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Abstract: Touch gesture recognition is an important aspect in human–robot inter-
action, as it makes such interaction effective and realistic. The novelty of this
study is the development of a system that recognizes human–animal affective
robot touch (HAART) using a deep learning algorithm. The proposed system
was used for touch gesture recognition based on a dataset provided by the Recog-
nition of the Touch Gestures Challenge 2015. The dataset was tested with numer-
ous subjects performing different HAART gestures; each touch was performed on
a robotic animal covered by a pressure sensor skin. A convolutional neural net-
work algorithm is proposed to implement the touch recognition system from
row inputs of the sensor devices. The leave-one-subject-out cross-validation
method was used to validate and evaluate the proposed system. A comparative
analysis between the results of the proposed system and the state-of-the-art perfor-
mance is presented. Findings show that the proposed system could recognize the
gestures in almost real time (after acquiring the minimum number of frames).
According to the results of the leave-one-subject-out cross-validation method,
the proposed algorithm could achieve a classification accuracy of 83.2%. It was
also superior compared with existing systems in terms of classification ratio,
touch recognition time, and data preprocessing on the same dataset. Therefore,
the proposed system can be used in a wide range of real applications, such as
image recognition, natural language recognition, and video clip classification.
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1 Introduction

Social touch is a common method used to communicate interpersonal emotions. Social touch
classification is an important research field that has great potential for improvement [1,2]. Social touch
classification can be beneficial in many scientific applications, such as robotics and human–robot
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interaction (HRI). A simple yet demanding question in this area is how to identify the type (or class) of a
touch that affects a robot by analyzing the social touch gesture [3]. Each person can interact with their
environment and other persons via touch sensors spread over humans. These touch sensors provide us
with important information about objects that we handle, such as size, shape, position, surface, and
movement. Touch is the simplest and most straightforward of all the sensors in the human body.
Therefore, the touch system plays a main role in human life from its early stages [4]. Touch gestures are
also crucial for human relationships [5,6].

The essential purpose of nonverbal (touch) interaction is to communicate and transfer emotions between
humans. Thus, social touch is sometimes used to express the human state or to enable interaction between
humans and animals or robots [7,8]. Social touch is also used to express different emotions in daily life,
such as one’s feeling upon accidentally bumping into a stranger in a busy store [9,10]. People use touch
as a powerful method for social interaction. Through touch, people can express many positive and
negative things, such as intent, understanding, affection, care, support, comfort, and (dis)agreement
[11,12]. Different types of touch give various messages. For instance, a handshake is used as a greeting,
whereas a slap is a punishment; petting is a calming gesture for both the person doing the petting and the
animal being petted, and it reduces stress levels and evokes social responses from people [13–15]. This
ability of humans to transfer significant emotions through touch language can be applied to robots by
using artificial skin equipped with sensors [16,17]. The study of social touch recognition depends on the
idea of the human ability to communicate emotions between them via touch [18]. Understanding how
humans can elicit significant information from social touch helps designers develop algorithms and
methods to simulate that response on robots in the correct form when they interact with humans [19].
Gesture patterns must be recognized in the correct form to help robots interpret and understand human
gestures through interaction with them. Precise recognition enables robots to respond to humans and
express their internal state and artificial emotions in a positive action. To ensure a high ratio of
recognition accuracy, sensor devices must measure the touch pressure at high spatial and pressure
resolutions [20]. Therefore, robots must be equipped with sensor devices that can detect emotions and
facial expressions similar to human behavior [21]. The factors affecting touch interpretation include the
relationships between people, cultures of people, the location of touch on the body, and the duration of
the touch. Therefore, designers of artificial skin for robot bodies must take this into consideration to
ensure that each touch conveys the real meaning that an individual intends to send to another [22,23].
Touch recognition systems can be developed through two methods: touch-pattern-based design (top-down
approach) and touch-receptor-based design (bottom-up approach) [24]. In therapeutic and companionship
applications between humans and pets or humanoid robots, closed-loop response can be prepared for
social HRI [25,26]. This requires complex touch sensors and efficient interpretation [27]. Acceptable
information about the operation of effective touch, such as possibilities and mechanisms, is needed
[1,28]. Critical requirements, such as reliable control, perception, learning, and response in correct
emotions, should be fulfilled to enable robots to participate in society and interact with humans in an
effective manner [29]. The interaction behaviors of a real-world objects require the use of touch sensing
for understanding humanoid robots [30,31]. The most critical issue in the design of social robots is how
they can be taught to interact with users, store past participations, and use this stored information when
responding to human touch [32,33]. A human can easily distinguish and understand touch gestures.
However, in the HRI domain, an interface for recording social touch should first be developed.
Researchers have proposed a setup for measuring touch pressure to record data and cover many social
touch gesture classes. This setup uses a kind of artificial skin that records the pressure on it. The human–
animal affective robot touch (HAART) dataset consists of seven touch gestures (pat, constant contact
without movement [press], rub, scratch, stroke, tickle, and no touch) [34].
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To establish a relationship between the required knowledge for objects and movements of the human
hand, Lederman et al. [35] performed two experiments using haptic object exploration. The first
experiment depended on a match-to-sample task, in which a directed match exists between the subject
and a particular dimension. For exploring the object, “exploratory procedures” were used to classify hand
movements. Each procedure had properties that were used by a matching process. The second experiment
identified the reasons for special links that connected the exploratory procedures with the knowledge
goals. During hand movement, the procedures were considered in terms of their necessity, sufficiency,
and optimality of performance for each task. The obtained results had explained that through free
exploration. The procedure is generally used to extract information about object properties because it is
optimal, and sometimes even necessary, for these tasks. Reed et al. [36] attempted to recognize hand
gestures in real time using a hidden Markov model (HMM) algorithm. The gesture recognition is based
on the global features that are extracted from image sequences of a hand motion image database. The
database contained 336 images showing dynamic hand gestures, such as hand waving, spinning, pointing,
and moving. These gestures were performed by 14 participants, with each one performing 24 distinct
gestures. The dataset was split to 312 samples for training and 24 samples for testing. The dynamic
feature extraction reduced the amount of data by 0.3 of the original data information. The system
achieved a gesture recognition accuracy of 92.2%. Colgan et al. [37] used video clips to study the
reaction of 9–12-month-old infants with autism to different gestures. This study introduced the interaction
of children who have autism with different types of social gestures that develop their nonverbal
communication skills. Three types of touch functions were used in this study: joint attention, behavior
regulation, and social interaction. These touch functions contain diverse gestures. Joint attention gestures
refer to paying attention to the body. Behavior regulation gestures are gestures that can control the
behavior of another gesture. Social interaction gestures refer to gestures that are used for social
interaction with other humans.

