β)
n (x,y), (92)

which on using Eq. (5), gives the following symbolic definition of the 2P2VLP L(α,β)
n (x,y):

L(α,β)
n (x,y)= Γ (1+α + n)

n!
(y− ĉβz x)

n 1
Γ (1+ z)

∣∣∣∣
z=α

. (93)

Using Eq. (11) in Eq. (93), we get the following series definition of the 2P2VLP L(α,β)
n (x,y):

L(α,β)
n (x,y)= Γ (1+α + n)

n∑
r=0

(−x)r
r! (n− r)!Γ (βr+ 1+α)

. (94)

Finding generating functions of this polynomial is an open problem for further research.
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The results established in this paper can also be obtained by using the umbra of 2VHKDFP
Hn(x, y) but the method will not be purely symbolic. We conclude this paper with the fact that
the symbolic method makes study of special functions easier than classical techniques.

We are now in a position to conclude our paper by investigating the special cases for our
main equations which was given below as Table 1.

Table 1: Examples

S. No. α,β in respective
equations

Ordinary Exponential Polynomials

Generating
functions

Generating
function

I. α = 0; β = 1
in Eq. (10)

1
(1−t) exp

−xt
(1−t) exp(t)C0(xt) The Laguerre

Polynomials Ln(x) [11]
II. β = 1

in Eq. (10)

1
(1−t)α+1 exp

−xt
1−t — The associated Laguerre

Polynomial L(α)
n (x) [11]

III. α = 0; β = 1
in Eq. (5)

1
(1−yt) exp

−xt
1−yt exp(yt)C0(xt) The 2v Laguerre

Polynomials Ln(x, y) [19]
IV. β = 1

in Eq. (5)

1
(1−yt)α+1 exp

−xt
1−yt — The 2v associated

Laguerre polynomials
L(α)
n (x,y) [12]

V. α = 0 in Eq. (43) 1
(1−t) exp

(
−xt
1−t + yt2

(1−t)2
)

exp(t)HC0(xt, yt2) The Hermite-Laguerre

Polynomials HL
(x,y)
n [9]

VI. y= 0
in Eq. (47)

1
(1−t)α+1 exp

−xt
1−t — The associated Laguerre

Polynomials Lα
n (x) [11]

VII. α = 0; y=0
in Eq. (47)

1
(1−t) exp

−xt
1−t — The Laguerre

polynomials Ln(x) [11]
VIII. y= 0

in Eq. (52)
— etW (β,α+1)−xt The 1-variable

Laguerre-Wright
Polynomials Λ

(α,β)
n (x) [3]
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