Haans et al. [38] explained certain issues related to mediated social touch. These issues include
perceptual mechanisms, enabling technologies, theoretical underpinnings, and methods or algorithms used
to solve the problems of artificial skin.

Fang et al. [39] proposed a newmethod that depends on hand gesture recognition for interaction between
humans and computers in real time. The hand is represented in multiple gestures by using elastic graphs with
local jets of a Gabor filter used for feature extraction. Users perform hand gestures to recognize the gestures.
The proposed method has three steps. First, a hand image is segmented into color and motion cues generated
by detection and tracking. Second, features are extracted by a scale space. The last step is the hand gesture
recognition. The recognition ratio is effected by camera movement in virtue of stable hand tracking. A
boosted classifier tree was used to recognize the following hand gestures: left, right, up, down, open, and
close. A total of 2596 frames were recorded in the experiment; 2436 frames were recognized correctly,
and the correct classification ratio was 93.8%.

Jia et al. [40] described the design and implementation of an intelligent wheelchair (IW). The motion of
this wheelchair is controlled via recognition of head gestures based on HRI. To detect faces correctly in real
time, the authors used a hybrid method that combines camshaft object tracking with a face detection
algorithm. In addition, the interface between the user and the wheelchair is equipped with traditional
control tools (joystick, keyboard, mouse, and touchscreen), voice-based control (audio), vision-based
control (cameras), and other sensor-based control (infrared sensors, sonar sensors, pressure sensors, etc.).

Therefore, our aim in this paper is to classify touch in (almost) real time and determine how much data
(how many frames) on average would be needed to classify touch gestures. Our method can lead to more
realistic and near-real-time HRI. In this paper, we propose a model that addresses the touch gesture
classification problem without preprocessing. The use of sensor data without preprocessing is a powerful
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approach to efficiently classifying required gesture types. To be able to handle this large amount of data, we
use an effective tool that widely explored in the literature. Deep learning is based on artificial neural networks
(ANNs), which are currently surpassing classical methods in performance, especially in pattern recognition
fields. For example, Google’s use of deep learning leads to a CCR of more than 80% in 487 classes of videos
where the input dimension is 170 × 170 × 3 × N. The key points of the proposed algorithm are as follows.

1. It achieves high accuracy and outperforms other classification algorithms on the same dataset.

2. It uses a convolutional neural network (CNN) to classify touch gestures in an end-to-end architecture.

3. It predicts the class of a touch gesture in almost real time.

4. It can start classification operation after the minimum number of frames is received.

5. The system can classify gestures even though the training data is considered in the middle of the gesture.

2 Materials and Methods

In this section, the proposed recognition model, namely, the HAART recognition model, is explained. A
CNN was implemented to develop the system.

2.1 HAART Dataset

The HAART, the dataset was collected from 10 participants. Each one performed 7 different touch
gestures: pat, constant contact without movement (press), rub, scratch, stroke, tickle, and no touch [28].
The touch was recorded on a 10 × 10 pressure sensor. The duration of each touch was 10 s, and the data
were sampled at 54 Hz. The sensor was wrapped around a robotic animal model. The permutations of
4 cover conditions (none, short minky, long minky, and synthetic fur) and 3 substrate conditions (firm
and flat, foam and flat, and foam and curve). Therefore, the data initially included 840 gestures
(7 gestures × 10 participants × 12 conditions). However, due to technical problems, 11 gestures were lost
from the dataset, so 829 gestures remained. The data were minimized to include a middle 8 × 8 sensor
grid and middle 8 s. This led to 432 frames for each participant, gesture, substrate, and cover condition [41].

2.2 Deep Learning Algorithm

Deep neural networks are ANNs with multiple layers. In the last decades, ANNs have been considered
effective algorithms for handling real-time applications [42]. Deep learning algorithms use many deep hidden
layers, thus surpassing classical ANN methods [43,44]. CNNs are a widely known type of deep neural
network algorithms; they are named such because they use linear mathematical operations between matrices.

2.2.1 Convolutional Neural Network (CNN)
CNN algorithms have yielded groundbreaking results during the past decade in various applications, such

as pattern recognition, computer vision, voice recognition, and text mining. The advantage of CNNs is that they
reduce the number of parameters that are required in ANN algorithms [45]. This improvement has compelled
researchers to use CNNs to develop systems. The most significant advantage of applying CNN algorithms is
producing features that are not spatially dependent [46]. The convolutional layer will identify the number and
size of the receptive field of neurons in the layer (L), which is connected to a single neuron in the next layer,
using a scalar product between their weights and the region connected to the input volume. In the convolutional
layer, given the input, a weight matrix all the input is being passed over, and the recorded weighted summation
is placed as a single element of the subsequent layer. Three hyperparameters, namely, filter size, stride, and zero
padding, affect the performance of the convolutional layer. By using different values for these hyperparameters,
the convolutional layer can decrease the complexity of the network. A CNN algorithm has different layers.
Fig. 1 shows the details of CNN algorithm layers.
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2.2.1.1 Non-linear Layer
Non-linearity can be used to adjust or cut off the generated output. There are many nonlinear functions

that can be used in CNN. However, Rectified Linear Unit ReLU is one of the most common nonlinear
functions applied in image processing applications. It is shown in Fig. 2. The main goal of using the
ReLU is applying an element-wise activation function to the feature map from the previous layer. In
addition, the ReLU function transfers all value of the features map to positive or zero. It can be
represented as shown in Eq. (1).

ReLU xð Þ ¼ ½0 if x < 0; x if x � 0� (1)

2.2.1.2 Pooling Layer
A pooling layer roughly reduces the dimensions of the input data and minimizes the number of

parameters in the feature map. The simplest way to implement a pooling layer is by selecting the
maximum of each region and then writing it in the corresponding place of the next layer. The use of this
pooling filter reduces the input size to 25% of its original size. Averaging is another pooling method, but
the selection of the maximum is the more widely used method in the literature. The maximum pooling
method is non-invertible, so the original values (that is, the values before the pooling operation) cannot
be restored. Nonetheless, the original values can be approximated by recording the locations of the
maximum values of each moving in a set of switch variables.

2.2.1.3 Softmax Layer
The softmax function (sometimes called normalized exponential function) is considered the best method

of showing the categorical distribution. The input of the softmax function is an N-dimensional vector of

Figure 1: CNN layers

Figure 2: ReLU function
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units, and each unit is expressed by an arbitrary real value, whereas the output is an M-dimensional vector
(N μ M) with real values ranging between 0 and 1. A large value is changed to a real number close to one,
and a small value is changed to a real number close to zero. The summation of all output values must be
equal to 1. Therefore, an output with a large probability is unchanged. The softmax function is used to
calculate the probability distribution of an N-dimensional vector. In general, softmax is used at the
output layer for multiclass classification in machine learning, deep learning, and data science. Correct
calculation of the output probability helps determine the proper target class for the input dataset. The
probabilities of the maximum values are increased by using an exponential element. The softmax
equation is shown by Eq. (2)

Oi ¼ eziPM
i¼1 ezi

(2)

where i, zi is the output, Oi indicates the softmax output, and M is the total number of output nodes. Fig. 3
demonstrates the softmax layer in the network

2.2.1.4 Fully-Connected Layer
The fully connected layer is the last layer in any CNN. Each node in the layer L is connected directly to

each node in layers L − 1 and L + 1. There is no connection between nodes in the same layer, in contrast to the
traditional ANN. Therefore, this layer requires a long training and testing time. More than one fully
connected layer can be used in the same network, as shown in Fig. 4.

Figure 3: Softmax layer in network

Figure 4: Fully connected layer of CNN
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2.3 Proposed Model

The HAART dataset, which was recorded on a pressure sensor, has a size of 8 × 8, and the data length is
equal to N. Thus, the data are in three dimensions. The data are sampled at 54 Hz, so the value of N for each
gesture is 54 × 8 = 432. The input to the CNN must be of equal size (images or frames). Therefore, the raw
sensor data are used as input to the network for touch gesture classification. The main challenge of this
research is to discover the significant architecture of CNN algorithms for gesture recognition. Hence, first,
we define the input and the output structure of the network. Then, through some experiments, we present
the best architecture according to the obtained results. Each recorded sample is an 8 × 8 × N matrix. An
input of 8 × 8 × 432 to the CNN will be computationally intensive. Therefore, we split each sample into
subsamples with a fixed length. The optimal frame length (F) will be determined by the results.

Consequently, the sample at our disposal can be broken down into 86 multiple subsamples of 8 × 8 × 5 with
the same label (e.g., message). The resulting sample has a 8 × 8 × frame length (F), as shown in Eq. (3).
Performance is improved by using part of the sample.

F ¼ floor
N

L

� �
¼ floor

432

86

� �
¼ 5 (3)

where F is the frame length, N = 432, and L = 5, 10, 15. In this case, the first subsample is picked, and the
others are kept away. For example, from the 8 × 8 × 432 samples, we will have only 8 × 8 × 43 (if L = 10),
which is the first part of the big sample. This can be useful, given that most of the gestures differ considerably
only in the beginning of performing them, not in the middle of performing. The second reason is that we will
have an equal number of samples from each class. Splitting samples leads to having more samples in the
gestures with time. In summary, the idea is to use raw data for the classification; that is, for each
experiment, we will have a recording with a length of 8 × 8 × F, which will be fed to the deep neural
network. Thus, the procedure can be regarded as similar to video classification. However, the frame
length (F) differs for each experiment from 1 (when L = 432) to 432 (when L= 1). To fix this problem,
we test the performance of the network for different values of L. This idea has the following benefits.

I Based on the frame length, the number of samples for training the neural network can be increased.
The subsamples can be gained through short frame lengths with less information in each subsample,
and vice versa.

II Subsamples can be obtained from different parts of the main sample. In other words, the adopted
method helps in recognizing the touch gesture in the middle or the end of performing it.

III Earlier studies were not designed for real-time classification. Recognition of a gesture class requires
waiting until the touch gesture is fully performed. By contrast, the adopted approach in this study
allows recognition of the gesture after receiving a certain length of data.

The shape of the output in the adopted method is a softmax function with 7 classes. Although the highest
value in the output node is used, the values of the softmax function can be used to explore other highly
probable hypotheses. Our touch gesture recognition input is in the form of 8 × 8 × F, where F is the
number of filters. More channels can be obtained by increasing the frame length. This will result in more
convolutions, which will be more computationally intensive. Convolutional layers can be cascaded
together to build the classifier. Each convolutional network comprises a convolutional layer, nonlinear
layer, pooling layer, one fully connected layer, and softmax, which are considered for gesture recognition.
Tab. 1 shows of parameters of the CNN algorithm.
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3 Results and Discussion

A grid search is performed to select the optimal frame length (F).We run experiments for L = 5, 10, 15,… ,
50 to determine the most accurate classification based on leave-one-subject-out cross-validation. Since these
experiments are computationally expensive, we select only ID = 1, 3, 5, 7 to select the value of L for the
cross-validation. The average cross-validation accuracy is the criterion for the optimal frame length. The
results are shown in Fig. 5 for each selected subject and its average. Overall, a long frame length is
beneficial for the classification rate. As the value of L increases, the performance of the network increases;
it reaches L = 30, which indicates maximum performance. However, the performance of the network begins
to decline as the value of L increases further. Therefore, among the selected frame lengths, L = 30 provides
the maximum classification rate; hence, it is selected as the input dimension of the CNN.

The leave-one-subject-out cross-validation results of the proposed system on all the subjects are
presented in Tab. 2. The accuracy of the classification ratio is 83.2%, which is 11.8% better than the
state-of-the-art result.

For a better understanding of the results, a confusion matrix is presented in Tab. 3. In the table, there are a
few large no diagonal numbers, which show the biggest confusion in the proposed system. Mutual confusion is

Table 1: Significant parameters of CNN model

Layer No. Elements Parameters Values

1 Convolutional Filter Input Channels 8 × 8 × 14

Size 2 × 2

Stride 1

Pad 1

Max-Pooling Size 2 × 2

Pad 2

2 Convolutional Filter Input Channels 32

Size 2 × 2

Stride 1

Pad 1

Max-Pooling Size 2 × 2

Pad 2

3 Convolutional Filter Input Channels 64

Size 3 × 3

Stride 1

Pad 1

Max-Pooling Size 2 × 2

Pad 2

4 Fully-Connected Input to layer 128 × 2 × 2

Output from Layer 256

5 Softmax Output Units 7
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observed in the following classes: Pat and Rub, Pat and Stroke, Scratch and Rub, Tickle and Scratch, and Tickle
and Rub. Such confusion is natural because these movements are performed similarly by humans.

The results of the proposed system slightly differ due to the touch gesture class. Fig. 6 demonstrates the
performance of the proposed system using different touch gesture classes. In the proposed system, we use the
Tickle and Scratch touch gesture class, which presents multiple mutual conflicts with other classes. The
proposed system performs the best in the Constant and No Touch classes. For a comparison of the

Figure 5: Performance of CNN algorithm with three convolutional layers over four randomly selected
subjects on HAART dataset

Table 2: Performance evaluation of proposed system using leave-one-subject-out cross-validation on all subjects

Validation Method Classification Ratio Standard Deviation

One-Subject-Leave-Out 83.2% 13%

Table 3: Confusion matrix of proposed system for gesture recognition

Gesture a b c d e f g

Constant (a) 35 0 0 0 0 0 0

No touch (b) 1 36 0 0 0 0 0

Pat (c) 0 0 29 1 0 0 0

Rub (d) 0 0 3 30 7 3 2

Scratch (e) 0 0 0 2 26 0 20

Stroke (f) 0 0 4 2 0 33 1

Tickle (g) 0 0 0 1 3 0 13
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proposed system with other classification methods applied on the same dataset, Tab. 4 shows that our
proposed system improves the classification ratio without preprocessing. Moreover, it depends on the
original input data, not on feature extraction, where some information from the raw data is lost.

4 Conclusion

We propose a system for classifying touch gestures using a deep neural network. The CNN is selected
because it is a good approach to feature extraction. The HAART dataset is selected to train the CNN due to
the variety of classes. The proposed system yields an accuracy of 83.2%. A comparative classification of the

Figure 6: Performance of proposed system

Table 4: Comparison results of proposed system against existing classification using HAART dataset

References Preprocessing # Features Classififcation Method Accuracy (%)

Balli Altuglu et al. [47] Yes 42 Random Forest (RF) 61.5

Gaus et al. [48] Yes 5 Random Forest (RF) 66.53

Boosting 64.54

Hughes et al. [49] Yes 7 Deep Autoencoders 71.4

Ta et al. [50] Yes 273 SVM 68.52

Random Forest (RF) 70.91

Hughes et al. [51] Yes 7 CNN 56.1

CNN-RNN 61.35

Autoencoder- RNN 61.35

Proposed System No Input Data (Raw Data) CNN 83.2
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results between the proposed system and state-of-the-art systems is presented. The findings indicate that the
proposed system achieves successful results. There are two benefits of the proposed system compared with
the existing systems in the literature. First, the proposed system does not require preprocessing or manual
feature extraction approaches, and it can be implemented end to end. Second, the proposed system can
recognize the class once the minimum number of frames is received. This minimum number of frames is
found in the HAART dataset using a grid search. However, the size of the input frame (8 × 8) negatively
affects the CNN’s performance, as the CNN reduces the size of the frame when being transferred from
one layer to another. Finally, the proposed system outperforms the compared state-of-the-art systems on
the HAART dataset. Sparse-coding-based methods, autoencoder-based methods, and restricted Boltzmann
machines can be used to further improve the developed system.

Funding Statement: The author(s) received no specific funding for this study.
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